

SWOT Analysis of Software Development Process Models

Ashish B. Sasankar1, Dr Vinay Chavan2

 1 P.G. Department of Computer Science ,GHRIIT
Nagpur, Maharashtra, India

2 Department of Computer Science,S.K.Porwal College,Kamptee
Nagpur, Maharashtra, India

Abstract
Software worth billions and trillions of dollars have gone waste
in the past due to lack of proper techniques used for developing
software resulting into software crisis. Historically , the processes
of software development has played an important role in the
software engineering. A number of life cycle models have been
developed in last three decades. This paper is an attempt to
Analyze the software process model using SWOT method. The
objective is to identify Strength ,Weakness ,Opportunities and
Threats of Waterfall, Spiral, Prototype etc.
Keywords: SDLC,SWOT.

1. Introduction

Software lifecycle models are representations of the
sequence and interrelationship of broad phases within the
software lifecycle. Their principal purpose is to provide a
high-level plan for software lifecycle activities. They are
therefore essentially management tools. The use of a
software lifecycle model on a software project is
important. Without the plan it provides, it can be difficult
to effectively manage the project.
Within the field of Computer Science, a large number of
software lifecycle models have been proposed. Each model
has its own strengths and weaknesses, and each is more
appropriate in certain project circumstances than others. It
is generally recognised that no single software lifecycle
model is appropriate in all circumstances. Because of this,
for a particular software project, it is necessary to select a
software lifecycle model that suits the project’s
characteristics. This is an important decision. The use of an
inappropriate software lifecycle model can increase
project costs and timescales and reduce software quality.

Now what a software lifecycle model is. Some definition
are:
“framework of processes and activities concerned with the
life cycle that may be organised into stages, which also
acts as a common reference for communication and
understanding” (ISO/IEC FDIS 12207:200726);
 “A partitioning of the life of a product or project into
phases.” (CMMI-DEV36. This is the definition for a
lifecycle model of any product or service. This may be
software);
“software life cycle models serve as a high-level definition
of the phases that occur during development. They are not
aimed at providing detailed definitions but at highlighting
the key activities and their interdependencies” (ISO/IEC
TR 1975940);
“Lifecycle models describe the interrelationship between
software development phases” (The NASA Software Safety
Guidebook31);

2. Process Model/Life Cycle Variations

 Professional system developers and the customers they
serve share a common goal of building information
systems that effectively support business process
objectives. In order to ensure that cost-effective, quality
systems are developed which address an organization’s
business needs, developers employ some kind of system
development Process Model to direct the project’s life
cycle. Typical activities performed include the
following:[1]

· System conceptualization
· System requirements and benefits analysis
· Project adoption and project scoping
· System design
· Specification of software requirements
· Architectural design
· Detailed design
· Unit development
· Software integration & testing

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 3, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 390

· System integration & testing
· Installation at site
· Site testing and acceptance
· Training and documentation
· Implementation
· Maintenance

Process Model/Life-Cycle Variations
While nearly all system development efforts engage in
some combination of the above tasks, they can be
differentiated by the feedback and control methods
employed during development and the timing of activities.
Most system development Process Models in use today
have evolved from three primary approaches: Ad-hoc
Development, Waterfall Model, and the Iterative process.

Ad-hoc Development
Early systems development often took place in a rather
chaotic and haphazard manner, relying entirely on the
skills and experience of the individual staff members
performing the work. Today, many organizations still
practice Ad-hoc Development either entirely or for a
certain subset of their development (e.g. small projects).
The Software Engineering Institute at Carnegie Mellon
University [2] points out that with Ad-hoc Process Models,
“process capability is unpredictable because the software
process is constantly changed or modified as the work
progresses. Schedules, budgets, functionality, and product
quality are generally (inconsistent). Performance depends
on the capabilities of individuals and varies with their
innate skills, knowledge, and motivations. There are few
stable software processes in evidence, and performance
can be predicted only by individual rather
thanorganizational capability.” [3]

Figure 1. Adhoc development

“Even in undisciplined organizations, however, some
individual software projects produce excellent results.
When such projects succeed, it is generally through the
heroic efforts of a dedicated team, rather than through
repeating the proven methods of an organization with a

mature software process. In the absence of an organization-
wide software process, repeating results depends entirely
on having the same individuals available for the next
project. Success that rests solely on the availability of
specific individuals provides no basis for long-term
productivity and quality improvement throughout an
organization.”[4]

2.1 The Waterfall Model
The Waterfall Model is the earliest method of structured
system development. Although it has come under attack in
recent years for being too rigid and unrealistic when it
comes to quickly meeting customer’s needs, the Waterfall
Model is still widely used. It is attributed with providing
the theoretical basis for other Process Models, because it
most closely resembles a “generic” model for software
development.

Figure 2 Waterfall model

The Waterfall Model consists of the following steps:
· System Conceptualization. System Conceptualization
refers to the consideration of all aspects of the targeted
business function or process, with the goals of determining
how each of those aspects relates with one another, and
which aspects will be incorporated into the system.
· Systems Analysis. This step refers to the gathering of
system requirements, with the goal of determining how
these requirements will be accommodated in the system.
Extensive communication between the customer and the
developer is essential.
· System Design. Once the requirements have been
collected and analyzed, it is necessary to identify in detail
how the system will be constructed to perform necessary
tasks. More specifically, the System Design phase is
focused on the data requirements (what information will be
processed in the system?), the software construction (how
will the application be constructed?), and the interface
construction (what will the system look like? What
standards will be followed?).
· Coding. Also known as programming, this step involves
the creation of the system software. Requirements and
systems specifications from the System Design step are
translated into machine readable computer code.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 3, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 391

· Testing. As the software is created and added to the
developing system, testing is performed to ensure that it is
working correctly and efficiently. Testing is generally
focused on two areas: internal efficiency and external
effectiveness. The goal of external effectiveness testing is
to verify that the software is functioning according to
system design, and that it is performing all necessary
functions or sub-functions. The goal of internal testing is to
make sure that the computer code is efficient, standardized,
and well documented. Testing can be a labor-intensive
process, due to its iterative nature.

Problems/Challenges associated with the Waterfall
Model
Although the Waterfall Model has been used extensively
over the years in the production of many quality systems, it
is not without its problems. In recent years it has come
under attack, due to its rigid design and inflexible
procedure.
 Criticisms fall into the following categories:
· Real projects rarely follow the sequential flow that the
model proposes.
· At the beginning of most projects there is often a great
deal of uncertainty about requirements and goals, and it is
therefore difficult for customers to identify these criteria
on a detailed level. The model does not accommodate this
natural uncertainty very well.
· Developing a system using the Waterfall Model can be a
long, painstaking process that does not yield a working
version of the system until late in the process.

Critic
The waterfall model lacks prescribed technique of
implementing management control over a project;
planning, controlling, and risk management are not
enveloped within the model itself. Moreover, forecasting
the estimated time and cost are complicated for each stage.
The life cycle can take long as the original requirements
may no longer be valid, with little possibility for
prototyping.
The waterfall model of system development works best
when any reworking of products is kept to a minimum and
the products remain unchanged. It still remains useful for
steady and non-volatile types of projects, and if properly
implemented, generates significant cost and timesaving. If
the system is likely to go through significant changes and if
the system requirements are unpredictable then different
approaches are recommended, one such alternate approach
is popularly know as the spiral model.

2.2 Iterative Development
The problems with the Waterfall Model created a demand
for a new method of developing systems which could
provide faster results, require less up-front information,

and offer greater flexibility. With Iterative Development,
the project is divided into small parts. This allows the
development team to demonstrate results earlier on in the
process and obtain valuable feedback from system users.
Often, each iteration is actually a mini-Waterfall process
with the feedback from one phase providing vital
information for the design of the next phase. In a variation
of this model, the software products which are produced at
the end of each step (or series of steps) can go into
production immediately as incremental releases.

Figure 3. Iterative Development [5]

Problems/Challenges associated with the Iterative
Model
While the Iterative Model addresses many of the problems
associated with the Waterfall Model, it does present new
challenges.
· The user community needs to be actively involved
throughout the project. While this involvement is a
positive for the project, it is demanding on the time of the
staff and can add project delay.
· Communication and coordination skills take center stage
in project development.
· Informal requests for improvement after each phase may
lead to confusion -- a controlled mechanism for handling
substantive requests needs to be developed.
· The Iterative Model can lead to “scope creep,” since user
feedback following each phase may lead to increased
customer demands. As users see the system develop, they
may realize the potential of other system capabilities which
would enhance their work.

Critic
One traditional process model is the waterfall model and
according to Schacchi was only accepted just until the
early 1980s because of its lack of functionality. The
waterfall model is said to be the easiest model to
understand and I do believe with this. It is easily

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 3, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 392

understood because it provides a sequential succession of
phases to be followed but then it is not that reliable. Just
seeing a figure of the flow of the waterfall model you
would just see the sequence of phases to go through but the
problem here is it would not go through a cycle but just
have a one-way flow just like a waterfall. Because of its
simplicity it would only be suitable for certain classes of
software development and would not work well with the
other software like interactive applications. This model
does not have risk management and management during
the life cycle and mainly document-driven or code-driven
that is why it would not work as smoothly as the other
model.

2.3 Variations on Iterative Development
A number of Process Models have evolved from the
Iterative approach. All of these methods produce some
demonstrable software product early on in the process in
order to obtain valuable feedback from system users or
other members of the project team. Several of these
methods are described below.

Prototyping
The Prototyping Model was developed on the assumption
that it is often difficult to know all of your requirements at
the beginning of a project. Typically, users know many of
the objectives that they wish to address with a system, but
they do not know all the nuances of the data, nor do
they know the details of the system features and
capabilities. The Prototyping Model allows for these
conditions, and offers a development approach that yields
results without first requiring all information up-front .
When using the Prototyping Model, the developer builds a
simplified version of the proposed system and presents it
to the customer for consideration as part of the
development process. The customer in turn provides
feedback to the developer, who goes back to refine the
system requirements to incorporate the additional
information. Often, the prototype code is thrown away and
entirely new programs are developed once requirements
are identified.

There are a few different approaches that may be followed
when using the Prototyping Model:
· creation of the major user interfaces without any
substantive coding in the background in order to give the
users a “feel” for what the system will look like,
· development of an abbreviated version of the system that
performs a limited subset of functions; development of a
paper system (depicting proposed screens, reports,
relationships etc.), or · use of an existing system or system
components to demonstrate some functions that will be
included in the developed system.[6]

Prototyping is comprised of the following steps:
· Requirements Definition/Collection. Similar to the
Conceptualization phase of the Waterfall Model, but not as
comprehensive. The information collected is usually
limited to a subset of the complete system requirements.
· Design. Once the initial layer of requirements
information is collected, or new information is gathered, it
is rapidly integrated into a new or existing design so that it
may be folded into the prototype.
· Prototype Creation/Modification. The information
from the design is rapidly rolled into a prototype. This may
mean the creation/modification of paper information, new
coding, or modifications to existing coding.
· Assessment. The prototype is presented to the customer
for review. Comments and suggestions are collected from
the customer.
· Prototype Refinement. Information collected from the
customer is digested and the prototype is refined. The
developer revises the prototype to make it more effective
and efficient.
· System Implementation. In most cases, the system is
rewritten once requirements are understood. Sometimes,
the Iterative process eventually produces a working system
that can be the cornserstone for the fully functional system.

Problems/Challenges associated with the Prototyping
Model
Criticisms of the Prototyping Model generally fall into the
following categories:
· Prototyping can lead to false expectations. Prototyping
often creates a situation where the customer mistakenly
believes that the system is “finished” when in fact it is not.
More specifically, when using the Prototyping Model, the
pre-implementation versions of a system are really nothing
more than one-dimensional structures. The necessary,
behind the-scenes work such as database normalization,
documentation, testing, and reviews for efficiency have not
been done. Thus the necessary underpinnings for the
system are not in place.
· Prototyping can lead to poorly designed systems.
Because the primary goal of Prototyping is rapid
development, the design of the system can sometimes
suffer because the system is built in a series of “layers”
without a global consideration of the integration of all
other components. While initial software development is
often built to be a “throwaway, ” attempting to
retroactively produce a solid system design can sometimes
be problematic.

2.4 Variation of the Prototyping Model
A popular variation of the Prototyping Model is called
Rapid Application Development (RAD).

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 3, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 393

RAD introduces strict time limits on each development
phase and relies heavily on rapid application tools which
allow for quick development.
Critic
Criticisms of the Prototyping Model generally fall into the
following categories:
• Prototyping can lead to false expectations. Prototyping
often creates a situation where the customer mistakenly
believes that the system is “finished” when in fact it is not.
More specifically, when using the Prototyping Model, the
pre-implementation versions of a system are really nothing
more than one-dimensional structures. The necessary,
behindthe- scenes work such as database normalization,
documentation, testing, and reviews for efficiency have not
been done. Thus the necessary underpinnings for the
system are not in place.

• Prototyping can lead to poorly designed systems.
Because the primary goal of prototyping is rapid
development, the design of the system can sometimes
suffer because the system is built in a series of “layers”
without a global consideration of the integration of all
other components. While initial software development is
often built to be a “throwaway, ” attempting to
retroactively produce a solid system design can sometimes
be problematic.

This model cannot be used in robust application. It is
convenient because it is fast from the word itself. It can
replace the specification phase but not the design phase
because it mainly relates to the designing phase. In the
waterfall model every phase should directly right at the
first time while prototyping changes frequently and the
discarded if wrong.

2.5 The Exploratory Model
In some situations it is very difficult, if not impossible, to
identify any of the requirements for a system at the
beginning of the project. Theoretical areas such as
Artificial Intelligence are candidates for using the
Exploratory Model, because much of the research in these
areas is based on guess-work, estimation, and hypothesis.
In these cases, an assumption is made as to how the system
might work and then rapid iterations are used to quickly
incorporate suggested changes and build a usable system.
A distinguishing characteristic of the Exploratory Model is
the absence of precise specifications. Validation is based
on adequacy of the end result and not on its adherence to
pre-conceived requirements.

The Exploratory Model is extremely simple in its
construction; it is composed of the following steps:
· Initial Specification Development. Using whatever
information is immediately available, a brief System

Specification is created to provide a rudimentary starting
point.
· System Construction/Modification. A system is created
and/or modified according to whatever information is
available.
· System Test. The system is tested to see what it does,
what can be learned from it, and how it may be improved.
· System Implementation. After many iterations of the
previous two steps produce satisfactory results, the system
is dubbed as “finished” and implemented.

Problems/Challenges associated with the Exploratory
Model
There are numerous criticisms of the Exploratory Model:
· It is limited to use with very high-level languages that
allow for rapid development, such as LISP.
· It is difficult to measure or predict its cost-effectiveness.
· As with the Prototyping Model, the use of the
Exploratory Model often yields inefficient or crudely
designed systems, since no forethought is given as to how
to produce a streamlined system.

The Spiral Model
The Spiral Model was designed to include the best features
from the Waterfall and Prototyping Models, and introduces
a new component - risk-assessment. The term “spiral” is
used to describe the process that is followed as the
development of the system takes place. Similar to the
Prototyping Model, an initial version of the system is
developed, and then repetitively modified based on input
received from customer evaluations. Unlike the
Prototyping Model, however, the development of each
version of the system is carefully designed using the steps
involved in the Waterfall Model. With each iteration
around the spiral (beginning at the center and working
outward), progressively more complete versions of the
system are built.6

R=Review

Figure 4. Spiral Model[7]

Risk assessment is included as a step in the development
process as a means of evaluating each version of the
system to determine whether or not development should
continue. If the customer decides that any identified risks

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 3, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 394

are too great, the project may be halted. For example, if a
substantial increase in cost or project completion time is
identified during one phase of risk assessment, the
customer or the developer may decide that it does not
make sense to continue with the project, since the
increased cost or lengthened timeframe may make
continuation of the project impractical or unfeasible.

The Spiral Model is made up of the following steps:
· Project Objectives. Similar to the system conception
phase of the Waterfall Model. Objectives are determined,
possible obstacles are identified and alternative approaches
are weighed.
· Risk Assessment. Possible alternatives are examined by
the developer, and associated risks/problems are identified.
Resolutions of the risks are evaluated and weighed in the
consideration of project continuation. Sometimes
prototyping is used to clarify needs.
· Engineering & Production. Detailed requirements are
determined and the software piece is developed.
· Planning and Management. The customer is given an
opportunity to analyze the results of the version created in
the Engineering step and to offer feedback to the
developer.

Problems/Challenges associated with the Spiral Model
Due to the relative newness of the Spiral Model, it is
difficult to assess its strengths and weaknesses. However,
the risk assessment component of the Spiral Model
provides both developers and customers with a measuring
tool that earlier Process Models do not have. The
measurement of risk is a feature that occurs everyday in
real-life situations, but (unfortunately) not as often in the
system development industry. The practical nature of this
tool helps to make the Spiral Model a more realistic
Process Model than some of its predecessors.

Critic
Another traditional process model is the spiral model
which is suggested by Barry Boehm in 1988. Spiral model
is still regarded as one of the best model because it is a
combination of the prototyping model and the waterfall
model and comprises the strengths of the other software
models.. According to Boehm, "the major distinguishing
feature of the Spiral Model is that it creates a risk-driven
approach to the software process rather than a primarily
document-driven or code-driven process. It incorporates
many of the strengths of other models and resolves many
of their difficulties" [Boehm 1988]. This model is better
than the waterfall because it may allow iteration. The main
concept of the spiral model is that it aims to minimize risks
with the use of repeated use of prototypes so that certain
changes may be applied over again if there appears a
problem upon the development.

3. SWOT Analysis

3.1 Waterfall model:-
1) STRENGTH:-
• Easy adaptability by Non Technical person(End-

user).
• Provides structure to inexperienced staff.
• No planning needed.
• Works well for small projects with fixed and clear

requirements.
• Milestones are well defined and understood.
• Sets requirements stability.
• Good for management control (plan, staff, track).
• Works well when quality is more important than

cost or schedule.
• Each phase has well defined inputs and outputs.

2) WEAKNESS:-
• All requirements must be known upfront.
• Deliverables created for each phase are

considered frozen inhibits flexibility.
• Longest tangible delivery time. The customer

does not see anything but the whole product when
it’s ready.

• It can give a false impression of progress.
• Does not reflect problem-solving nature of

software development. i.e iterations of phases.
• Integration is one big bang at the end.
• Little opportunity for customer to preview the

system.
• Unsuitable for large projects and where

requirements are not clear.

3) OPPORTUNITIES:-
• Requirements are very well known.
• Product definition is stable.
• Technology is understood.
• New version of an existing product.
• Porting an existing product to a new platform.
• Helpful for developing similar type of software.

4) THREATS:-

The problem with the waterfall model is that it has
become hardwired into the thinking of project
planners. It has become so pervasive that the
requirements, design, build, and test progression is a
given in most projects.
 In the early days of simple, stand-alone applications,
the waterfall model worked well spawning a host of
voluminous methodologies, but it does not suit the

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 3, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 395

problems of the complex, risky, and integrated
projects that IT has to deliver today.
IT developed stand-alone, batch applications. The
complexities of integrating applications were only
dreamed of by ambitious database architects. Today,
hardly any development is made in isolation unless,
like the NHS IT project, you give yourself the luxury
of a scorched earth IT strategy. Because of its origins,
the waterfall method does not address integration but
ignores it until the end of the project, when we
encounter the familiar task of trying to stitch together
disparate applications and change schedules to the
annoyance of the operations manager.
Another change in the nature of IT projects is that
most of today's projects have a high proportion of
reuse - implementing packages and reusing
frameworks. The waterfall idea of creating a detailed
set of requirements and then trying to find a package
that fits is neither economic not practical.
Increasingly, organisations are seeing the benefits of
solution-constrained development rather than
greenfield design.
The steps in waterfall model are fixed and the steps
cannot change them. Model is self restricted.
If the model is not perfect, there must be some
potential risks. Just as some poor descriptions and
requirement changing are principal sources of project
risk. In waterfall model if there is a misunderstanding
in the analysis phase and that could not be found. The
result could be destructive. This is almost the slowest
step of development.
”The most difficult part is the communication between
humans.” (Yacov, 2002).

How to manage the risks in the Waterfall model?

• It cannot be possible to avoid all the risks in the
waterfall model because of the waterfall model
itself. But there are still some ways to settle the
problems. If team have experienced members in
every job and cannot have any mistakes from the
very beginning to the very end, then waterfall
model is successful .

• The general method is getting prepared before the
project really started. Have a essential Risk
Analysis in the pre-phase can avoid the failure of
every steps and rework which rise up the cost of
the project.

• Making a Scheme of risk team can take a fast
react in case there are some risk happened.

• Avoid the deal with the risk in surprise and make
some bigger damage. Try to control every step in
waterfall model.

• Do not forget to sign a contract after confirm the
requirement with enduser. So that they will not
ask you to add more extra functions in the
software.

• Do remember that confirm there is not any
mistakes and potential risks in one step. And then
start your next step.

• The Project manager must take the most
important point of the project. Concentrate
resources on this point.

• Change the way of work from passive to active.

3.2 V-Shaped (Modified Waterfall) model:-

1) STRENGTH:-
• Emphasize planning for verification and

validation of the product in early stages of
product development.

• Each deliverable must be testable.
• Higher chances of success as test planning starts

early in the SDLC cycle.
• Project management can track progress by

milestones.
• Quickest for project where requirements are fixed

and clearly defined.
• Easy to use

2) WEAKNESS:-
• Does not easily handle concurrent events.
• Does not handle iterations or phases.
• No early prototypes are available.
• Needs ample skilled resources.
• Does not easily handle dynamic changes in

Requirements.
• Does not contain risk analysis activities.

3) OPPORTUNITIES:-
• Excellent choice for systems requiring high

reliability.
• All requirements are known up-front.
• When it can be modified to handle changing

requirements beyond analysis phase.
• Solution and technology are known.

4) THREATS:-
• The V-Shaped model is inappropriate for

complex projects.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 3, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 396

• The V-shaped model should have risk to used for
large scale projects where requirements are
unclearly defined and unfixed.

• The V-Shaped model should be chosen when
ample technical resources are available with
needed technical expertise. Since, no prototypes
are produced, there is a very high risk involved in
meeting customer expectations, therefore,
confidence of customer should be very high in
order for choosing the V-Shaped model
approach.

3.3 Evolutionary Prototype model:-

1) STRENGTH:-
• Customers can “see” the system requirements as

they are being gathered.
• Gains customer’s confidence as developers and

customers are in sync with each other’s
expectations continuously.

• Developers learn from customers.
• Ideal for online systems where high level of

human computer interaction is involved.
• A more accurate end product.
• Very flexible, as changes in requirements can be

accommodated much more easily with every new
review and refining.

• Unexpected requirements accommodated.
• Allows for flexible design and development.
• Steady, visible signs of progress produced.
• Interaction with the prototype stimulates

awareness of additional needed functionality.
• Software built through prototyping needs minimal

user training as users get trained using the
prototypes on their own from the very beginning
of the project.

• Integration requirements are very well understood
and deployment channels are decided at a very
early stage.

2) WEAKNESS:-
• Tendency to abandon structured program

development for “code-and-fix” development
• Bad reputation for “quick-and-dirty” methods.
• Overall maintainability may be overlooked
• The customer may want the prototype delivered.
• Process may continue forever (scope creep).

3) OPPORTUNITIES:-
• Requirements are unstable or have to be clarified.

• As the requirements clarification stage of a
waterfall model.

• Develop user interfaces.
• Short-lived demonstrations.
• New, original development.
• With the analysis and design portions of object-

oriented development.

4) THREATS:-
• Prototyping often creates a situation where the

customer mistakenly believes that the system is
"finished" when in fact it is not. More
specifically, when using the Prototyping Model,
the pre-implementation versions of a system are
really nothing more than one-dimensional
structures. The necessary, behind-the-scenes work
such as database normalization ,documentation,
testing, and reviews for efficiency have not been
done.

• The primary goal of Prototyping is rapid
development, the design of the system can
sometimes suffer because the system is built in a
series of "layers" without a global consideration
of the integration of all other components. While
initial software development is often built to be a
"throwaway, " attempting to retroactively produce
a solid system design can sometimes be
problematic.

3.4 Rapid Application model:-
1) STRENGTH:-
• Reduced cycle time and improved productivity

with fewer people means lower costs.
• Time-box approach mitigates cost and schedule

risk.
• Customer involved throughout the complete cycle

minimizes risk of not achieving customer
satisfaction and business needs.

• Focus moves from documentation to code
(WYSIWYG).

• Uses modeling concepts to capture information
about business, data, and processes.

• Increases reusability of components.
• High modularization achieves a more flexible

and maintainable system.
• Quick initial reviews occur.
• Encourages customer feedback.
• Integration from very beginning solves a lot of

integration issues.
• Business owners actively participate

2) WEAKNESS:-

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 3, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 397

• Accelerated development process must give quick
responses to the user.

• Risk of never achieving closure.
• Hard to use with legacy systems.
• Requires a system that can be modularized.
• Developers and customers must be committed to

rapid-fire activities in an abbreviated time frame.
• Depends on strong team and individual

performances for identifying business
requirements.

• Only system that can be modularized can be built
using RAD.

• Requires highly skilled developers/designers.
• High dependency on modeling skills.
• Inapplicable to cheaper projects as cost of

modeling and automated code generation is very
high for cheaper budgeted projects to befit.

3) OPPORTUNITIES:
• Reasonably well-known requirements.
• User involved throughout the life cycle.
• Project can be time-boxed.
• Functionality delivered in increments.
• High performance not required.
• Low technical risks.
• System can be modularized.

4) THREATS:-
• Rapid Application Development is an iterative

and incremental process, there are certain risks to
using RAD. It can lead to a succession of
prototypes that never results in a satisfactory end
product.

• The risks in RAD as opposed to "waterfall"
development are related to the fact that RAD does
not rely on a single requirements analysis phase.

3.5 Incremental model:-

1) STRENGTH:-
• Develop high-risk or major functions first.
• Each release delivers an operational product.
• Customer can respond to each build.
• Uses “divide and conquer” breakdown of tasks.
• Lowers initial delivery cost.
• Initial product delivery is faster.
• Customers get important functionality early.
• Risk of changing requirements is reduced.
• More flexible than waterfall.

2) WEAKNESS:-
• Requires good planning and design.
• Requires early definition of a complete and fully

functional system to allow for the definition of
increments.

• Well-defined module interfaces are required
(some will be developed long before others)

• Total cost of the complete system is not lower.

3) OPPORTUNITIES:-
• Risk, funding, schedule, program complexity, or

need for early realization of benefits.
• Most of the requirements are known up-front but

are expected to evolve over time.
• A need to get basic functionality to the market

early.
• On projects which have lengthy development

schedules.
• On a project with new technology.

3.6 Spiral model:-

1) STRENGTH:-
• Provides early indication of insurmountable risks,

without much cost.
• Users see the system early because of rapid

prototyping tools.
• Critical high-risk functions are developed first.
• The design does not have to be perfect.
• Users can be closely tied to all lifecycle steps.
• Early and frequent feedback from users.
• Cumulative costs assessed frequently.

2) WEAKNESS:-
• Time spent for evaluating risks too large for small

or low-risk projects.
• Time spent planning, resetting objectives, doing

risk analysis and prototyping may be excessive.
• The model is complex.
• Risk assessment expertise is required.
• Spiral may continue indefinitely.
• Developers must be reassigned during non-

development phase activities.
• May be hard to define objective, verifiable

milestones that indicate readiness to proceed
through the next iteration.

3) OPPORTUNITIES:-
• When creation of a prototype is appropriate.
• When costs and risk evaluation is important.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 3, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 398

• For medium to high-risk projects.
• Long-term project commitment unwise because of

potential changes to economic priorities.
• Users are unsure of their needs.
• Requirements are complex.
• New product line.
• Significant changes are expected (research and

exploration).

4) THREATS:-
• The risk of spiral model is the events that took

place that makes the project not to achieve clients
requirement or what the users want.

4. Conclusions

Selecting an SDLC model can be compared in many ways
to the specification of user requirements, the more data
gathered and examined, the higher the chances for
successful completion of the project. Just as the
specifications of user requirements are vital in the stages of
design and computer system development, so can the
knowledge and regulations which constitute the basis for
SDLC model selection determine the success or failure of a
given project.
A SWOT analysis is a tool to assess and to develop
strategies to remain competitive. To sum up, selecting an
appropriate SDLC model is a complex and a challenging
task, which requires not only broad theoretical knowledge,
but also consultation with experienced expert managers.

References
[1] Kal Toth, Intellitech Consulting Inc. and Simon Fraser
University; list is partially created from Software Engineering
Best Practices,1997.
[2] Information on the Software Engineering Institute can be
found at http://www.sei.cmu.edu.
[3] Mark C. Paulk, Charles V. Weber, Suzanne M. Garcia, Mary
Beth Chrissis, and Marilyn W. Bush, "Key Practices of the
Capability Maturity Model, Version 1.1," Software Engineering
Institute, February 1993, p 1.
[4] Mark C. Paulk, Bill Curtis, Mary Beth Chrissis, and Charles
V. Weber, "Capability Maturity Model for Software, Version
1.1," Software Engineering Institute, February 1993, p 18.
[5] Kal Toth, Intellitech Consulting Inc. and Simon Fraser
University, from lecture notes: Software Engineering Best
Practices, 1997.
[6] Linda Spence, University of Sutherland, “Software
Engineering,” available at
http://osiris.sunderland.ac.uk/rif/linda_spence/HTML/contents.ht
ml

[7] Kal Toth, Intellitech Consulting Inc. and Simon Fraser
University, from lecture notes: Software Engineering Best
Practices, 1997.
[8] Frank Kand, “A Contingency Based Approach to
Requirements Elicitation and Systems Development,” London
School of Economics, J. Systems Software 1998; 40: pp. 3-6.
[9]Bryant, A. (2000), “Chinese Encyclopaedias and Balinese
Cockfights – Lessons for Business Process Change and
Knowledge Management,” In Knowledge Engineering and
Knowledge Management,
[10]Wang, Y. (2002a), “The Real-Time Process Algebra
(RTPA),” Annals of Software Engineering 14.

Prof. Ashish B. Sasankar had done MCA,
M.Phil(Comp. Sci), M.Tech(CSE) and
pursuing Phd in Software Engineering from
RTM, Nagpur University(INDIA). He is having
12 years of Experience in Education field. He
is currently working in GHRIIT, Nagpur(India).
He had published 15 international and
national papers. He is member of IEEE and
CSI .

Dr. Vinay Chavan had Phd ,Msc in computer science. He is
working as Professor in Computer Science Dept, S.K.Porwal
College Nagpur (INDIA) .

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 3, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 399

