
Framework for Ethernet Network Functionality Testing

Mirza Aamir Mehmood 1, Ahthasham Sajid2 and Amir Shahzad Khokhar3

 Department of Computer Science, Balochistan University of Information Technology, Engineering & Management Sciences
Quetta, Pakistan

Abstract
Computer networks and telecommunication systems use a wide
range of applications. Therefore, the power and complexity of
computer networks are increasing every day which enhances the
possibilities of the end user, but also makes harder the work of
those who have to design, maintain and make a network efficient,
optimized and secure. Ethernet functionality testing as a generic
term used for checking connectivity, throughput and capability to
transfer packets over the network. Especially in the packet-switch
environment, Ethernet testing has become an essential part for
deploying a reliable network. A platform and vendor independent
framework is required to verify and test the functionality of the
Ethernet network and to verify the functionality and performance
of the TCP/IP stack. “NetBurst” is developed for Ethernet
functionality testing.

Keywords: Communication, Networking, Performance, Load,
Portability, Throughput, TCP, IP, Protocol, Ethernet, Testing.

1. Introduction

In the late 1990s, the spectacular growth of the Internet
dramatically affected the evolution of computer networking.
Numerous network techniques and technologies boomed,
but quickly faded into oblivion. Others have stood the test of
time. This growth is not possible without protocols and
communications software. As a result, the end user is greatly
empowered with numerous choices available to them.
Contrary to this, the large number of transmission
techniques and communication protocols had made it very
difficult for the network engineers, who have to design,
develop and maintain the performance and optimization of
their network. Thus, with the power and complexity of
computer networks raised, the need for tools to measure,
analyze and test the functionality and performance of the
network is greatly intensify.

2. Related Work

Number of researchers has worked on Ethernet and protocol
testing. This section provides an insight of work done in
relevant area.

There are two main methods to capture data from a network;
the first is based on the use of dedicated hardware, while the
second makes use of the hardware of a normal PC or
workstation connected to the communication channel. In the
second method, the network adapter of the computer is used
to obtain the frames from the network, and the software
performs packet capturing process. The software solution
has usually the low performance as compare to hardware
solution, particularly on slow machines, but it is cheaper,
and easier to modify and upgrade. For this reason, it is
widely adopted on the most used network architectures,
where the performance of dedicated hardware is not needed.
In network performance analyzing or Ethernet testing,
ranges of different software and hardware tools and products
are available for packet capturing, packet filtering and
network monitoring [4, 5].

 Following are the software and hardware products for
capturing and analyzing network traffic.

2.1 Tcpdump

Tcpdump is a simple packet sniffer that uses command line
interface, and allows a user to intercept and display TCP/IP
and other packets being transmitted or received over a
network. It is freeware software which works on most Unix-
like operating systems (Linux, Solaris, BSD, Mac OS X, and
HP-UX) and there is also a port of tcpdump for Windows
called WinDump [6].

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 149

2.2 Wireshark

Wireshark is similar to tcpdump, but it provides graphical
user interface (GUI) and many other options as well, like
packet filtering and sorting. It is a free packet sniffing
application. It works for different protocols with deep
inspection of packets and uses decryption options for many
protocols. It can run on Windows, Linux, Solaris, Mac OS
and BSD [25]. Wireshark can be used for data analysis
captured by NetBurst.

2.3 Snoop

Snoop is a freeware command line packet sniffer included as
part of Sun Microsystems' Solaris Operating System. It is
dedicated for the Solaris system, on a data-link or IP
interface. Snoop captures packets and displays their contents.
If the data-link or IP interface is not specified, snoop picks
the first non-loopback data-link it finds [7].

2.4 TPTEST

TPTEST is another application used for measuring
performance on Internet connection; TPTEST measures the
throughput speed from various reference servers on the
Internet. TPTEST measures the throughput of TCP/UDP
incoming and outgoing packets and packet loss. The
application is written in C++ and is portable for Windows,
Mac OS, Linux and BSD [8].

2.5 Maxwell Network Emulator

Maxwell network emulator is a hardware appliance that
helps network managers, software developers and testers
learn how their products will perform in real-world
production networks, including satellites and the Internet. It
has both graphical and command line interface and also
script driven interface for maximum flexibility. Moreover, it
is fully customizable and programmable using C++ [9].

2.6 IxANVL™ - Automated Network Validation
Library (ANVL)

Ixia's IxANVL (Automated Network Validation Library or
ANVL) is another hardware device that is also known as the
industry standard for automated network/protocol validation.
Software developers and manufacturers of networking
equipment and Internet devices use IxANVL to validate
protocol compliance and interoperability. [10].

There are many software applications for packet sniffing for
example TCP Dump, WireShark but they can only analyze
traffic. They do not offer any option to inject customized
packets. Applications that can test TCP for example TTCP
[22], can send TCP packets, but they do not support custom

packet creation. Applications like Snoop are platform
dependent and can run on a specific platform.

The research work done so far also focused on certain
environments or functionalities. Not a single research work
provides us all the required functionalities that are sufficient
to test an Ethernet node in our desired way. Since existing
applications and research work do not fulfill all the
requirements, a new application has to be developed that can
fulfill all the requirements. We have adopted the technique
that Douglas E. Comer and John C. Lin have demonstrated
[21], i.e. active probing technique, to develop application
named “NetBurst”.

3. Application Development Environment

The application has been developed in ANSI C using
Eclipse IDE on Fedora core 10. External libraries used are
Libnet and Libpcap on Linux where, as on the Windows
platform, Winpcap and Libnet for Win32 are used, which
are ported versions of early stated libraries.

3.1 Libnet

Libnet is a library for C programming used for packet
construction and injection. Libnet is used to control every
field of every header of every packet; large number of
programs goes through a high-level interface in order to
send traffic on the network. Occasionally, for security or
hacking reasons, a program needs to construct its own
network headers. The existing TCP/IP stack is unable to
build these headers, and it must bypass it and go directly to
the hardware drivers. Libnet is a library that makes custom
packet generation easier [23].

3.2 Libpcap

Libpcap gives a portable structure for low level network
monitoring. Libpcap can provide network statistics
collection, security monitoring and network debugging.
Every system vendor provides a different interface for
packet capture. To overcome this problem, Libpcap was
developed. This system-independent API makes it easier to
port and alleviates the need for several system-dependent
packet capture modules in each application [6].

3.3 Eclipse

Eclipse is an open source, integrated development
environment. It comprises extensible frameworks, tools and
runtimes for building, deploying and managing software. It
provides plugins in order to provide all of its functionality
on top of the runtime system; this is in contrast to some
other applications where functionality is typically hard
coded. This plug-in mechanism is a lightweight software
component framework. Moreover, Eclipse allows extension
using other programming languages, such as C and Python.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 150

This plug in setup allows Eclipse to work with networking
applications such as Telnet, and database management
systems. The plug-in architecture supports writing any
desired extension to the environment, such as for
configuration management [24].

4. NetBurst Architecture

NetBurst is developed for Ethernet functionality testing. It is
a vendor independent, cross platform application. It can be
used to test load, performance and functionality of
underlying TCP/IP stack. Functionality testing includes
throughput, packet loss, latency, fragmentation, option
processing etc.

4.1 Application Overview

The following figure provides an overall working model of
NetBurst. The application works by sending customized
packets, capturing and observing the response by sniffing
the packets. The packet generator is sending packets to the
machine whose protocol stack needs to be tested. Sniffer is
running on machine under test (MUT) to capture and
observe the response of MUT’s protocol stack.

Figure 1. NetBurst Communication

Communicating nodes are connected in LAN and protocol
being used is TCP/IP. Supported protocols are Internet
Protocol and Transmission Control Protocol. NetBurst
supports only Ethernet technology. An error will be
generated if any other technology is being used.

4.2 Communication Mode

The application can be executed in two communication
modes: synchronous and asynchronous. When executed in
synchronous mode, the client is running on MUT, and the
server is sending TCP or UDP packets. This mode is
recommended only for test case designing, since each and
every packet is processed to extract fields in the packet
header. All incoming traffic displayed on the terminal. Since
all incoming packets are processed, it may result in slower
packet capturing and may lost many correctly received
packets. Due to these reasons, this mode may produce false
results. When executed in asynchronous mode, Packetizer

and sniffer run independently. All captured packets are
stored in a file for future processing.

4.3 Application Architecture

NetBurst has two main components: Packetizer and Sniffer.
Packetizer has been built over Libnet and is controlled
through configuration files. Sniffer is built over pcap and
Winpcap libraries and is also controlled through
configuration files. These configuration files are used to
control the packet transmission rate, packet construction,
and various other properties.

Figure 2. Application Architecture

As shown in the above figure, Packetezier can transmit
random or fixed length packets. On the other hand, Sniffer
records all incoming traffic and the response generated by
MUT. The above figure depicts the application’s execution
mode.

4.3.1 NetBurst Configuration File

A configuration file is designed to control the application
behavior. Following is an example of a configuration file
containing different parameters. A user can interact with the
application through this file to control application behavior.
The structure of the configuration file is given in following
figure.

time: 2
interval: 1
count: 3
ip_ver: 4
random: 1
cache: 0
protocol: 1
Figure 3. Configuration File

4.3.2 NetBurst Packetizer

This component is responsible for constructing and injecting
packets. To inject a packet, NetBurst reads the packet
constructed that is values of different fields of packet header
from a specific file for each protocol header. The structure
and purpose of these files are elaborated below.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 151

4.3.3 TCP Configuration file

The following diagram depicts tcp.opt file which is used in
Packetizer. The record parameter controls number of packet
constructs provided in the file. The value of the source port
and destination port is given in sourc_port and
destination_port fields. The window_size takes the value for
the window size, whereas flag_urg is used to take the value
of the urgent flag which could be any numeric value.
Sequence and acknowledge values are provided through
seuq and ackg, respectively. The user also has to provide the
control flags (for example th_syn, TCP use this flag in its
header to initiate communication) and this is done through
providing the value in the control_flag parameter

record: 1
sourc_port: 1234
destination_port: 9876
window_siz: 77
flag_urg: 9
sequ: 11
ackg:8

Figure 4. Configuration File

4.3.4 IP Configuration File

The structure of the ipv4.opt file is depicted in figure 5. The
application uses this file to construct a custom IPv4 packet.
In id, the value of ID field of IP header is provided. The user
provides the source and destination address in source_ip and
dest_ip respectively. Time_to_liv takes the value for time to
live, whereas tos takes value of type of service field of IPv4
header

record: 1
id: 2
source_ip: 192.168.1.1
dest_ip: 192.168.1.11
time_to_liv: 12
tos: iptos_lowdelay ¦
ipptos_throughput ¦
iptos_reliablity ¦
iptos_mincost!

Figure 5. IP Configuration File

5. Results

In this section, test cases and results are discussed to analyze
the TCP functionality. Test cases are categorized in four
groups: performance, load, socket settings and TCP
functionality. For traffic analysis, Wireshark is used, which
is standard traffic analysis tool.

5.1 Performance Testing

The performance of any communication system can be
measured based on three main factors i.e. throughput,
latency and packet loss. To analyze and measure these
factors, a set of test cases are executed through NetBurst,
and the performance of the underlying TCP Stack is
observed. Following are the results of these test cases.

5.1.1 Test Case I: Throughput

To verify throughput, a burst of packets having packet size
1500 bytes is fired for 60 seconds. The following graph
depicts the throughput.

Throughput is defined as number of bytes received divided
by the transmission time. The figure 6 shows a normal test
with no throughput problem. It is observed that the level of
"fuzziness” of the throughput speed distribution is normal
and may reflect a slight timing inaccuracy in the Ethernet
Network Functionality Testing computer's clock. On
analyzing the graph, a small gap is observed, which
indicates a packet delay after a retransmission.

Figure 6. TCP Packet Throughput Graph

5.1.2 Test Case II: Latency

In continuation to test case I, a latency graph is also
produced which is given below. In figure 7, packet number
is given on x-axis and time (in seconds) given on y-axis

Figure 7. Packet Latency

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 152

Figure 8. Packet Latency Histogram

The above graph shows latency during a burst of packet

transmitted from NetBurst. We can deduce from the figure 7
that the latency gradually increases with the time. Likewise,
in figure 8, latency histogram depicts the latency interval. It
also shows that 7.8% packets were affected with highest
latency. On the other hand, 3.6% of packets were affected by
lowest packet latency, which occurred at the last packet
transmitted. The variation of delay, known as jitter, occurred
during transmission as depicted in figure 8.

5.1.3 Test Case III: Packet Loss

Packet loss occurs due to several reasons including the
network conjunction. For analyzing packet loss, NetBurst
has transmitted a total of 478861 packets. On the receiving
node a total of 430550 packets were received, which shows
that 11% of the packets were lost. For statistical analysis, the
following graph shows the loss which occurred in the
transmission.

Figure 9. Packet Loss Graph

From the figure 9 it is clear that a small number of packets
are lost during the whole period of packet transmission. In
the above figure, small peaks depict packet loss with respect
to packet sequence number.

5.2 TCP Functionality Testing

The objective of these test cases is to test the
functionality of the TCP stack. A set of sample test cases
were executed. These test cases, and their results, are
discussed in this section.

TCP establishes connection using three way handshake
mechanisms. This functionality is verified here.

5.2.1 Test Case I: Establishing Connection on Open Port

The following flow graph, shown in figure 7-6, describes
how a “SYN” is acknowledged from the machine under test
with a “SYN ACK”.

Figure 10. TCP Handshake

The above figure depicts that client has sent a packet with
“SYN” flag. Server has acknowledged this “SYN” request
through a TCP packet having control flags “SYN ACK”.

5.2.2 Test Case II: Establishing Connection from Closed
Port

In this test case, a “SYN” is sent from the client and then the
port is closed. The server has acknowledged this “SYN”
with a “SYN-ACK” packet. Since the port is closed from the
client, an “RST” will have been sent to the server to inform
it that the port is closed. The following graph in figure 11
depicts the same scenario.

Figure 11. TCP Connections.

5.3 Packet Parameters

Once the connection is setup, a desirable test is to see
how the TCP stack deals with legal and illegal sequence
numbers. Following test case verifies this functionality.

5.3.1 Test Case I: Sending Illegal Sequence and
Acknowledgment Numbers

As shown in the below figure 12, the TCP stack should mark
and ignore illegal SEQ and ACK number packets as out-of-
order packets.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 153

Figure 12. TCP Connection

5.4 TCP Option List

How the TCP stack processes the different TCP options is
validated here. A set of test cases are executed to analyze
different aspects of option processing

5.4.1 Test Case I: Valid options with legal values

An options byte string is sent with “SYN” packet. Option
string is 20 bytes long and has the value
"\003\003\012\001\002\004\001\011\010\012\077\077\077\0
77\000\000\000\000\000\ 00"

Figure 13. TCP Option Processing

5.4.2 Test Case II: Valid options with illegal and
unusual values

An options byte string is sent with the “SYN” packet and the
values "\003\003\012\001\002\004”. As shown in the figure
14 invalid options are detected and an error message “option
goes past end of option” is displayed.

Figure 14. Bad Option Processing

In this section we have elaborated on TCP Functionality
testing with different test cases for TCP handshake,
Connection Establishment etc using “NetBurst” application.
In the same way we can check the TCP functionality for
TCP Packets, Payloads, and IP Fragmentation

6. NetBurst Portability

Due to resource constraints, the application portability is
tested only for Windows and Linux systems. The application
should work on VxWorks and Solaris, as the libraries used
to develop this application claim to work on the above
mentioned operating systems [23].

7. Conclusions

This paper introduces a cross platform and vendor
independent farm work that uses active probing technique
to test Ethernet functionality, comparatively, the NetBurst
application gives an efficient result and a cost effective
solution for network functionality testing.

There are many software applications to test the Ethernet
functionality, like TCP Dump, WireShark but they can only
analyze traffic. They do not offer any option to inject
customized packets. Applications that can test TCP for
example TTCP can send TCP packets, but they do not
support custom packet creation. Applications like Snoop are
platform dependent and can run on a specific platform. All
these drawbacks are resolved in “NetBurst”.

Active probing technique was introduced by Douglas E.
Comer and John Lin.Douglas E. Comer and John C. Lin’s
work is focused only on RTO (retransmission time-out)
estimation, retransmission interval and keep-alive
functionality, and does not test any other functionality
available in TCP

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 154

Our test cases have tested TCP/IP stack functionality and
results are discussed in this paper. It is also explained in the
report that the number of packets per second, and the
latency, are directly proportional to each other. Latency will
increase gradually as the number of packets increase.
NetBurst also gives an output result of the network
performance testing, such as load, packet loss, latency, and
throughput.

8. References
[1] S. Bradner & J. McQuaid, “Benchmarking Methodology for

Network Interconnect Devices”, RFC 2544, Available at:
http://www.ietf.org/rfc/rfc2544.txt. (Last accessed July 09,
2009).

[2] Douglas E. Comer, Internetworking with TCP/IP: Principles,
Protocols, and Architecture, Volume 1 (4th ed.), Upper
Saddle River: Prentice Hall, 2000, ISBN: 0130183806
(International Ed.)

[3] “Resolve IP Fragmentation, MTU, MSS, and PMTUD Issues
with GRE and IPSEC”, Available
at: http://www.cisco.com/en/US/tech/tk827/tk69/technologies
_white_paper 09186a00800d6979.shtml. (Last accessed July
1, 2009)

[4] “Ethernet Testing Software’s” Available
at http://www.allbusiness.com/technology/co puter-
networking/831290-1.html. (Last accessed July 1, 2009)

[5] “Ethernet Testing Hardware” Available
at: http://www.iol.unh.edu/services/ testing/ethernet/tools/.
(Last accessed July 1, 2009).

[6] “TCP Dump”, Available at: http://www.tcpdump.org/. (Last
accessed July 1, 2009).

[7] “Snoop (1M) - capture and inspect network packets (man
pages section 1M: System Administration Commands)”,
Available at http://docs.sun.com/app/docs/doc/819-
2240/snoop-1m?&a=view&q=snoop. (Last accessed July 09,
2009).

[8] “TPTEST”, Available at
http://tptest.sourceforge.net/about.php. (Last accessed July
09, 2009).

[9] “Maxwell Network Emulator Information”, Available at
http://www.maxwelltester.com. (Last accessed July 09, 2009).

[10] “IxANVL™ - Automated Network Validation Library
(ANVL)”, Available
at http://www.ixiacom.com/products/display?
key=ixanvl#note1#note1, (Last accessed July 1, 2009).

[11] W. Hengeveld, “Protocol Testing: Using hardware techniques
for software”, Seventh International Conference on Software
Engineering for Telecommunication Switching Systems, 1989.
SETSS 89, July 1989

[12] Ethernet Network Functionality Testing Chanson, S.T. and
Zhu, J, “A Unified Approach to Protocol Test Sequence
Generation”, INFOCOM '93. Proceedings. Twelfth Annual
Joint Conference of the IEEE Computer and Communications

Societies. Networking: Foundation for the Future. 28 March-
1 April 1993 Page(s):106 - 114 vol.1

[13] Huang,C.M., Lin, Y.C. and Jang, M.Y, “An Executable
Protocol Test Sequence Generation Method for EFSM
Specified Protocols”. IWTCS 95, Evry, 4-6 September.

[14] C.Bourhfir,R.dssouli,E. Aboulhamid, PI.Rico, “Automatic
executable test case generation for extended finite state
machine protocols”, l0th IFIP IWTCS, 1997.

[15] Wu; Wang, "Internet protocol conformance testing by using a
TTCN based protocol integrated test system,"
Communications, 1999. ICC '99. 1999 IEEE International
Conference, vol.1, pp.646-650, 1999

[16] K Shemyak , K Vehmanen , “Scalability of TCP servers,
handling persistent Connections”, Proceedings of the Sixth
International Conference on Networking.22-28, April 2007
on page(s): 89-89

[17] D Kassabian, A Albicki, “A Protocol Test System for the
Study of Sliding Window Protocols on Networked UNIX
Computers” IEEE Transactions On Education, Vol. 38, No.
4. November 1995

[18] X Xie; M Zheng; Kassabian, D.; Albicki, A., "Design and
testing of a sliding window protocol in a protocol testing
system," Circuits and Systems, 1993., Proceedings of the 36th
Midwest Symposium on , pp.1144-1147 vol.2, 16-18 Aug
1993

[19] Y Lin, R E. Newman, H Latchman “A New TCP and UDP
Network Benchmark Suite”, Proceeding of the 10th
Communications and Networking Simulation Symposium
(CNS'07), March 2007.

[20] R J. Linn, Jr., “Conformance Evaluation Methodology And
Protocol Testing”, IEEE Journal on Selected Areas In
Communications. Vol. 7. No. 7. September 1989

[21] D E. Comer , J C. Lin, “Probing TCP implementations”,
Proceedings of the USENIX Summer 1994 Technical
Conference on USENIX Summer, p.17-17, June 06-10, 1994,
Boston, Massachusetts. Available at: http://www1.bell-
labs.com/user/johnlin/probing-TCP.pdf, (last accessed July 1,
2009)

[22] “Test TCP (TTCP) Benchmarking Tool for Measuring TCP
and UDP Performance”, Available
at http://www.pcausa.com/Utilities/pcattcp.ht . (Last accessed
July 09,2009).

[23] “Libnet”, Available at: http://libnet.sourceforge.net/#whatis
(Last accessed July 1, 2009)

[24] “Eclipse”, Available at: http://www.eclipse.org/ (Last
accessed July 1, 2009)

[25] “Wireshark”, Available at http://www.wireshark.org. (Last
accessed July 1, 2009).

[26] Eric Hall, Internet Core Protocols: The Definitive Guide Help
for Network Administrators (1st ed.), 1005 Gravenstein
Highway North Sebastopol, CA: O'Reilly Media, Inc., 2009,
ISBN: 1565925726

[27] Douglas E. Comer, Internetworking with TCP/IP: Client-
Server Programming and Applications, Linux/Posix Sockets
Version, Volume 3 (4th ed.), Upper Saddle River: Prentice
Hall, 2000, ISBN: 0130320714 (Paperback Ed.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 155

http://www.cisco.com/en/US/tech/tk827/tk
http://www.allbusiness.com/technology/co
http://www.iol.unh.edu/services/
http://docs.sun.com/app/docs/doc/819-
http://www.ixiacom.com/products/display
http://www1.bell-labs.com/user/johnlin/probing-
http://www1.bell-labs.com/user/johnlin/probing-
http://www.pcausa.com/Utilities/pcattcp.ht
http://libnet.sourceforge.net/%23whatis

