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Abstract 
Object oriented software with low cohesive classes can increase 
maintenance cost. Low cohesive classes are likely to be 
introduced into the software during initial design due to 
deviation from design principles and during evolution due to 
software deterioration. Low cohesive class performs operations 
that should be done by two or more classes. The low cohesive 
classes need to be identified and refactored using extract class 
refactoring to improve the cohesion.  In this regard, two aspects 
are involved; the first one is to identify the low cohesive classes 
and the second one is to identify the clusters of concepts in the 
low cohesive classes for extract class refactoring. In this paper, 
we propose metrics supplemented agglomerative clustering 
technique for covering the above two aspects. The proposed 
metrics are validated using Weyuker’s properties. The approach 
is applied successfully on two examples and on a case study.  
 
Keywords: Low Cohesive Class, Metrics, Agglomerative 
Clustering Technique, Dendrogram, Extract Class Refactoring, 
Jaccard Similarity Coefficient. 

1. Introduction 

The maintainability of object oriented software depends on 
the quality of software. Software quality is likely to get 
reduced due to deviation from design principles and due to 
software deterioration during evolution. The reduction in 
software quality can be attributed to the presence of bad 
smells. Low cohesive class is one of the bad smells. Object 
oriented software with low cohesive classes can increase 
maintenance cost. Defects (bad smells) in software cause 
the system to exhibit high complexity, improper behavior, 
and poor maintainability [1]. It is necessary to detect and 
correct the defects to make software maintainable. One of  
 
 

 
the ways to make object oriented software systems 
maintainable is refactoring. Techniques that reduce object 
oriented software complexity by incrementally improving 
the internal software quality without affecting the external 
behavior come under refactoring [2]. In the context of 
software under evolution, refactoring is used to improve 
the software quality. The improvement in the software 
quality is, in terms of, maintainability, complexity,   
reusability, efficiency, and extensibility [3].  
 
In the literature active research is being carried out with 
respect to object oriented software refactoring. 
Considering the importance of low cohesive classes and 
refactoring, we have proposed an approach for identifying 
low cohesive classes and clusters of concepts in low 
cohesive classes for extract class refactoring. The low 
cohesive class indicates the presence of god class or 
divergent change bad smell. Divergent change bad smell is 
present in object oriented software whenever a class needs 
to be changed for different changes for different reasons in 
other classes [4]. The changes are propagated to the 
affected class due to rippling effects. The change 
propagations depend on strength of coupling between 
classes. Using strength of coupling between classes, our 
metric DOCMA(AR) (dependency oriented complexity 
metric for an artifact affected by ripples) can indicate the 
class affected by divergent change bad smell [5]. This bad 
smell indicates that the affected class has low cohesion and 
is a large class. According to Demeyer [6] the god class is 
low cohesive and memory consuming class. Object 
oriented software with low cohesive classes can increase 
maintenance cost.  Low cohesive class performs operations 
that should be done by two or more classes. One of the 
design principles in object oriented approach is to design 
the class with “single minded” function [12]. The violation 
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of this design principle results in large, complex, and low 
cohesive classes. The low cohesive class cohesion can be 
improved by splitting the class by extracting cohesive and 
independent groups of members addressing different 
functionalities using extract class refactoring [4]. A 
concept is a cluster (group) of class members addressing a 
single minded function.  In this regard, two aspects are 
involved; the first one is to identify the low cohesive class 
and the second one is to identify clusters of concepts in 
low cohesive class which need to be refactored using 
extract class refactoring. In this paper, we propose an 
approach which is based on metrics supplemented 
hierarchical agglomerative clustering technique for 
covering the above two aspects. In this paper, 
“agglomerative clustering technique” means 
“agglomerative clustering algorithm”.  
 
Even though clustering techniques are mainly used in data 
mining, they are being applied successfully in software 
engineering. Clustering techniques can identify groups of 
similar entities [7],[8]. Clustering methods have very good 
potential to be used in software engineering [9] indicated 
by its use in software remodularisation[10]. Clustering 
techniques can identify groups of similar entities where in 
each group is conceptually different and these groups may 
address different functionalities.  
 
The contributions of the proposed approach are the 
following: 
 
-  Metrics are proposed to supplement the agglomerative     
   clustering technique (ACT) to handle the situations  
   where some small clusters are formed. 
- Identification of low cohesive classes.     
- Identification of clusters of concepts in a low cohesive  
   class using the approach which is based on metrics  
   supplemented agglomerative clustering technique. 
 
The organization of the paper is as follows. Section 2 
presents the related work. Section 3 presents approach to 
clustering. The results of experimental cases are presented 
and discussed in section 4. The conclusions have been 
placed in section 5. 

2. Related Work 

The low cohesive classes can be caused by god class or 
divergent change bad smells. Lot of research has been 
done in identifying god classes. The main contributions are 
from [11], [1], [6]. According to Deymer [6] the god class 
is low cohesive and memory consuming class. Any change 
to the system may lead to this class.   According to Trifu 
and Marinescu [11] god classes are “large, non-cohesive 

classes that have access to many foreign data” and they 
proposed a metrics-based method to identify. Tahvildari 
and Kontogiannis [1] proposed quality design heuristics 
and use a diagnosis algorithm based on coupling, 
complexity, and cohesion to identify design problems 
(flaws).  
 
Lot of work has been done with respect to remodularising 
or partitioning or clustering large software modules. Some 
of them are [13], [14], [15]. In all of the above works 
remodularisation of software modules in a higher level 
(like package or file level) is proposed.  We need 
clustering at class level.  
 
Some of the works which focuses on software clustering at 
class level are: Simon et al. [16] suggested visualization 
techniques to identify extract class opportunities. 
Visualizing large classes can be difficult and make it 
difficult to identify clear clusters. De Lucia et al. [17] 
propose a methodology that uses structural and semantic 
metrics for identifying extract class refactoring 
opportunities. The semantic cohesion metric is based on 
the names of classes and entities which can be developer 
dependent hence, may change the results. In a recent work, 
Joshi and Joshi [18] uses concept lattice for identifying 
extract class refactoring opportunities. It is identified by 
the authors that for large systems the lattices can become 
very complex for the designer to identify problematic cases 
by inspecting the lattice visually. An algorithm [26] is 
proposed by the authors to find clusters based on similarity 
matrix. It is likely to consume more time to identify the 
clusters and it is threshold value dependant.  
  
In most recent work, Marios Fokaefs et al [19] apply the 
agglomerative clustering algorithm for several threshold 
values (ranging from 0.1 to 0.9) and present all possible 
results to the user. Algorithm also identifies clusters of 
cohesive entities ranked according to their impact on the 
design of the whole system and presented to the designer.  
In contrary to [19], instead of presenting results at different 
thresholds, we compute clusters at particular threshold and 
supplement with metrics to merge small clusters with other 
clusters. In our approach, we supplement the 
agglomerative clustering technique (ACT) with metrics 
which can handle situations where ACT alone cannot give 
acceptable clusters in some situations. Our approach is not 
much dependent on the threshold value if it is not chosen 
either near 0 or near to 1. Our approach reduces much 
human intervention.  
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3. Proposed Approach  

The aim of the proposed approach is to identify the low 
cohesive classes and clusters of concepts in low cohesive 
classes.  
 
The proposed approach contains two steps: 
 
Step 1:  
Identify low cohesive classes using the metrics LCOM[22], 
TCC[23], and DOCMA(AR) [5]. LCOM and TCC metrics 
values can be used to identify the low cohesive class due to 
god class bad smell. Whereas, DOCMA(AR) metric value 
can be used to identify the low cohesive class due to 
divergent change bad smell.  
 
Step 2: 
The metrics supplemented agglomerative clustering 
technique is applied on low cohesive class which is found 
in step 1. During step 2, the clusters of concepts which 
need to be refactored are identified. During this step, 
firstly, similarities between the class members are 
calculated and then the agglomerative clustering algorithm 
(technique) is applied to find the clusters at a specified 
threshold. At the specified threshold there may be some 
small clusters which need to be merged, this is done with 
the help of proposed metrics. The agglomerative clustering 
technique is explained in the following section 3.1. 

3.1 Agglomerative Clustering Technique (ACT) 

The agglomerative clustering algorithm [8] (which is a 
hierarchical clustering algorithm) is used in this paper.  
The Agglomerative Clustering Algorithm (Technique) is 
given below: 
 
Step 1: Assign each entity (class member) to a single 
cluster.  
 
Step 2: Repeat merging while the specified threshold value 
is not reached. 

- Merge two closest clusters according to the 
considered merging criteria. 
 

Step 3: Display the outcome of the algorithm as a 
hierarchy of clusters (Dendrogram). 
 
The algorithm requires a threshold value for the similarity 
metric as a cut-off value. The clusters which are output 
from the algorithm are at the threshold (cut-off) value. The 
output hierarchy of the clusters is usually represented by a 
dendrogram. It has tree like structure. The leaves of the 
tree represent the individual (single) entities. During the 
merging process intermediate nodes are formed, they are 

actual clusters to be output based on cut-off value. The 
root is the final cluster which contains all the entities. The 
tree height can be represented using distance metric value 
or similarity metric value. We used similarity metric value 
in this paper. 
 
In Hierarchical agglomerative clustering algorithm 
different linkage methods are available. 

1. Single linkage      2. Complete linkage   
3.   Average linkage    4.  Weighted linkage 

 
According to Anquetil and Lethbridge [20] single linkage 
gives less coupled clusters, complete linkage favors more 
cohesive clusters, and average linkage gives clusters 
somewhere in-between the above two. In this paper we 
have used complete linkage method.  The similarity metric 
we used is the Jaccard similarity metric. Anquetil and 
Lethbridge [20] indicate in their paper that jaccard 
distance metric produces good results in software 
remodularisation. To define the Jaccard similarity metric 
[24] between two class members we employ the notion of 
property set of class member. The property set for a 
method (PSet_mi) is, the method itself and the methods 
and fields used (accessed/called) by that method. The 
property set for a field (PSet_fi) is, the field itself and the 
methods using (accessing) it. These property sets are 
similar to dependency sets used by Simon et al[16]. 
Similarity Matrix:  Similarity matrix (m x m) is 
constructed using the computed values of the above 
similarity based metrics. Where, m is number of members 
of the class. Class member means it can be a class method 
or field (variable). 
 
The Jaccard index, also known as the Jaccard similarity 
coefficient (originally coined coefficient de communauté 
by Paul Jaccard [24]), is used for comparing the similarity 
and diversity of entities (sample sets). 
 
Based on defined property sets we calculate the Jaccard 
similarity metric between two class members A and B as 
follows: 
 

BA
BA

B)JSimM(A,
∪

∩
=  

 
Similarity between two entities depends on the properties 
which are shared [25].  

3.2 Proposed Metrics to Supplement Agglomerative 
Clustering Technique 

The clusters identified at cut-off value may give clusters 
with very few members (may be single member clusters), 
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hence we need to merge them with other clusters. For this 
purpose we have proposed some metrics. The metrics are 
given below.  
CIM_V  -  Cluster Identification Metric for Variable = 
ratio of number of methods within the cluster that 
reference the variable under consideration to the total 
number of methods in the cluster 
CIMVR_M  -  Cluster Identification Metric for Method 
(Based on Variable References)  = ratio of number of 
variables within the cluster referred by the method to the 
total number of variables in the cluster. 
CIMC_M  -  Cluster Identification Metric for Method 
(Based on Method Calls)    = ratio of number of methods 
within the cluster called by method under consideration to 
the total number of methods in the cluster  
CIMI_M  -  Cluster Identification Metric for Method 
(Based on Method Invocations) = ratio of number of 
methods within the cluster that invoked method under 
consideration to the total number of methods in the cluster. 
 
Contexts for applying the proposed metrics: 
 
The contexts in which the proposed metrics can be applied 
are given in Figures 1, 2, 3, 4, and 5. The cluster to be 
merged with other cluster is indicated by C1. 
 
The contexts are: 
Context 1: Only one variable (field)  in C1 (Figure 1). 
Context 2: Only one method in C1 (Figure 2). 
Context 3: Only variables (two or more variables). 
Context 4: Only methods (two or more methods) 
Context 5: Methods and variables. (At least one method 
and one variable) 
 
 

 
 
 

 
 

 

 
 
 

 
 
 

 
 
The proposed metrics can be applied for all the five 
contexts. In all the contexts (Figures 1 to 5) proposed 
metrics can be used in merging the element(s) from cluster 
1 (C1) with cluster 2 (C2) or cluster 3 (C3) or cluster n 
(Cn).   

3.2.1 Validation using Weyuker’s Properties 

The proposed metrics are validated using the Weyuker’s 
properties [21]. The validation results are given in  
Table 1. 

 

 
 
Only eight properties are considered for validation. The 
seventh property is not considered for validation.   Seventh 

   . . . 

Cn C2 

m1,m3,a3,a4 

m2,m6,m7, 
m9,a1,a5, a6 
 

m4,m5,m8, 
a2,a7, a8 
 

C1 

Fig. 5  Context5 for applying proposed 
metrics 
 

   . . . 

Cn C2 

m2,m3,m5 

m1,m6,m7, 
a1,a3, a4 
 

m4,m8,m9, 
a2,a5, a6 
 

C1 

Fig. 4  Context4 for applying 
proposed metrics 
 

   . . . 

Cn C2 

a2,a3,a4 

m1,m3,m4, 
m5,a1,a6, a7 
 

m2,m6,m7, 
m8,a5, a8,a9 
 

C1 

Fig. 3  Context3 for applying 
proposed metrics 
 

   . . . 

Cn C2 

m3 

m1,m4, 
m5,a1,a2,  a4 
 

m2,m6,m7, 
m8,a3, a5,a6 
 

C1 

Fig. 2  Context2 for applying 
proposed  metrics 
 

   . . . 

Cn C2 

a1 

m1,m2, 
m5,a3, a4,a7 
 

m4, m3, m6, 
m7,a2,a5, a6 
 

C1 

Fig. 1  Context1 for applying 
proposed  metrics  

Table 1: Validation results 

 P1 P2 P3 P4 P5 P6 P7 P8 P9 

CIM_V Y Y Y Y Y Y NA Y Y 
CIMVR_

M   Y Y Y Y Y Y NA Y Y 

CIMC_M Y Y Y Y Y Y NA Y Y 

CIMI_M   Y Y Y Y Y Y NA Y Y 
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property specifies that the permutation of elements within 
measured entity can change the metric value. This property 
is not suitable for OO systems, since the order of methods 
declaration inside a class does not change the order in 
which they are executed. Cherniavsky and Smith [27] 
suggest that this property is not appropriate for OOD 
metrics.  
 
For contexts 1, 2, and 3 all the proposed metrics satisfied 
all the eight properties which are applicable to object 
oriented systems. In case of context 4 the metrics CIMC_M 
and CIMI_M did not satisfy the properties 5 and 9. In case 
of context 5, all the metrics did not satisfy properties 5 and 
9. However, at least, 6 properties are satisfied out of 8 
properties in all the contexts. The validation results 
indicate the suitability of metrics for the purpose for which 
they are proposed.  

4.  Experimental Results 

Example 1:  

The directed graph for the members of the class considered 
in this example is given in Figure 6. In the graph, the nodes 
represent methods and variables (fields) and the edges 
indicate that a dependency exists between two class 
members. 
 

 
 
The class has six methods and four variables (fields).  
 
The methods are: A1, A2, A3, A4, A5, A6 
The variables are: av1, av2, av3, av4 
 
The Jaccard similarity metric is used for finding the 
similarity between the class members. Similarity matrix for 
the members of the class given in example 1 is shown in 
Table 2. The hierarchical agglomerative clustering 
algorithm is applied on the similarity matrix (Table 2). 
Figure 7 shows the dendrogram produced by the algorithm.  
 
 

 
 

 A1 A2 A3 A4 A5 A6 av1 av2 av3 av4 

A1 1          
A2 0.5 1         
A3 0.6 0.6 1        
A4 0.4 0.4 0.5 1       
A5 0 0 0 0 1      
A6 0 0 0 0.14 0.4 1     
av1 0.5 0.33 0.67 0.5 0 0.12 1    
av2 0.17 0.4 0.5 0.33 0 0.14 0.5 1   
av3 0 0 0 0 0.5 0.75 0 0 1  
av4 0 0 0 0 0.67 0.2 0 0 0.25 1 
 

Table 2:  Similarity matrix for the class members shown in Figure 6 

A4 
A1 

A2 av2 

av1 

A3 

A5 

av3 

A6 

av4 

Fig. 6  Directed graph for the members of class in 
example 1 
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Clusters Identification at a given threshold value: 
 
Consider the threshold value of 0.2. At this threshold, three 
clusters are produced, they are: 
G1= {A5, A6, av3, av4}  
G2= {av2}  
G3= {A1, A2, A3, A4, av1} 
 
Since G2 contain only one member (variable member) it 
needs to be merged with other cluster. This represents 
context 1 (Figure 1). For this purpose, CIM_V metric is 
computed.    
 
CIM_V  (av2, G1) = 0/2=0,    
CIM_V  (av2, G3) = ¾ = 0.75 
Since CIM_V (av2) is more with respect to G3 when 
compared to G1, hence G2 (av2) is merged with G3.  
 
After merging two clusters are formed. They are:  
G1= { A5, A6, av3, av4},   
G3= { A1, A2, A3, A4, av1, av2} 
 
 
Example 2: 
 
The directed graph for the members of the class considered 
in this example is given in Figure 8.  
 

The class has seven methods and two variables (fields).  
The methods are: A1, A2, A3, A4, A5, A6, A7 
The variables are: av1, av2 
 
 

 
 
The similarity matrix is constructed using Jaccard 
similarity metric values for the class members and the 
hierarchical agglomerative clustering algorithm is applied 
on the similarity matrix. The clusters formed at 0.5 
threshold value are:  
 
G1= {A1, A4, A3}  
G2= {av1} 
G3= {A2}  
G4= {A5, A6, A7}  

A1 A4 A3 

A2 av1 

A5 

A7 

av2
 

A6 

Fig. 8  Directed graph for the members of class in 
example 2 

Fig. 7  Dendrogram showing the clusters 

A6      av3          A5    av4       A3     av1       A4       A1      A2       av2    

0 
 
 
 
0.17  
 
0.2 
 
 
0.33 
 
 
0.5 
 
 
0.67 
 
0.75 
 
 
1 
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G5= {av2} 
 
Since single member clusters are there, they need to be 
merged. Merging G2 or G5 with other cluster represents 
context 1. Whereas, merging G3 with other cluster 
represents context 2 (Figure 2). 
 
For context 1 the metric CIM_V is computed. 
   
CIM_V  (av1, G1) = 2/3=0.66     
CIM_V  (av1, G4) = 0/3=0 
 
Since CIM_V metric value for av1 (G2) with respect to 
G1 is more when compared to G4, hence G2 is merged 
with G1. Similarly, av2 (G5) is merged with G4. 
 
Since merging G3 (A2) with other cluster represents 
context 2, the metrics CIMVR_M, CIMC_M, and 
CIMI_M are computed. 
 
CIMVR_M (A2, G1) = 1/1 = 1  
CIMVR_M (A2, G4) = 1/1 = 1 
CIMC_M (A2, G1) = 0/3 = 0  
CIMC_M (A2, G4) = 0/3 = 0 
CIMI_M (A2, G1) = 0/3 =0  
CIMI_M (A2, G4) = 0/3 = 0 
 

Since same metrics values indicate A2 (G3) can be placed 
either in G1 or G4.  
The formed clusters after merging are: 
G1= {A1, A4, A3, av1, A2}  
G4= {A5, A6, A7, av2}  
 
In situations where a member has equal similarity with two 
groups, (for example, in the above case) coupling with 
respect to other classes need to be computed before 
merging.  
 
Case Study : Bank Application 
 
Bank application developed by students as part of their 
academic project is given as case study. The novice 
designer has a tendency to deviate from the design 
principles and may end up designing low cohesive classes. 
The bank application is developed in java. It contains the 
following classes: 
CustomerAccount, Bank, ATMCard, Locker, 
DemandDraft, FixedDeposit, Employee, Manager, Report, 
Salary, DatabaseProxy. The proposed approach is applied 
on this case study to find low cohesive classes and clusters 
of concepts in low cohesive classes. The approach contains 
two steps. 
 

 

 M 
1 

M 
2 

M 
3 

M 
4 

M 
5 

M 
6 

M 
7 

M 
8 

M 
9 

M 
10 

M 
11 

V 
1 

V 
2 

V 
3 

V 
4 

V 
5 

V 
6 

V 
7 

V 
8 

V 
9 

V 
10 

V 
11 

M1 1 .5 .5 .43 .43 .1 0 0 .1 0 0 .17 .2 .33 .25 .22 0 0 0 0 0 0 
M2  1 .7 .67 .25 .1 0 0 .1 0 0 .27 .33 0 .25 .38 0 0 0 0 0 0 
M3   1 .67 .5 .1 0 0 .1 0 0 .27 .33 0 .25 .38 0 0 0 0 0 0 
M4    1 .33 .13 0 0 .13 0 0 .2 .25 0 0 .29 0 0 0 0 0 0 
M5     1 .13 0 0 .13 0 0 .33 .43 0 .14 .13 0 0 0 0 0 0 
M6      1 .5 .5 .11 0 0 .18 0 0 0 0 .29 .29 .29 0 0 0 
M7       1 .6 0 0 0 0 0 0 0 0 33 .33 .33 0 0 0 
M8        1 0 0 0 0 0 0 0 0 .33 .4 .33 0 0 0 
M9         1 .5 .5 .18 0 0 0 0 0 0 0 .29 .29 .29 

M10          1 .6 0 0 0 0 0 0 0 0 .33 .33 .33 
M11           1 0 0 0 0 0 0 0 0 .33 .33 .33 

V1            1 .56 .11 .33 .44 .1 0 0 .1 0 0 
V2             1 .14 .43 .57 0 0 0 0 0 0 
V3              1 .2 .17 0 0 0 0 0 0 
V4               1 .5 0 0 0 0 0 0 
V5                1 0 0 0 0 0 0 
V6                 1 .6 .6 0 0 0 
V7                  1 .6 0 0 0 
V8                   1 0 0 0 
V9                    1 .6 .6 

V10                     1 .6 
V11                      1 
 

Table  3:  Similarity matrix for the members of class “CustomerAccount” 

 

          M1 – open(),  M2 – deposit((),   M3 – withdraw(),   M4 – display(),   M5 – close(),  M6 – addCust(),   M7 – updateAddr(),    M8 – displayAddr(), 
             M9 – apprLoan(),   M10- repay(),   M11-closeloan(),   V1 – CustName,  V2 – AcNo,    V3 – AcType , V4 – Amount,  V5 – Balance,   
             V6 – CustId,  V7 – PermAddr ,  V8 – CommnAddr,    V9 – LoanNo,   V10- LoanType,    V11- LoanAmnt 
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Step 1:  
During this step LCOM and TCC metrics are computed for 
the different classes. The CustomerAccount class has 
LCOM metric value of 5 and TCC metric value of 0.49. 
The high LCOM value and low TCC value indicate that 
the CustomerAccount is a low cohesive class.  
 
Step 2: 
The similarity matrix is constructed using Jaccard  
similarity metric values for the class members of the class 
“CustomerAccount” and it is shown in Table 3. The 
hierarchical agglomerative clustering algorithm is applied 
on the similarity matrix given in Table 3.  
 

  The clusters identified at the threshold value of 0.2 are:  
 
G1 = M1, M2, M3, M4, M5       
G2 = V1, V2, V4, V5        
G3 = V3 
G4 = M6, M7, M8, V6, V7, V8          
 G5 = M9, M10, M11, V9, V10, V11 
 
Since G3 contains single variable and G2 contains only 
variables, they need to be merged with other groups. They 
represent contexts 1 and 3 respectively. Hence the metric 
CIM_V is computed to find the clusters with which G2, 
G3 can be merged.    
 
Finding the cluster for G3(V3) merging: 
 
CIM_V (V3) with respect to G1 = 1/5 = 0.2 
CIM_V (V3) with respect to G4 = 0 
CIM_V (V3) with respect to G5 = 0 
Since CIM_V (V3) is high with respect to G1, hence V3 
(G3) is merged with G1. 
 
Finding the cluster for G2 merging: 
 
CIM_V (V1) with respect to G1 =  5/5 = 1 

CIM_V (V1) with respect to G4 = 1/3 =0.33 
CIM_V (V1) with respect to G5 =  1/ 3 =0.33 
 
CIM_V (V1) with respect to G1 is high when compared to 
G4 and G5 and CIM_V (V2, V4, V5) with respect to G1 
is more when compared to G4 and G5, hence merge G2 
with G1. After merging three clusters are formed, they are: 
 
G1 = M1, M2, M3, M4, M5, V1, V2, V4, V5, V3 
G4 = M6, M7, M8, V6, V7, V8           
G5 = M9, M10, M11, V9, V10, V11 

4.1 Observations 

The LCOM [22] and TCC [23] are computed for the 
classes considered in the examples and case study before 
and after refactoring and presented in Table 4. The high 
LCOM and low TCC values indicate low cohesive classes, 
whereas low LCOM and high TCC values indicate high 
cohesive classes. The values in Table 4 indicate the 
improvement in cohesion due to refactoring in two 
experimental examples and in one case study.  
 
The high value of LCOM and low value of TCC for the 
CustomerAccount class of bank application indicate the 
low cohesive class. The Agglomerative Clustering 
Technique identified three clusters of concepts for 
CustomerAccount class. These three clusters are refactored 
into three classes by using extract class refactoring. The 
extracted classes are: Account, Customer, and Loan. The 0 
(zero) LCOM value and TCC value of 1 for Account 
(cluster1), Customer (cluster2), and Loan (cluster3) 
indicate high cohesive classes. Hence our approach could 
identify the low cohesive class, and the clusters to be 
refactored. The increase in cohesion after refactoring, 
indicate the effectiveness of the approach in identifying 
proper clusters for refactoring.  
 

 
  

 Before 
Refactoring 

                           After Refactoring 
      Cluster1     Cluster2      Cluster3 

 LCOM TCC 
 

LCOM TCC 
 

LCOM TCC 
 

LCOM TCC 
 

Example 1 7 .47 0 1 0 1 - - 
Example 2 9 .43 0 .5 0 1 - - 
Case Study 5 .49 0 1 0 1 0 1 
 

Table 4.  LCOM and TCC values before and after refactoring 
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The proposed approach is useful because of the following 
reasons: 

- It handles the situation where Agglomerative 
clustering technique (ACT) alone cannot identify 
proper clusters. Presenting to the user clusters at 
different thresholds may not solve the problem. In 
some situations, clusters at any threshold other 
than maximum (which leads to a single cluster) 
may contain clusters with single members or 
small clusters with one member or clusters with 
only variables. In that situation ACT does not 
guide us how to merge those small clusters. 
Hence, proposed metrics will help  in those 
situations. 

-  In our approach, we need to specify one 
threshold value somewhere in between 0 and 1, 
which is neither near to 0 nor near to 1. Merge 
small clusters with the help of proposed metrics. 
The rules (in what situations the groups should be 
merged) can be specified to the tool, which guide 
the merging process using the proposed metrics. 
Hence, they reduce the human intervention to 
study the clusters at different thresholds and 
decide.  

- When a single member is tried to be merged, if 
metrics values are equal with respect to two or 
more clusters, it can be merged by considering 
coupling with respect to other classes.  

5. Conclusions 

In this paper, we proposed an approach for identifying low 
cohesive classes and clusters of concepts in low cohesive 
classes potential for extract class refactoring. Proposed 
approach consists of two steps. In step 1, low cohesive 
classes are identified. In step 2, the clusters of concepts in 
low cohesive classes are identified for extract class 
refactoring. The proposed approach is based on metrics 
supplemented agglomerative clustering technique. 
Agglomerative Clustering Technique is based on the 
Jaccard similarity metric values between class members. 
Metrics which are used to supplement agglomerative 
clustering technique are newly proposed. The metrics are 
validated using Weyuker’s properties. The approach is 
applied on two examples and on academic software 
developed by students. In the two examples and case study 
our approach could find low cohesive classes and clusters 
of concepts to be refactored. The low cohesive class 
identified by our approach in the bank application has high 
LCOM and low TCC value. High LCOM and low TCC 
values indicate low cohesive class. The clusters identified 
by our approach are refactored using extract class 
refactoring. After refactoring the LCOM metric value is 

decreased whereas TCC metric value is increased. These 
values indicate increase in cohesion due to refactoring the 
clusters of concepts into new classes. The increase in 
cohesion after refactoring, indicate the effectiveness of the 
approach in identifying proper clusters for refactoring. 
Hence, our approach could effectively identify low 
cohesive classes and clusters of concepts to be refactored.  
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