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Abstract 

In this paper, the design and implementation of a generic fast 
asynchronous Hybrid Kogge-Stone Structure Carry Select based 
Adder (HKSS-CSA) is described in detail and its application in 
the design of asynchronous Double Precision Floating-Point 
Adder (DPFPA) is presented and the improved latency 
performance it provides is discussed. A detailed analysis in terms 
of maximum combinational delay, number of logic levels and 
logic resources used by both these adders is provided. The 
proposed HKSS-CSA adder’s performance is compared with a 
generic reference Carry Look-Ahead Adder (CLA) in terms of 
the above parameters. For the same set of inputs, the HKSS-CSA 
resulted in approximately 40% (32-bit) – 65% (128-bit) 
reduction in the number of logic levels, thereby improving the 
overall latency by a factor of 2 (32-bit) – 6 (128-bit) times 
compared to a CLA. A 64-bit instance of this HKSS-CSA was 
made use of in the design of an asynchronous DPFPA and its 
performance compared with a reference DPFPA which makes use 
of a CLA in the intermediate stage. The reference DPFPA had a 
maximum combinational delay of 36.25ns while the newly 
suggested DPFPA had a delay of 18.60ns for the same set of 
inputs, giving about 50% improvement in overall latency 
performance, which can be mainly attributed to the latency 
improvement provided by the HKSS-CSA.  
Keywords: Double Precision Floating-Point, Hybrid, Kogge-
Stone, Carry Select, Carry Look-Ahead, Adder. 

1. Introduction 

Floating-point adders (FPAs) are one of the most 
frequently used components in modern microprocessors, 
digital signal processors (DSPs) and graphic processing 
units (GPUs). These adders must not only be fast enough 
to accommodate the ever increasing speed requirements of 
designs but also small enough for designs which make use 
of a number of these adders in parallel;  while maintaining 
the accuracy at the output.  The main bottlenecks in the 
design of FPAs are latency, area and power. Both floating-
point addition and subtraction make use of FPA, hence the 
latency and throughput of FPA is critical in improving the 
overall performance of a Floating-Point Unit (FPU). 
Therefore, a lot of effort was spent on reducing the FPA 
latency [1-4].  

In [1], a DPFPA design which makes uses of flagged 
prefix addition is proposed and the improvement got in 
latency is described in detail.  A two-path FPA design is 
proposed to improve the overall latency in [2]. In [3], a 
design which reduces the overall latency by reducing 
latency at each sub-module by improvement in structural 
level by using synthesis method is presented. A variable 
latency algorithm is proposed and made use of in the 
design of FPA and the improvements got are detailed in [4]. 
The design tradeoff analysis of FPAs in FPGAs is 
presented in [5]. The IEEE standard for binary floating-
point arithmetic [6] provides a detailed description of the 
floating-point representation and the specifications for the 
various floating-point operations. It also specifies the 
method to handle special cases and exceptions. Nowadays, 
most floating point units are IEEE compliant and are 
capable of handling both single precision and double 
precision floating-point operands.  
The main objective of this paper is to present the design of 
an asynchronous DPFPA which makes use of newly 
designed HKSS-CSA and is conformable with the latest 
draft of IEEE-754 standard, its implementation using Very 
high-speed integrated-circuit Hardware Description 
Language (VHDL) and its synthesis for a Xilinx Virtex-V 
FPGA using Xilinx’s Integrated Software Environment 
(ISE) 9.1i. Asynchronous adders offer many advantages, 
most important is that they do not use a clock signal, hence 
not constrained to a global timing constraint. The designed 
DPFPA accepts normalized double precision floating-point 
numbers as input and the output is also in the same format. 
It can also handle special cases and exceptions described 
in the IEEE standard. This design is compared against a 
reference DPFPA and analyzed in terms of latency, 
number of logic levels and logic resources used. This 
design can be easily extended to support operations on 
single precision floating-point numbers though better delay 
performance is got for double precision numbers. 
The organization of this paper is as follows: In section 2 
the standard algorithm for double precision floating-point 
addition is presented and design improvements in sub-
modules which can lead to increase in overall performance 
of DPFPA are suggested. The design and implementation 
of generic asynchronous HKSS-CSA used in the proposed 
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DPFPA design is discussed in section 3 and its 
performance compared with a standard CLA. In section 4, 
the design of the suggested DPFPA is described. Also the 
performance analysis of the proposed DPFPA adder is 
done and compared with the reference DPFPA in this 
section. The main conclusions are elucidated in section 5.  

2. Standard DPFPA Algorithm 

The double precision floating-point addition is one of the 
most complex operations in a FPU and needs more logical 
resources compared to 64-bit adder mainly due to 
normalization, rounding logic and exception handling. The 
main steps involved in performing an IEEE double 
precision floating-point addition are summarized below:   
• The first step is to extract the sign, exponent and 

mantissa part of the operands as per the IEEE 
representation and check whether the inputs are 
normalized or any of the special types like NaN, 
infinity or zero.  

• Next step is pre-normalization where the two 
exponents are compared to identify the larger 
exponent and the smaller operand is aligned by right 
shifting it by the absolute difference of the exponents.  

• Addition of the two aligned mantissa is performed in 
the next step.  

• The post-normalization step involves detection of 
carry out and right shifting mantissa by 1 and 
incrementing the exponent in case of carry-out.  

• Rounding is done based on certain internal signals, the 
exponent and mantissa are updated appropriately.  

• The final step involves exception handling where 
checks are done on the output for any special types. 

The algorithm used is shown in the form of a flow chart in 
Fig. 1. Operand A is unpacked based on IEEE double 
precision floating-point representation into sign (SA), 
exponent (EA) and mantissa (MA). Similarly SB, EB and 
MB are got from operand B. The output sign (SO), 
exponent (EO) and mantissa (MO) are packed in the last 
stage of the DPFPA and given out in IEEE double 
precision floating point format.  
A detailed delay analysis of the different sub-modules used 
in the design of DPFPA revealed that the 53-bit mantissa 
adder lies in the critical path and is also the largest 
functional unit block in the data path. Improvements in the 
design of this adder to have better delay performance 
should lead to an improvement in the overall latency 
performance of the DPFPA. Parallel prefix addition is a 
general technique for speeding up binary addition and has 
a flexible area-time tradeoff. Parallel prefix adders are 
derived from the family of CLA. A CLA adder improves 
the speed by reducing the amount of time required to 
determine the carry bits. 

Flags

Unpack

Mantissa Addition

Pre-Normalization

Post Normalization

Rounding

Exception Handling

Pack

SA  EA MA SB  EB MB

SO  EO MO
 

Fig. 1 Asynchronous DPFPA Algorithm. 

3. Asynchronous Hybrid Kogge-Stone 
Structure-Carry Select Based Adder  

A general overview of different addition techniques has 
been presented in [7]. A number of fast adders like carry-
skip adder, carry-select adder and carry look-ahead adders 
have been proposed in the past [8]. The CLA uses the 
concepts of generating and propagating the carries. The 
addition of two 1-bit inputs A and B is said to generate if 
the addition will always carry, regardless of whether there 
is an input carry. The addition of two 1-bit inputs is said to 
propagate if the addition will carry whenever there is an 
input carry. The equations (1) and (2) are used to find 
generate and propagate terms respectively. 
 
           (1) 
       (2) 
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The parallel prefix addition can be viewed as a 3-stage 
process shown in Fig. 2. The improvements can be made 
primarily in the carry generation stage which is the most 
intensive one. These adders make use of a tree structure for 
calculating the carry and hence reduce the latency of the 
output. Among all trees, the Kogge-Stone tree structure is 
the most commonly used parallel prefix topology in high 
performance data paths. The main features are minimum 
logic depth, regular structure and uniform fan-out. The 
main disadvantages are large number of wires and high 
power dissipation. The Kogge-Stone Structure (KSS) 
based adder is a parallel prefix form of CLA and generates 
the carry signals in  O(log2(N)) time (where N represents 
number of input bits) and is considered the fastest adder 
design widely used in industry. 
These designs are better suited for adders with wider word 
lengths and there is a minimal fan-out of 2 at each node, 
hence faster performance. The algorithm developed by 
Kogge-Stone [9] has both optimal depth and low fan-out 
but produces massively complex circuit realizations and 
also account for large number of interconnects. Brent-
Kung adder [10] makes use of minimal number of 
computation nodes, hence results in reduced area, but the 
structure has maximum depth which results in increased 
latency compared with other structures. The Han-Carlson 
adder [11] combines Brent-Kung and Kogge-Stone 
structures to achieve a balance between logic depths and 
interconnect count.  An algorithm for generating parallel 
prefix adders with variable parameters has been discussed 
in [12]. A matrix representation for the gate level design of 
parallel prefix adders has been presented in [13]. 
 

 

Fig. 2 Parallel-Prefix 3-stage Addition Process. 

3.1 Design and Implementation 

The parallel prefix adders and CLA adders differ in the 
way their carry generation block is implemented. In Stage 
I, generate and propagate components are found for each 
bit combination of the inputs A and B. The block level 
representations for each of the cell modules with its 
corresponding inputs and outputs are shown in Fig. 3. Each 
of these cell modules were written in VHDL and verified 
individually. The top module consists of instances of these 
sub-modules and is verified finally as a single block.  
White cell module is used to form the initial generate and 
propagate components Gi and Pi with Ai and Bi as its 
inputs. The expression to calculate Gi and Pi are given by 
(3) and (4) respectively. 
 
        (3) 
           (4) 

In Stage II, the calculation of the carries Ci is done by 
making of use of the Kogge-Stone structure. This stage 
makes use of black cell, grey cell and buffer cell modules, 
each having their unique functionalities. The Black cell 
module takes (Gin1, Pin1) and (Gin2, Pin2) as its inputs and 
forms the (Gout, Pout) using (5) and (6). 
 
      (5) 
       (6) 

The Grey cell module outputs only the generate component 
Gout using (5) taking (Gin1, Pin1) and Gin2 as its input. The 
buffer cell acts as a buffer passing its inputs (Gin1, Pin1) as 
its outputs (Gout, Pout).  

 

Fig. 3 (Clockwise) 
White cell, Black cell, Grey cell, Buffer cell. 
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Fig. 4 Kogge-Stone Structure for 8-bit Adder. 

The Kogge-Stone tree structure for an 8-bit adder is shown 
in Fig. 4. The height of a Kogge-Stone tree for an N-bit 
adder is given by log2 (N) logic stages. Hence for an 8-bit 
adder, we have a height of 3 logic stages. The radix of the 
adder refers to how many results from the previous level of 
computation are used to generate the next one. In this 
design Radix-2 implementation is done. Higher radix 
levels can be made use of to reduce the number of stages, 
but this increases the power and delay. The sparsity of the 
adder refers to how many carry bits are generated by the 
carry-tree. In this design every carry bit is generated, hence 
making it Sparsity-1 design.  
Kogge-Stone structure has minimal depth but high node 
count, hence occupies more area in comparison to other 
tree structures like Brent-Kung, Han-Carlson, and Ladner-
Fischer, but has a minimal fan-out of 2 at each given stage, 
hence giving a better delay performance. 
The carries Ci generated in stage II is made use of to 
calculate the sum Si in stage III. These carries are used as 
the carry-in inputs for much shorter RCAs or some other 
adder design, which generates the final sum bits. But by 
making use of a Carry Select Adder (CSA) in the last 
stage, the delay can be further reduced since the sum bits 

will already be calculated. In a CSA, we compute two 
results in parallel, each for different carry input 
assumption. A CSA consists of two Ripple Carry Adders 
(RCAs) and a multiplexer. Adding two N-bit numbers with 
a CSA is done with two RCAs in order to perform the 
calculation twice, one time with the assumption of the 
carry being zero (Ci = ‘0’) and the other assuming one (Ci 
= ‘1’). These two calculations can be done in parallel. 
After the two results are calculated, the correct sum is 
selected with the multiplexer once the carry is known. The 
carries Ci from stage II are fed as inputs to the CSA, so as 
to choose the appropriate Si which has already been 
calculated, thereby reducing the overall delay of the final 
output. Fig. 5 shows the block diagram of CSA used in the 
design. The block diagram of the RCA implemented is 
shown is Fig. 6. 
In order to compare the performance of the proposed adder 
with the CLA, a generic CLA was designed in a structural 
manner. The block diagram of a generic N-bit CLA is 
shown in Fig 11. Each of the GPB blocks contains logic 
which calculates the Gi, Pi and Cj for i = N-2, N-1 … 2, 1, 
0 and j = N-1, N-2…, 2, 1 using equations (3), (4) and (7).  

       (7) 
 

 
Fig. 5 Block diagram of Carry Select Adder (CSA). 

 

 
Fig. 6 Block diagram of Ripple Carry Adder (RCA). [7] 
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Table 1: Delay and device utilization summary. 

N 
(No. of bits) 

Type  of 
Adder 

Maximum 
combinational 
path delay (ns) 

Route 
Delay 
(ns) 

Logic 
Delay 
(ns) 

Levels of 
Logic 

No. of 
Slices 

2 HKSS-CSA 3.600 0.970 2.630 3 3 
CLA 3.600 0.970 2.630 3 3 

4 HKSS-CSA 4.418 1.515 2.903 5 8 
CLA 4.433 1.723 2.710 4 6 

8 HKSS-CSA 5.367 2.497 2.870 6 16 
CLA 5.962 3.092 2.870 6 12 

16 HKSS-CSA 7.155 4.125 3.030 8 73 
CLA 7.880 4.690 3.190 10 24 

32 HKSS-CSA 9.030 5.760 3.270 11 178 
CLA 15.754 11.844 3.910 19 49 

64 HKSS-CSA 10.561 7.051 3.510 14 466 
CLA 27.986 22.796  5.190 35 97 

128 HKSS-CSA 11.540 7.951 3.590 25 1125 
CLA 52.451 44.701 7.750 67 193 

 

(Clockwise) 
Fig. 7 Maximum combinational delay (in ns) as a function of N (bits). 

Fig. 8 Routing delay (in ns) as a function of N (bits). 
Fig. 9 Levels of logic as a function of N (bits). 
Fig. 10 No. of slices as a function of N (bits).

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org 104



 

 

Carry Look-Ahead Logic

GPBGPBGPB cin

Cout

b0a0b1a1bN-1aN-1

s0s1sN-1

c1c2cN-1

 
Fig. 11 Block diagram of N-bit CLA. 

3.2 Performance Results 

The design of the proposed HKSS-CSA and CLA was 
modeled in VHDL by making use of a module based 
structural approach. Both the adders where designed and 
synthesis was done using Xilinx-ISE EDA software on 
Virtex5 device. Functional testing was done on corner 
cases, as well as large number of test cases were written to 
verify the functionality of the adders. The simulation of the 
waveforms was done using ModelSim-SE. 
The performance comparison of the two designs is done in 
Table 1, which provides the delay, number of logic levels 
and device utilization summary of HKSS-CSA and CLA. 
In Fig. 7, a graph of maximum combinational path delay as 
a function of number of input bits (N) is shown. From this 
we can observe that there is a drastic increase in the 
maximum combinational delay for CLA as N increases 
compared to HKSS-CLA. Hence HKSS-CSA design is 
more suitable for adders with higher input widths. 
As evident from Fig. 8, in CLA the routing delay increases 
for higher values of N. The advantage of the HKSS-CSA 
becomes more apparent for higher values of N; delay is 
reduced by 6 times (N=128) and by 3 times (N=64). The 
routing delay increases almost in a linear manner for 
HKSS-CSA while its almost exponential for CLA. 
As can be observed from Fig. 9, there is a reduction of 
about 40% (32-bit) to 65% (N=128) in the number of logic 
levels when compared with a CLA of same width, thus 
leading to a better overall delay for the proposed HKSS-
CSA when compared to CLA. Also on comparing with Fig. 
7, we can see that the number of logic levels has a definite 
relationship to the maximum combinational path delay. 
Also as expected the HKSS-CSA makes use of more 
number of logic resources when compared to the CLA. 
CLA uses lesser logic resources in comparison to HKSS-
CSA and this difference increases considerably for higher 
values of N. Hence as the number of required logic 
resources increases, area also increases. In Fig. 10, a plot 
of number of slices used as a function of N is shown.  

4. Asynchronous Hybrid Kogge-Stone 
Structure Carry Select Based DPFPA  

This section will review the DPFPA algorithm architecture 
and the hardware sub-modules used in implementing it. 
The block diagram of DPFPA is shown in Fig. 12. 

4.1 Design and Implementation 

The standard DPFPA algorithm presented in section 2 is 
designed and implemented here. The two 64-bit inputs A 
and B are both in IEEE double precision floating-point 
format and the output sum will also be in the same format.  
A 64-bit double precision floating point number defined as 
per the IEEE-754 standard consists of the 1- bit sign ([63]), 
11- bit exponent ([62:52]) and 52- bit mantissa ([51:0]). 
The design consists of mainly three blocks: pre-adder, 
adder and post-adder. Each of these blocks contains some 
Functional Unit Blocks (FUBs) which perform specific 
functions.  

• Pre-Adder Block 

The FUBs in the pre-adder block perform operation on the 
operands to be done before the mantissa addition is done. 
The Unpack FUB basically extracts and signs the sign, 
exponent and mantissa parts of A (SA, EA, MA) and B 
(SB, EB, MB) as per IEEE double precision floating point 
format. The check for special formats is also done in this 
FUB and flags (EI) sent to the post-adder block. Pre-
normalization is done in the Exp FUB, in which the two 
exponents EA and EB are compared to identify the larger 
exponent. The right shifting of the smaller operand by an 
amount equal to the absolute difference of the exponents is 
done in the Align FUB. The sign bit of the final sum is got 
from the Sign FUB.  

• Adder Block 

A 53-bit adder is needed to add the mantissas MAF and 
MBF coming in from the pre-adder block. The improving 
the latency performance of this adder we can improve the 
overall latency performance of the DPFPA. As shown in 
section III, the newly proposed 64-bit KSS-CSA gives 
good latency performance in comparison to the CLA. A 
64-bit adder is chosen here instead of a 53-bit adder so as 
to take advantage of the well-ordered tree structure for 
carry generation, minimal fan-out at each stage, reduced 
number of logic levels, and the carry select adder in the 
last stage. Hence the inputs MAF and MBF to the adder 
block are zero padded before addition and the final result 
is sent to the post-adder block.  
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Fig. 12 Block diagram of DPFPA. 

• Post-Adder Block 

The FUBs in the post-adder block perform operations on 
the results of mantissa addition. Post-normalization of the 
output mantissa is done in this FUB. Rounding and 
exception handling is done in the last stage of the FUB. 
The result sign, exponent and mantissa are stitched 
together to form the 64-bit floating point output SUM. 
Additional flags are also generated at the output to detect 
special cases. 

4.2 Performance Results  

In order to compare the performance of the proposed 
HKSS-CSA based DPFPA against a reference CLA based 
DPFPA, both the designs were modeled in VHDL and 
synthesized using Xilinx-ISE EDA software on Virtex5 
device. The functionality of the designs was tested by 
applying a large number of test vectors and Modelsim-SE 
was used to verify the design. Various corner and special 
cases were also covered and the performance statistics in 
terms of maximum combinational delay, route and logic 
delays, number of levels of logic and slice logic utilization 
were collected. Table 2 provides the performance 
comparison data with respect to the proposed and 
reference DPFPA. Here again we can see a definitive 
relationship between the number of logic levels and 
maximum combinational path delay. 
The suggested design led to a reduction in the number of 
logic levels by about 50% compared to the reference 
DPFPA for the same set of inputs. The route and logic 
delays which comprise the total delay for the two designs 
can be seen in Fig. 13. The maximum combinational path 
delay was reduced from 36.25ns to 18.60ns, so the 

proposed HKSS-CSA based DPFPA is almost twice as fast 
as the CLA based DPFPA.  
Also as expected the proposed design makes use of more 
amount of logical resource while giving a better delay 
performance which can be attributed mainly to the 
improved latency performance of the intermediate adder. 
The delay of an adder depends on how fast the carry bit 
can be generated and used in sum generation. Thus by 
making use of HKSS-CSA in the mantissa addition stage, 
the suggested DPFPA gave a better overall delay 
performance in contrast to the DPFPA which uses the 
CLA. 
 

Table 2: Delay and device utilization summary of DPFPA. 

DPFPA 
based on 

Maximum 
combinational 

path delay 
(ns) 

Route 
Delay 
(ns) 

Logic 
Delay 
(ns) 

Levels 
of 

Logic 

Slice 
Logic 

HKSS-CSA 18.600 13.756 4.844 28 1850 
CLA 36.253 29.889 6.364 51 1556 

 

 
Fig. 13 Delay performance of DPFPA based on HKSS-CSA and CLA. 
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5. Conclusions 

In this paper, the design and implementation of generic 
HKSS-CSA is proposed and its performance compared 
with a generic CLA. We have analyzed the delay, number 
of logic levels and logic resources needed by the HKSS-
CSA and CLA for different input widths. The results show 
that the HKSS-CSA is faster in comparison to CLA 
because of a number of factors like minimal fan-out at each 
stage, reduced number of logic levels, well ordered tree 
structure for carry generation and the carry select adder in 
the last stage. But with regard to the use of logic resources, 
the CLA performs better. The new design led to a 
reduction by 40%-65% in the levels of logic and thus a 
latency improvement by a factor of 2-6 times when 
compared to CLA for higher values of N (32, 64, 128 bit). 
Also this paper proves the tradeoff that exists between 
maximum combinational delay and amount of logic 
resources used, and hence the area i.e. area-timing tradeoff. 
In addition to this, we can see that lower delay advantage 
of HKSS-CSA can be got for adders with higher input 
widths. 
An application of this HKSS-CSA in the design of fast 
asynchronous DPFPA is investigated and the performance 
of this adder compared with a DPFPA which makes use of 
CLA in the intermediate stage. The suggested design led to 
a reduction by about 50% in the number of levels of logic 
compared to one with CLA thereby leading to an overall 
decrease in the maximum combinational delay. For future 
work we plan to make use of this HKSS-CSA in the design 
of single precision and double precision floating point 
multipliers, to add the mantissa part.  
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