

Asynchronous Hybrid Kogge-Stone Structure Carry Select
Adder Based IEEE-754 Double-Precision Floating-Point Adder

Abhijith Kini G.

 Department of Electronics and Communication Engineering, National Institute of Technology Karnataka, NITK-Surathkal.
Surathkal, Karnataka 575025, India.

Abstract

In this paper, the design and implementation of a generic fast
asynchronous Hybrid Kogge-Stone Structure Carry Select based
Adder (HKSS-CSA) is described in detail and its application in
the design of asynchronous Double Precision Floating-Point
Adder (DPFPA) is presented and the improved latency
performance it provides is discussed. A detailed analysis in terms
of maximum combinational delay, number of logic levels and
logic resources used by both these adders is provided. The
proposed HKSS-CSA adder’s performance is compared with a
generic reference Carry Look-Ahead Adder (CLA) in terms of
the above parameters. For the same set of inputs, the HKSS-CSA
resulted in approximately 40% (32-bit) – 65% (128-bit)
reduction in the number of logic levels, thereby improving the
overall latency by a factor of 2 (32-bit) – 6 (128-bit) times
compared to a CLA. A 64-bit instance of this HKSS-CSA was
made use of in the design of an asynchronous DPFPA and its
performance compared with a reference DPFPA which makes use
of a CLA in the intermediate stage. The reference DPFPA had a
maximum combinational delay of 36.25ns while the newly
suggested DPFPA had a delay of 18.60ns for the same set of
inputs, giving about 50% improvement in overall latency
performance, which can be mainly attributed to the latency
improvement provided by the HKSS-CSA.
Keywords: Double Precision Floating-Point, Hybrid, Kogge-
Stone, Carry Select, Carry Look-Ahead, Adder.

1. Introduction

Floating-point adders (FPAs) are one of the most
frequently used components in modern microprocessors,
digital signal processors (DSPs) and graphic processing
units (GPUs). These adders must not only be fast enough
to accommodate the ever increasing speed requirements of
designs but also small enough for designs which make use
of a number of these adders in parallel; while maintaining
the accuracy at the output. The main bottlenecks in the
design of FPAs are latency, area and power. Both floating-
point addition and subtraction make use of FPA, hence the
latency and throughput of FPA is critical in improving the
overall performance of a Floating-Point Unit (FPU).
Therefore, a lot of effort was spent on reducing the FPA
latency [1-4].

In [1], a DPFPA design which makes uses of flagged
prefix addition is proposed and the improvement got in
latency is described in detail. A two-path FPA design is
proposed to improve the overall latency in [2]. In [3], a
design which reduces the overall latency by reducing
latency at each sub-module by improvement in structural
level by using synthesis method is presented. A variable
latency algorithm is proposed and made use of in the
design of FPA and the improvements got are detailed in [4].
The design tradeoff analysis of FPAs in FPGAs is
presented in [5]. The IEEE standard for binary floating-
point arithmetic [6] provides a detailed description of the
floating-point representation and the specifications for the
various floating-point operations. It also specifies the
method to handle special cases and exceptions. Nowadays,
most floating point units are IEEE compliant and are
capable of handling both single precision and double
precision floating-point operands.
The main objective of this paper is to present the design of
an asynchronous DPFPA which makes use of newly
designed HKSS-CSA and is conformable with the latest
draft of IEEE-754 standard, its implementation using Very
high-speed integrated-circuit Hardware Description
Language (VHDL) and its synthesis for a Xilinx Virtex-V
FPGA using Xilinx’s Integrated Software Environment
(ISE) 9.1i. Asynchronous adders offer many advantages,
most important is that they do not use a clock signal, hence
not constrained to a global timing constraint. The designed
DPFPA accepts normalized double precision floating-point
numbers as input and the output is also in the same format.
It can also handle special cases and exceptions described
in the IEEE standard. This design is compared against a
reference DPFPA and analyzed in terms of latency,
number of logic levels and logic resources used. This
design can be easily extended to support operations on
single precision floating-point numbers though better delay
performance is got for double precision numbers.
The organization of this paper is as follows: In section 2
the standard algorithm for double precision floating-point
addition is presented and design improvements in sub-
modules which can lead to increase in overall performance
of DPFPA are suggested. The design and implementation
of generic asynchronous HKSS-CSA used in the proposed

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 100

DPFPA design is discussed in section 3 and its
performance compared with a standard CLA. In section 4,
the design of the suggested DPFPA is described. Also the
performance analysis of the proposed DPFPA adder is
done and compared with the reference DPFPA in this
section. The main conclusions are elucidated in section 5.

2. Standard DPFPA Algorithm

The double precision floating-point addition is one of the
most complex operations in a FPU and needs more logical
resources compared to 64-bit adder mainly due to
normalization, rounding logic and exception handling. The
main steps involved in performing an IEEE double
precision floating-point addition are summarized below:
• The first step is to extract the sign, exponent and

mantissa part of the operands as per the IEEE
representation and check whether the inputs are
normalized or any of the special types like NaN,
infinity or zero.

• Next step is pre-normalization where the two
exponents are compared to identify the larger
exponent and the smaller operand is aligned by right
shifting it by the absolute difference of the exponents.

• Addition of the two aligned mantissa is performed in
the next step.

• The post-normalization step involves detection of
carry out and right shifting mantissa by 1 and
incrementing the exponent in case of carry-out.

• Rounding is done based on certain internal signals, the
exponent and mantissa are updated appropriately.

• The final step involves exception handling where
checks are done on the output for any special types.

The algorithm used is shown in the form of a flow chart in
Fig. 1. Operand A is unpacked based on IEEE double
precision floating-point representation into sign (SA),
exponent (EA) and mantissa (MA). Similarly SB, EB and
MB are got from operand B. The output sign (SO),
exponent (EO) and mantissa (MO) are packed in the last
stage of the DPFPA and given out in IEEE double
precision floating point format.
A detailed delay analysis of the different sub-modules used
in the design of DPFPA revealed that the 53-bit mantissa
adder lies in the critical path and is also the largest
functional unit block in the data path. Improvements in the
design of this adder to have better delay performance
should lead to an improvement in the overall latency
performance of the DPFPA. Parallel prefix addition is a
general technique for speeding up binary addition and has
a flexible area-time tradeoff. Parallel prefix adders are
derived from the family of CLA. A CLA adder improves
the speed by reducing the amount of time required to
determine the carry bits.

Flags

Unpack

Mantissa Addition

Pre-Normalization

Post Normalization

Rounding

Exception Handling

Pack

SA EA MA SB EB MB

SO EO MO

Fig. 1 Asynchronous DPFPA Algorithm.

3. Asynchronous Hybrid Kogge-Stone
Structure-Carry Select Based Adder

A general overview of different addition techniques has
been presented in [7]. A number of fast adders like carry-
skip adder, carry-select adder and carry look-ahead adders
have been proposed in the past [8]. The CLA uses the
concepts of generating and propagating the carries. The
addition of two 1-bit inputs A and B is said to generate if
the addition will always carry, regardless of whether there
is an input carry. The addition of two 1-bit inputs is said to
propagate if the addition will carry whenever there is an
input carry. The equations (1) and (2) are used to find
generate and propagate terms respectively.

 (1)
 (2)

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 101

The parallel prefix addition can be viewed as a 3-stage
process shown in Fig. 2. The improvements can be made
primarily in the carry generation stage which is the most
intensive one. These adders make use of a tree structure for
calculating the carry and hence reduce the latency of the
output. Among all trees, the Kogge-Stone tree structure is
the most commonly used parallel prefix topology in high
performance data paths. The main features are minimum
logic depth, regular structure and uniform fan-out. The
main disadvantages are large number of wires and high
power dissipation. The Kogge-Stone Structure (KSS)
based adder is a parallel prefix form of CLA and generates
the carry signals in O(log2(N)) time (where N represents
number of input bits) and is considered the fastest adder
design widely used in industry.
These designs are better suited for adders with wider word
lengths and there is a minimal fan-out of 2 at each node,
hence faster performance. The algorithm developed by
Kogge-Stone [9] has both optimal depth and low fan-out
but produces massively complex circuit realizations and
also account for large number of interconnects. Brent-
Kung adder [10] makes use of minimal number of
computation nodes, hence results in reduced area, but the
structure has maximum depth which results in increased
latency compared with other structures. The Han-Carlson
adder [11] combines Brent-Kung and Kogge-Stone
structures to achieve a balance between logic depths and
interconnect count. An algorithm for generating parallel
prefix adders with variable parameters has been discussed
in [12]. A matrix representation for the gate level design of
parallel prefix adders has been presented in [13].

Fig. 2 Parallel-Prefix 3-stage Addition Process.

3.1 Design and Implementation

The parallel prefix adders and CLA adders differ in the
way their carry generation block is implemented. In Stage
I, generate and propagate components are found for each
bit combination of the inputs A and B. The block level
representations for each of the cell modules with its
corresponding inputs and outputs are shown in Fig. 3. Each
of these cell modules were written in VHDL and verified
individually. The top module consists of instances of these
sub-modules and is verified finally as a single block.
White cell module is used to form the initial generate and
propagate components Gi and Pi with Ai and Bi as its
inputs. The expression to calculate Gi and Pi are given by
(3) and (4) respectively.

 (3)
 (4)

In Stage II, the calculation of the carries Ci is done by
making of use of the Kogge-Stone structure. This stage
makes use of black cell, grey cell and buffer cell modules,
each having their unique functionalities. The Black cell
module takes (Gin1, Pin1) and (Gin2, Pin2) as its inputs and
forms the (Gout, Pout) using (5) and (6).

 (5)
 (6)

The Grey cell module outputs only the generate component
Gout using (5) taking (Gin1, Pin1) and Gin2 as its input. The
buffer cell acts as a buffer passing its inputs (Gin1, Pin1) as
its outputs (Gout, Pout).

Fig. 3 (Clockwise)
White cell, Black cell, Grey cell, Buffer cell.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 102

Fig. 4 Kogge-Stone Structure for 8-bit Adder.

The Kogge-Stone tree structure for an 8-bit adder is shown
in Fig. 4. The height of a Kogge-Stone tree for an N-bit
adder is given by log2 (N) logic stages. Hence for an 8-bit
adder, we have a height of 3 logic stages. The radix of the
adder refers to how many results from the previous level of
computation are used to generate the next one. In this
design Radix-2 implementation is done. Higher radix
levels can be made use of to reduce the number of stages,
but this increases the power and delay. The sparsity of the
adder refers to how many carry bits are generated by the
carry-tree. In this design every carry bit is generated, hence
making it Sparsity-1 design.
Kogge-Stone structure has minimal depth but high node
count, hence occupies more area in comparison to other
tree structures like Brent-Kung, Han-Carlson, and Ladner-
Fischer, but has a minimal fan-out of 2 at each given stage,
hence giving a better delay performance.
The carries Ci generated in stage II is made use of to
calculate the sum Si in stage III. These carries are used as
the carry-in inputs for much shorter RCAs or some other
adder design, which generates the final sum bits. But by
making use of a Carry Select Adder (CSA) in the last
stage, the delay can be further reduced since the sum bits

will already be calculated. In a CSA, we compute two
results in parallel, each for different carry input
assumption. A CSA consists of two Ripple Carry Adders
(RCAs) and a multiplexer. Adding two N-bit numbers with
a CSA is done with two RCAs in order to perform the
calculation twice, one time with the assumption of the
carry being zero (Ci = ‘0’) and the other assuming one (Ci
= ‘1’). These two calculations can be done in parallel.
After the two results are calculated, the correct sum is
selected with the multiplexer once the carry is known. The
carries Ci from stage II are fed as inputs to the CSA, so as
to choose the appropriate Si which has already been
calculated, thereby reducing the overall delay of the final
output. Fig. 5 shows the block diagram of CSA used in the
design. The block diagram of the RCA implemented is
shown is Fig. 6.
In order to compare the performance of the proposed adder
with the CLA, a generic CLA was designed in a structural
manner. The block diagram of a generic N-bit CLA is
shown in Fig 11. Each of the GPB blocks contains logic
which calculates the Gi, Pi and Cj for i = N-2, N-1 … 2, 1,
0 and j = N-1, N-2…, 2, 1 using equations (3), (4) and (7).

 (7)

Fig. 5 Block diagram of Carry Select Adder (CSA).

Fig. 6 Block diagram of Ripple Carry Adder (RCA). [7]

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 103

Table 1: Delay and device utilization summary.

N
(No. of bits)

Type of
Adder

Maximum
combinational
path delay (ns)

Route
Delay
(ns)

Logic
Delay
(ns)

Levels of
Logic

No. of
Slices

2 HKSS-CSA 3.600 0.970 2.630 3 3
CLA 3.600 0.970 2.630 3 3

4 HKSS-CSA 4.418 1.515 2.903 5 8
CLA 4.433 1.723 2.710 4 6

8 HKSS-CSA 5.367 2.497 2.870 6 16
CLA 5.962 3.092 2.870 6 12

16 HKSS-CSA 7.155 4.125 3.030 8 73
CLA 7.880 4.690 3.190 10 24

32 HKSS-CSA 9.030 5.760 3.270 11 178
CLA 15.754 11.844 3.910 19 49

64 HKSS-CSA 10.561 7.051 3.510 14 466
CLA 27.986 22.796 5.190 35 97

128 HKSS-CSA 11.540 7.951 3.590 25 1125
CLA 52.451 44.701 7.750 67 193

(Clockwise)
Fig. 7 Maximum combinational delay (in ns) as a function of N (bits).

Fig. 8 Routing delay (in ns) as a function of N (bits).
Fig. 9 Levels of logic as a function of N (bits).
Fig. 10 No. of slices as a function of N (bits).

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 104

Carry Look-Ahead Logic

GPBGPBGPB cin

Cout

b0a0b1a1bN-1aN-1

s0s1sN-1

c1c2cN-1

Fig. 11 Block diagram of N-bit CLA.

3.2 Performance Results

The design of the proposed HKSS-CSA and CLA was
modeled in VHDL by making use of a module based
structural approach. Both the adders where designed and
synthesis was done using Xilinx-ISE EDA software on
Virtex5 device. Functional testing was done on corner
cases, as well as large number of test cases were written to
verify the functionality of the adders. The simulation of the
waveforms was done using ModelSim-SE.
The performance comparison of the two designs is done in
Table 1, which provides the delay, number of logic levels
and device utilization summary of HKSS-CSA and CLA.
In Fig. 7, a graph of maximum combinational path delay as
a function of number of input bits (N) is shown. From this
we can observe that there is a drastic increase in the
maximum combinational delay for CLA as N increases
compared to HKSS-CLA. Hence HKSS-CSA design is
more suitable for adders with higher input widths.
As evident from Fig. 8, in CLA the routing delay increases
for higher values of N. The advantage of the HKSS-CSA
becomes more apparent for higher values of N; delay is
reduced by 6 times (N=128) and by 3 times (N=64). The
routing delay increases almost in a linear manner for
HKSS-CSA while its almost exponential for CLA.
As can be observed from Fig. 9, there is a reduction of
about 40% (32-bit) to 65% (N=128) in the number of logic
levels when compared with a CLA of same width, thus
leading to a better overall delay for the proposed HKSS-
CSA when compared to CLA. Also on comparing with Fig.
7, we can see that the number of logic levels has a definite
relationship to the maximum combinational path delay.
Also as expected the HKSS-CSA makes use of more
number of logic resources when compared to the CLA.
CLA uses lesser logic resources in comparison to HKSS-
CSA and this difference increases considerably for higher
values of N. Hence as the number of required logic
resources increases, area also increases. In Fig. 10, a plot
of number of slices used as a function of N is shown.

4. Asynchronous Hybrid Kogge-Stone
Structure Carry Select Based DPFPA

This section will review the DPFPA algorithm architecture
and the hardware sub-modules used in implementing it.
The block diagram of DPFPA is shown in Fig. 12.

4.1 Design and Implementation

The standard DPFPA algorithm presented in section 2 is
designed and implemented here. The two 64-bit inputs A
and B are both in IEEE double precision floating-point
format and the output sum will also be in the same format.
A 64-bit double precision floating point number defined as
per the IEEE-754 standard consists of the 1- bit sign ([63]),
11- bit exponent ([62:52]) and 52- bit mantissa ([51:0]).
The design consists of mainly three blocks: pre-adder,
adder and post-adder. Each of these blocks contains some
Functional Unit Blocks (FUBs) which perform specific
functions.

• Pre-Adder Block

The FUBs in the pre-adder block perform operation on the
operands to be done before the mantissa addition is done.
The Unpack FUB basically extracts and signs the sign,
exponent and mantissa parts of A (SA, EA, MA) and B
(SB, EB, MB) as per IEEE double precision floating point
format. The check for special formats is also done in this
FUB and flags (EI) sent to the post-adder block. Pre-
normalization is done in the Exp FUB, in which the two
exponents EA and EB are compared to identify the larger
exponent. The right shifting of the smaller operand by an
amount equal to the absolute difference of the exponents is
done in the Align FUB. The sign bit of the final sum is got
from the Sign FUB.

• Adder Block

A 53-bit adder is needed to add the mantissas MAF and
MBF coming in from the pre-adder block. The improving
the latency performance of this adder we can improve the
overall latency performance of the DPFPA. As shown in
section III, the newly proposed 64-bit KSS-CSA gives
good latency performance in comparison to the CLA. A
64-bit adder is chosen here instead of a 53-bit adder so as
to take advantage of the well-ordered tree structure for
carry generation, minimal fan-out at each stage, reduced
number of logic levels, and the carry select adder in the
last stage. Hence the inputs MAF and MBF to the adder
block are zero padded before addition and the final result
is sent to the post-adder block.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 105

Fig. 12 Block diagram of DPFPA.

• Post-Adder Block

The FUBs in the post-adder block perform operations on
the results of mantissa addition. Post-normalization of the
output mantissa is done in this FUB. Rounding and
exception handling is done in the last stage of the FUB.
The result sign, exponent and mantissa are stitched
together to form the 64-bit floating point output SUM.
Additional flags are also generated at the output to detect
special cases.

4.2 Performance Results

In order to compare the performance of the proposed
HKSS-CSA based DPFPA against a reference CLA based
DPFPA, both the designs were modeled in VHDL and
synthesized using Xilinx-ISE EDA software on Virtex5
device. The functionality of the designs was tested by
applying a large number of test vectors and Modelsim-SE
was used to verify the design. Various corner and special
cases were also covered and the performance statistics in
terms of maximum combinational delay, route and logic
delays, number of levels of logic and slice logic utilization
were collected. Table 2 provides the performance
comparison data with respect to the proposed and
reference DPFPA. Here again we can see a definitive
relationship between the number of logic levels and
maximum combinational path delay.
The suggested design led to a reduction in the number of
logic levels by about 50% compared to the reference
DPFPA for the same set of inputs. The route and logic
delays which comprise the total delay for the two designs
can be seen in Fig. 13. The maximum combinational path
delay was reduced from 36.25ns to 18.60ns, so the

proposed HKSS-CSA based DPFPA is almost twice as fast
as the CLA based DPFPA.
Also as expected the proposed design makes use of more
amount of logical resource while giving a better delay
performance which can be attributed mainly to the
improved latency performance of the intermediate adder.
The delay of an adder depends on how fast the carry bit
can be generated and used in sum generation. Thus by
making use of HKSS-CSA in the mantissa addition stage,
the suggested DPFPA gave a better overall delay
performance in contrast to the DPFPA which uses the
CLA.

Table 2: Delay and device utilization summary of DPFPA.

DPFPA
based on

Maximum
combinational

path delay
(ns)

Route
Delay
(ns)

Logic
Delay
(ns)

Levels
of

Logic

Slice
Logic

HKSS-CSA 18.600 13.756 4.844 28 1850
CLA 36.253 29.889 6.364 51 1556

Fig. 13 Delay performance of DPFPA based on HKSS-CSA and CLA.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 106

5. Conclusions

In this paper, the design and implementation of generic
HKSS-CSA is proposed and its performance compared
with a generic CLA. We have analyzed the delay, number
of logic levels and logic resources needed by the HKSS-
CSA and CLA for different input widths. The results show
that the HKSS-CSA is faster in comparison to CLA
because of a number of factors like minimal fan-out at each
stage, reduced number of logic levels, well ordered tree
structure for carry generation and the carry select adder in
the last stage. But with regard to the use of logic resources,
the CLA performs better. The new design led to a
reduction by 40%-65% in the levels of logic and thus a
latency improvement by a factor of 2-6 times when
compared to CLA for higher values of N (32, 64, 128 bit).
Also this paper proves the tradeoff that exists between
maximum combinational delay and amount of logic
resources used, and hence the area i.e. area-timing tradeoff.
In addition to this, we can see that lower delay advantage
of HKSS-CSA can be got for adders with higher input
widths.
An application of this HKSS-CSA in the design of fast
asynchronous DPFPA is investigated and the performance
of this adder compared with a DPFPA which makes use of
CLA in the intermediate stage. The suggested design led to
a reduction by about 50% in the number of levels of logic
compared to one with CLA thereby leading to an overall
decrease in the maximum combinational delay. For future
work we plan to make use of this HKSS-CSA in the design
of single precision and double precision floating point
multipliers, to add the mantissa part.

References

[1] A. Beaumont-Smith, N. Burgess, S. Lefrere, and C. Lim,

“Reduced Latency IEEE Floating-Point Standard Adder
Architectures”, Proc.14th IEEE Symp. Computer
Arithmetic, pp. 35-43, 1999.

[2] Peter-Michael Seidel and Guy-Even, “On the Design of Fast
IEEE Floating-Point Adders”, Proc. International
Symposium on Computer Arithmetic, 2001.

[3] Huang, C., X. Wu, J. Lai, C. Sun and G. Li, “A design of
high speed double precision floating point adder using
macro modules”, Proc. of the Asia and South Pacific Design
Automation Conference, pp: D11-D12, 2005.

[4] S. Oberman, H. Al-Twaijry, and M. Flynn, “The SNAP
Project: Design of Floating Point Arithmetic Units,” Proc.
13th IEEE Symp. Computer Arithmetic, pp. 156-165, 1997.

[5] Ali Malik, Lee Moon Ho, Dongdoung Chen, Younhee Choi,
Seok Bum Ko, “Design Tradeoff Analysis of Floating-point
Adders in FPGAs”, Canadian Journal of Electrical and
Computer Engineering, vol. 33, pp. 170 - 175, 2008.

[6] The Institute of Electrical and Electronic Engineers, Inc.
IEEE Standard for Binary Floating-point Arithmetic.
ANSI/IEEE Std 754-1985.

[7] Prof. Vojin G. Oklobdzija, “VLSI
Arithmetic”, http://www.ece.ucdavis. edu/acsel

[8] B. Parhami, Computer Arithmetic–Algorithm and Hardware
Designs, Oxford University Press, 2000.

[9] P.Kogge and H.Stone, “A Parallel Algorithm for the
efficient solution of a general class of recurrence relations,”
IEEE Transactions on Computers, vol. C-22, no.8, August
1973, pp.786-793.

[10] R.Brent and H.Kung, “A Regular Layout for Parallel
adders,” IEEE Transaction on Computers, vol. C-31, no.3,
March 1982, pp. 260-264.

[11] T. Han and D. Carlson, “Fast Area Efficient VLSI adders,”
Proceedings of the 8th Symposium on Computer
Arithmetic, September 1987, pp. 49-56.

[12] A. Beaumont Smith, C. C. Lim, "Parallel Prefix Adder
Design", Proceedings of 15th IEEE Symposium on
Computer Arithmetic, June 2001, pp. 218-225.

[13] Youngmoon Choi, Earl E. Swartzlander Jr, "Parallel Prefix
Adder Design with Matrix Representation", Proceedings of
17th IEEE Symposium on Computer Arithmetic, June 2005,
pp. 90 - 98.

Abhijith Kini G.: holds a Bachelor’s degree (2006-2010) in
Electronics and Communication Engineering from National
Institute of Technology Karnataka, NITK-Surathkal, India. His
areas of interest are VLSI systems, signal processing and
communication systems. He has an IEEE publication in the field
of wireless sensor networks and a journal in the field of VLSI
signal processing. He is presently working as a component design
engineer at Intel India Technology Pvt. Ltd since August 2010.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 107

