
Incorporating Security in Embedded System – A critical
analysis

Mirza Aamir Mehmood1, Amir Shahzad Khokhar2 and Mazhar Ali3

Department of Computer Science1,2, Department of Information Technalogy3

Balochistan University of Information Technology, Engineering & Management Sciences

Quetta, Pakistan

Abstract
Security is becoming a major concern in embedded system
designing and development. This paper surveys security
requirements, attack techniques and will review
countermeasures for these attacks

Keywords: component; embedded systems, security, software
attacks, viruses

1. Introduction

Use of embedded systems in diverse and complex
applications have relentless importance of secure and fault
tolerant system. It is essential for embedded device’s to
secure sensitive information, ensuring availability and
providing secure communication system. Reliability is
directly coupled with security in embedded systems thus
an unsecured system is also an unreliable system.
Traditionally security concaved as an issue related to
networks and cryptography and embedded system
designers consider it as an additional feature. Growing
number of security breaches has dictated that compromise
on security can lead to consequences ranging from
inconvenience to a complete disaster. Embedded systems
are co-design of Software and Hardware. To make a
secure and reliable system, it is essential that both
components are secure.

2. Embedded System Security Requirements

The functions of embedded system is to access and
process sensitive data and provide critical functionality.
For example, let’s assume that an embedded system has
been implanted in a heart patient to monitor heartbeat,
blood pressure and sugar level of that person. When it
finds any anomaly in blood pressure or sugar level, it send
an alarm signal to doctor and when it found that heart beat

is gone down a certain limit, it generates a mild shock to
save life of that person. In this example, it is very obvious
that system should be available twenty four hours a day
and seven days a week. It is also important that when
communicating with doctor, it should ensure privacy of
patient. In general, an embedded system should ensure
dependability, confidentiality, integrity and availability to
consider as secure system [4] [5]. Figure 1 shows security
requirements for embedded system (Taken from [1]).

Figure 1. Security requirements for embedded system

2.1. Confidentiality

To ensure that sensitive information is protected against
deliberate or accidental disclosure.

2.2. Integrity

Ensuring that sensitive information is protected against
deliberate or accidental corruption and data is protected
against illegitimately changes.

2.3. Availability

The ability to protect against deliberate or accidental
actions that cause automated information resources to be
unavailable to users when needed.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 156

2.4. Dependability

Embedded systems often reside in machines that are
expected to run continuously for years without
errors/faults and in some cases recover by them-selves if
an error/fault occurs [3]. Thus an embedded system should
be dependable. Dependability is combination of
2.4.1. Fault-Avoidance
Constructing / developing a mechanism to prevent a fault
situation to occur. This is accomplished in designing
phase.
2.4.2. Fault-Tolerance
Ensuring that system behaves in normal fashion even
when a fault situation arises. This is accomplished through
redundancy.
2.4.3. Fault-Removal
In verification phase, it is ensured that system is error/fault
free.
2.4.4. Fault-Forecasting
How to estimate, by evaluation, the presence, the creation
and the consequences of errors.

3. Challenges in Secure Software
Development

Many external factors influence confidentiality and
availability of system administrative controls, physical
barriers, are few of them. Whereas integrity of the
computer system depends on the degree to which
vulnerabilities have been eliminated from the system [2].
In addition to the requirements, discussed earlier,
embedded system should also be able to face threats like
denial of service attacks, system tempering etc. which
becomes more complicated in presence of modern
techniques for breaking security, such as power analysis
and fault analysis. Although Software solutions are not
sufficient to keep up with the computational demands of
security processing in embedded system but they are major
source of security vulnerabilities. Three main factors make
development of secure software a challenge i.e.
Complexity, Extensibility and Connectivity [1]. Let’s
briefly examine each of these issues.

3.1. Complexity

With every passing day, software’s are becoming more
and more complexes. With each new line of code, new
bugs and security risks introduced in software. The
complexity aggravate when unsafe programming
languages (e.g., C or C++) are used, which do not protect
against simple kind of attacks, such as buffer overflows.

3.2. Extensibility

New development platforms like .Net and Java developed
mainly to provide extensibility. Embedded system now
can get updates or extensions from internet for example
new mobile phones by Sony Ericsson accept BIOS update
through internet. Unfortunately, the very nature of
extensible systems makes it hard to prevent software
vulnerabilities from slipping in as an unwanted extension.

3.3. Connectivity

Most of modern embedded systems are coming with built
in connectivity with internet. This internet connectivity has
made it possible that a small problem can propagate and
result in substantial security breaches. This also means that
an intruder does not require a physical access to embedded
system to launch attack and exploit vulnerable software.
Thus this ubiquity of networking will result in increase in
number of attacks and greater risks from par software
security practices.

4. Attacks on Embedded System

Attacks on embedded systems can be categorized in three
classes i.e. software attacks, physical attacks and side
channel attacks. Software attacks have largest share in
total number of attacks on embedded systems and it is
most difficult to protect against such attacks. In this article
we will focus on software attacks and countermeasure
against these attacks. An overview of physical and side
channel attacks will be provided.

Figure 2. Embedded System attacks [6]

4.1. Physical Attacks

Embedded system can be divided in two categories
1. System on circuit board
2. System-on-chip

On circuit board embedded systems, attacks can be
launched by probe to eavesdrop on inter-component
communications. Whereas when launching attack on
system-on-chip, micro-probing techniques are required.
Physical attacks are relatively hard because they require
expensive infrastructure and very complex techniques are
used.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 157

The most important part of any embedded system is
microcontroller as it essentially controls all the operation
of embedded system. The attacks on the microcontroller
can be possible via JTAG, it is necessary to disable access
to the microcontroller’s internals via JTAG before fielding
the finished product

4.2. Side Channel Attacks

Side channel attacks are based on observing system
properties e.g. time, power consumption while system is
performing computations e.g. cryptographic operations. In
certain systems timing information can lead to entire secret
key, though it seems that timing information can give very
little information but it has found that with proper study of
timing sequence entire secret key can be found.
Along with this power consumption can also lead to the
entire secret key, well equipped labs have the equipment
that can measure the changes in the power consumption
with about 1% accuracy and are very inexpensive. To
overcome timing attacks one may add random timing
delays to various operations, in similar manner we can
overcome power consumption attacks by adding random
noise or by proper shielding of the equipment but it leads
to increased cost of the equipment.

4.3. Software Attacks

Software attacks are very common in embedded systems
capable of downloading application from internet or have
some means of communication to interact with external
world. As compare to physical and side channel attacks,
software attacks are very cheap and does not requires any
big infrastructures thus making it an immediate challenge
for embedded system design. These attacks could further
classified in three categories 1. Virus attacks 2. Buffer
Overflow and 3. Exploiting Software Vulnerabilities.

4.3.1. Virus, Worm and Trojan
These attacks executed through malicious agents like
virus, worm, Trojan. Following table 1 lists some viruses
and respective embedded operation system.

Table 1 Viruses and Respective Embedded Operation System

Operating
system Creator

Known viruses
(including
variants)

First virus
appearance

BlackBerry OS Research In Motion 1 August 2006

Embedded
Linux

GNU Project, Linus
Torvalds and al.

Mac OS X Apple Inc. 0 -

Palm OS PalmSource, Inc. 4 September 2000

Symbian OS Symbian Ltd. 83 June 2004

Windows
Mobile Microsoft 2 July 2004

4.3.2. Vulnerability Exploitation
These agents exploit weaknesses in end-system
architecture [7, 8, 9, 10]. “A vulnerability allows the
attacker to gain direct access to the end-system, while an
exposure is an entry point that an attacker may indirectly
exploit to gain access” [6]. Following table lists latest list
of vulnerability published by CERT.

Table 2 . Vulnerability List Published By CERT [10]

Vulnerability
ID Description

VU#298521 SonicWall NetExtender NELaunchCtrl ActiveX
control stack buffer overflow

VU#446897 CUPS buffer overflow vulnerability

VU#180345 Microsoft Kodak Image Viewer code execution
vulnerability

VU#342793 RSA Keon cross-site scripting vulnerabilities

VU#871673 RealPlayer playlist name stack buffer overflow

VU#559977 Mozilla products vulnerable to memory corruption in
the browser engine

VU#755513 Mozilla products vulnerable to memory corruption in
the JavaScript engine

VU#349217 Mozilla XUL web applications may hide the titlebar

VU#230505 Cisco IOS LPD buffer overflow vulnerability

VU#179281 Electronic Arts SnoopyCtrl ActiveX control and plug-
in stack buffer overflows

4.3.3. Buffer Overflow
The buffer overflow is a common flaw in OS and
Application software. It’s the inability of the buffer to
store the information, which results from adding more
information to a buffer than it was designed to hold. An
attacker may exploit this vulnerability to take over a
system”. This problem arises when buffers used with poor
boundary checks. Buffer bounds may be violated due to
incorrect loop bounds, format string attacks, etc. Buffer
overflow effects can include overwriting stack memory,
heaps, and function pointers. Intruders sue buffer overflow
to overwrite program addresses stored nearby. “This may
allow the attacker to transfer control to malicious code,
which when executed can have undesirable effects. A
good high-level introduction to the challenges involved in
writing secure code can be found in [10]”. In figure 3, the
left-hand chart shows, for
Each year, the total number of CERT-reported
vulnerabilities and the number that can be blamed
primarily on buffer overruns whereas right-hand chart
graphs the percentage of CERT-reported vulnerabilities
that were due to buffer overruns for each year (taken from
[15]).

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 158

http://en.wikipedia.org/wiki/BlackBerry
http://en.wikipedia.org/wiki/Research_In_Motion
http://en.wikipedia.org/wiki/Embedded_Linux
http://en.wikipedia.org/wiki/Embedded_Linux
http://en.wikipedia.org/wiki/GNU_Project
http://en.wikipedia.org/wiki/Linus_Torvalds
http://en.wikipedia.org/wiki/Linus_Torvalds
http://en.wikipedia.org/wiki/Mac_OS_X
http://en.wikipedia.org/wiki/Apple_Inc.
http://en.wikipedia.org/wiki/Palm_OS
http://en.wikipedia.org/wiki/PalmSource%2C_Inc.
http://en.wikipedia.org/wiki/Symbian_OS
http://en.wikipedia.org/wiki/Symbian_Ltd.
http://en.wikipedia.org/wiki/Windows_Mobile
http://en.wikipedia.org/wiki/Windows_Mobile
http://en.wikipedia.org/wiki/Microsoft
http://www.kb.cert.org/
http://www.kb.cert.org/vuls/id/298521
http://www.kb.cert.org/vuls/id/446897
http://www.kb.cert.org/vuls/id/180345
http://www.kb.cert.org/vuls/id/342793
http://www.kb.cert.org/vuls/id/871673
http://www.kb.cert.org/vuls/id/559977
http://www.kb.cert.org/vuls/id/755513
http://www.kb.cert.org/vuls/id/349217
http://www.kb.cert.org/vuls/id/230505
http://www.kb.cert.org/vuls/id/179281

Figure 3. Frequency of buffer overrun vulnerabilities, derived from a

classification of CERT advisories[16].

5. Countermeasure for software attacks

When designing countermeasures against software attacks,
confidentiality and integrity of data and code is ensured,
all security loopholes that make system vulnerable are
removed. “A common feature of these countermeasures
involves regulating the accesses of various software
components (operating system, downloaded code, etc.) to
different portions of the system (registers, memory
regions, security co-processors, etc.) during different
stages of execution (boot process, normal execution,
interrupt mode, etc.), through a combination of hardware
and software changes. Since an effective countermeasure
must allow the system to provide guarantees about the
security of the system starting from the powered-on state,
most measures define notions of trust or trust boundaries
(also referred to as security perimeters) across the various
hardware and software resources. This allows the system
to detect infringements of trust boundaries (such as illegal
accesses to memory regions) and enforce recovery
mechanisms (such as zeroing processor registers and
memory regions). Thus, a trust boundary provides a
natural and convenient foundation for the system to make
judicious decisions about its security (or compromise,
thereof)” [6].

5.1. Hardware Support

At hardware level security commonly implemented by
using secure co-processor module [17, 18,19,22] this co-
processor processes sensitive information. Information that
needs to be send out of the co-processor is encrypted.
Many embedded system also have secure memory areas.
These secure memory areas are accessible to trusted
system components only.

5.2. Secure Bootstrapping

Integrity check could be implemented at boot process
level. After power is switched on, system should only be
able to access the next layer if all integrity check found
intact. This is done by comparing the securely saved value
with hashed value of boot process component.

5.3. Operating System (OS) Enhancements

Secure Operating Systems provide features like process
isolation, process attestation and secure storage. Secure
storage is ensured by using of cryptographic file systems
(CFSs) [20,21].

6. Security Pyramid

Embedded systems have three main components,
Hardware, Software and communication mechanism /
communication protocols. It is important that all three
components should have built in security mechanism.
Following figure shows suggested security pyramid for
embedded systems.

Figure 4. Security Pyramid for embedded systems

6.1. Communication / Protocol Level

Various security protocols have been developed to address
security at different layers of network protocols, the most
popular being IPSec, a network layer protocol, and
TLS/SSL which works on transport layer [13,14]. Security
protocols use algorithms (asymmetric or public-key
ciphers, symmetric or private-key ciphers, hashing
functions, etc.) to make communication secure.

Figure 5. A simple embedded system under protocol attack [16]

6.2. Software Level

To ensure that the software for embedded system meets
security requirements, it is important that security should
be implemented on various levels.

Protocol

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 159

6.2.1. Code and Algorithm Level
Static analysis tool could be used to scan code to uncover
common vulnerabilities. These tools can detect bugs at
code level so that they could be fixed [14].
6.2.2. Design and Architecture Level
System must be coherent and present a unified security
architecture that takes into account security principles
(such as the principle of least privilege) [14].
6.2.3. Requirements Level
Security requirement should cover functional security.
6.2.4. Hardware Level Security:
At hardware level, security should be implemented on
Micro-Architecture Level and at Circuit Level.
6.2.5. Micro Architecture Level
Incorporating security at hardware design of the modules
(the processors and coprocessors) which is specified at the
architecture level
6.2.6. Circuit Level
Implementing security at this level means use of
techniques at transistor level and package-level to prevent
various physical-layer attacks.

7. Future Work

Active research is going on to develop secure platforms for
embedded systems. One approach is trusted computing, a
project of Trusted Computing Group The embedded
processor community has also presented some design
alternatives to achieve security e.g. ARM has developed
new security architecture [23]. The security is achieved by
portioning all the software and hardware resources so that
they exist in one of two worlds - the secure world for the
security subsystem, and the Normal world for everything
else. .This Architecture is deployed at both the levels i.e.
the hardware level and the software level.

At hardware level they have designed the extended bus;
the most significant feature of this bus is extended control
signals that will restrict non- secure masters to access
secure slaves. ARM has developed new architecture by
using its “ARM Trust Zone Technology”

MIPS has also developed a secure processor core that
includes secure memory management, protection against
side-channel attacks, and uses an architecture that provides
fast software cryptography using the SmartMIPS
extensions to the MIPS32 architecture..

8. Conclusion

In this survey paper, we have examined security
requirements and challenges in development of embedded
systems. We have also examined how an embedded
system can be attacked and their counter measures are also
examined. We believe that implementing security pyramid
discussed in this article will enable developers and

designers of embedded system to develop more secure
system.

9. References

[1]. Srivaths Ravi , Paul Kocher , Ruby Lee , Gary McGraw , Anand
Raghunathan, Security as a new dimension in embedded system
design, Proceedings of the 41st annual conference on Design
automation, June 07-11, 2004, San Diego, CA, USA

[2]. McCoy, J. A. An embedded system for safe, secure and reliable
execution of high consequence software. In HASE 2004: The 5th
IEEE International Symposium on High Assurance Systems
Engineering.

[3]. Online encyclopedia available at www.wikipedia.com
[4]. Summers, Rita C. Secure Computing: Threats and Safeguards.

New York: McGraw-Hill, 1997
[5]. LAPRIE, J.C. Dependable computing and fault tolerance: concepts

and terminology. In Proceedings of the 15th IEEE Symposium on
Fault Tolerant Computing Systems (FTCS-15, June 1985). IEEE
Computer Society Press, Los Alamitos, CA, 2-11.

[6]. Srivaths Ravi , Anand Raghunathan , Srimat Chakradhar, Tamper
Resistance Mechanisms for Secure, Embedded Systems,
Proceedings of the 17th International Conference on VLSI Design,
p.605, January 05-09, 2004

[7]. Common Vulnerabilities and Exposures. Available at cve.mitre.org
[8]. Latest Virus Threats. Symantec Corporation. Available

at http://www.symantec.com/avcenter/vinfodb.html
[9]. Virus Information. Computer Security Resource Center, National

Institute of Standards and Technology. Available
at http://csrc.nist.gov/virus/

[10]. Vulnerability notes database. CERT coordination center Available
at http://www.kb.cert.org/vuls/

[11]. M. Howard and D. LeBlanc. Writing Secure Code. Microsoft Press,
2001.

[12]. Buffer over flow techniques in computer viruses. Symantec white
paper. Available
at http://securityresponse.symantec.com/avcenter/whitepapers.html

[13]. W. Stallings, Cryptography and Network Security: Principles and
Practice. Prentice Hall, 1998.

[14]. B. Schneier, Applied Cryptography: Protocols, Algorithms and
Source Code in C. John Wiley and Sons, 1996.

[15]. John Viega, Gary McGraw , Building Secure Software: How to
Avoid Security Problems the Right Way, Addison-Wesley
Professional, 2001

[16]. Lawrence P. Ricci , Larry B. Mcginness , White Paper Embedded
System Security Designing Secure Systems with Windows CE.

[17]. B. Yee, Using Secure Co-processors. PhD thesis, Carnegie Mellon
University, 1994.

[18]. Secure Co-processing. IBM Inc. Available
at http://www.research.ibm.com/scop/

[19]. The IBM PCI Cryptographic Coprocessor. IBM Inc. Available
at http://www-3.ibm.com/security/cryptocards/

[20]. M. Blaze, “A Cryptographic File System for UNIX,” in Proc.
ACM Conf. on Computer and Communications Security, pp. 9–16,
Nov. 1993.

[21]. T. Garfinkel, M. Rosenblum, and D. Boneh, “Flexible OS Support
and Applications for Trusted Computing,” in Proc. 9th Wkshp Hot
Topics in Operating Systems, May 2003.

[22]. E. Goh, H. Shacham, N. Modadugu, and D. Boneh, “SiRiUS:
Securing Remote Untrusted Storage,” in Proc. ISOC Network and
Distributed Systems Security (NDSS) Symp., pp. 131–145, 2003.

[23]. Jaggar, D.; , "Arm Architecture And Systems," Micro, IEEE ,
vol.17, no.4, pp.9-11, Jul/Aug 1997

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 160

http://www.research.ibm.com/scop/

