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Abstract 
 
This paper develops a practical methodology for the analysis of 
sorting/searching algorithms. To achieve this objective an 
analytical study of Quicksort and searching problem was 
undertaken. This work explains that asymptotic analysis can be 
misleading if applied slovenly. The study provides a fresh insight 
into the working of Quicksort and Binary search. Also this 
presents an exact analysis of Quicksort. Our study finds that 
asymptotic analysis is a sort of approximation and may hide 
many useful facts. It was shown that infinite inefficient 
algorithms can easily be classified with a few efficient algorithms 
using asymptotic approach. 

1. Introduction 

There have been abundant computer applications which 
need sorting/searching as a key component. Since SQL 
operations use it as an internal database subroutine, all 
database applications gain advantage of an efficient 
sorting/searching algorithm. Also sorting/searching is a 
must for some rudimentary database operations like a 
creation of indices and binary searches. Sorting is 
functional in operations like finding closest pair, 
determining an element's uniqueness, finding kth largest 
element, and identifying membership. Many practical 
applications in computational geometry need sorting. For 
instance sorting is used to find the convex hull in 
computational geometry [10]. Applications that need 
sorting/searching include supply chain management, 
bioinformatics and computer graphics. Since 
sorting/searching problem has a lot of importance in real 
world, hence it will be fruitful to evolve a practical 
framework or methodology for analysis of sorting 
algorithms.  

This paper develops an intuitive framework or 
methodology for the analysis of sorting/searching 

algorithms. To achieve this objective an analytical study of 
Quicksort and searching problem was carried out. This 
effort explains that asymptotic analysis can be misleading 
if applied carelessly. This study provides a fresh insight 
into the working of Quicksort and Binary search. Also this 
study presents an exact analysis of Quicksort. Although 
there already exist a few average case analyses, majority 
of the attempts finish up as asymptotic analysis. Our study 
finds that asymptotic analysis is a sort of approximation 
and may hide many useful facts such as large constant 
factors which make any algorithm insane for practical 
purposes. It was shown that infinite inefficient algorithms 
can easily be classified with a few efficient algorithms 
using asymptotic approach. 

2. Searching an Analytic Study 

It is not difficult to design a set of binary search like 
divide and conquer searching algorithms which lead to 
following recurrence. 

T(n) = c  +  T(nk/k+1) 

T(1) = d 

Master theorem suggests the solution of the recurrence 
relation is T(n) = O(log n). 
 
 For k = 1 we will have recurrence relation for 
binary search. For k = 2 one gets ternary search. One of 
the observations of this study is that for k > 1 we can 
produce a sequence of increasingly inefficient algorithms 
by incrementing the value of 1. But asymptotic analysis 
puts all the algorithms in the same set. In fact all 
algorithms can flaunt logarithmic time complexity. It is the 
constant factor that differs. The key conclusion is that 
constant factor matters and one cannot blindly trust the 
asymptotic order. The algorithm designer has to examine 
the situation thoughtfully. Too high a constant factor will 
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render an algorithm useless with certainty. This endeavor 
finds that an exact analysis may provide better insight than 
what asymptotic analysis may offer. 

3. Probabilistic Analysis of Quicksort 

3.1 Review of Probabilistic Analysis  

In probability theory, a probabilistic arrangement is 
defined by a sample space S and a probability measure p. 
The points of the sample space are the possible result of 
the experiment and are called elementary events. An event 
is a subset of the sample space. For instance, one event we 
may care about is the event that the first die comes up 1. 
Another is the event that the two dice sum to 7. The 
probability of an event is just the sum of the probabilities 
of the elementary events contained inside it [9].  
 
 A random variable is a function from elementary 
events to integers or reals. For instance, another way we 
can talk formally about these dice is to define the random 
variable Y1 representing the result of the first die, Y2 
representing the result of the second die, and Y = Y1 + Y2 
representing the sum of the two. We could then ask: what 
is the probability that Y = 6? [9]. 
 
 One property of a random variable we often care 
about is its expectation. For a discrete random variable Y 
over sample space S, the expected value of Y is:    E[Y] = 
Pr(e1) Y[e1] + Pr(e2) Y[e2] +..............Pr(en) X[en] for all   
e∈S.  An important fact about expected values is Linearity 
of Expectation: for any two random variables U and V, 
E[U+V] = E[U] + E[V]. This fact is incredibly important 
for analysis of algorithms because it allows us to analyze a 
complicated random variable by writing it as a sum of 
simple random variables and then separately analyzing 
these simple RVs[9]. 
 

3.2 Probabilistic Analysis of Quicksort with 
Accurate Results 

Theorem 1The expected number of comparisons made by 
randomized Quicksort on an array of size n is   Hn(2n+2) – 
4n, where  Hn = (1+ (½) +(1/3) +.............(1/n)). 
 
Let us consider one of the random variables is Yij’s for i < 
j. Denote the ith smallest element in the array by ei and the 
jth smallest element by ej.  If the pivot we choose is 
between ei and ej then these two end up in different 
buckets and machine will never compare them to each 
other. If the pivot we choose is either ei or ej then 
Computer does compare them. If the pivot is less than ei or 
greater than ej then both ei and ej end up in the same 
bucket and we have to pick another pivot. So, one can 

think of this like a dart game: we throw a dart at random 
into the array: if we hit ei or ej then Yij becomes 1, if we 
hit between ei and ej then  Yij becomes 0, and otherwise 
we throw another dart. At each step, the probability that 
Yij = 1 conditioned on the event that the game ends in that 
step is exactly 2/(j − i + 1). Therefore, overall, the 
probability that Yij = 1 is 2/(j − i + 1). 
 

 
 

 
 

 
 

Up to this stage we follow what the other researchers have 
already done [9], and from this point we move in the 
direction of exact value rather than a crude upper bound.   
 

 
 

 
 

 
 

 
 

  ---------------- (Equation A) 
 
 Equation A is one of the central contributions of 
the paper. Equation A gives the exact value of the 
expected number of comparisons performed by Quicksort. 
If a researcher is inclined towards asymptotic approach 
s/he can easily have it. For the researchers, who are 
inclined towards asymptotic approach and approximate 
results, E[Y]=O(nlogn). Because Hn is approximately log 
n, E[Y] becomes O(log n). 
 

3.3 Alternative Analysis 

This section is basically a byproduct of the overall study. It 
is a bit crude but effective technique for asymptotic 
analysis. Quicksort partition may divide the array into two 
partitions. One of the partitions may be empty. If there are 
two partitions then either both are of same size or one of 
them will be larger than the other one. We are interested in 
upper bound on the average case time. Size of the Non 
smaller partition may vary from (n-1) to (n-1)/2. Average 
size of Non Smaller partition was found to be 
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approximately (3n/4). Along the same line if we estimate 
average size of Non large partition we get approximately 
(n/4). This leads to following recurrence relation. 
 

T(n) = T(n/4) + T(3n/4) + (n-1). 
 

Application of Recursion tree approach recommends that 
solution is O(n log n).  

4. Results and Conclusion 

Evidence of the analysis of a set of divide and conquer 
search algorithms suggests that asymptotic analysis can 
easily mislead. Exact analysis is a better option than 
asymptotic approach. Asymptotic analysis may play a side 
role but it cannot replace exact analysis. If exact 
mathematical analysis is not feasible then only 
approximations and asymptotic can play the key role. 
References preferred to provide only the asymptotic 
analysis; this study seems to be unique to go beyond 
asymptotic analysis and to provide an exact analysis of 
Quicksort. Moreover this study produces one more 
alternative asymptotic analysis.  
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