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Abstract 
Currently, there has been an increasing trend in outsourcing data 
to remote cloud, where the people outsource their data at Cloud 
Service Provider(CSP) who offers huge storage space with low 
cost. Thus users can reduce the maintenance and burden of local 
data storage. Meanwhile, once data goes into cloud they lose 
control of their data, which inevitably brings new security risks 
toward integrity and confidentiality. Hence, efficient and 
effective methods are needed to ensure the data integrity and 
confidentiality of outsource data on untrusted cloud servers. The 
previously proposed protocols fail to provide strong security 
assurance to the users. In this paper, we propose an efficient and 
secure protocol to address these issues. Our design is based on 
Elliptic Curve Cryptography and Sobol Sequence (random 
sampling). Our method allows third party auditor to periodically 
verify the data integrity stored at CSP without retrieving original 
data. It generates probabilistic proofs of integrity by challenging 
random sets of blocks from the server, which drastically reduces 
the communication and I/O costs. The challenge-response 
protocol transmits a small, constant amount of data, which 
minimizes network communication. Most importantly, our 
protocol is confidential: it never reveals the data contents to the 
malicious parties. The proposed scheme also considers the 
dynamic data operations at block level while maintaining the 
same security assurance. Our solution removes the burden of 
verification from the user, alleviates both the user’s and storage 
service’s fear about data leakage and data corruptions. Through 
security analysis, we prove that our method is secure and 
through performance and experimental results, we also prove 
that our method is efficient. To compare with existing schemes, 
our scheme is more secure and efficient. 
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1. Introduction 

Cloud storage becomes an increasing attraction in 
cloud computing paradigm, which enables users to store 
their data and access them wherever and whenever they 
need using any device in a pay-as-you-go manner[1]. 
Moving data into cloud offers great conveniences to the 
users since they do not have to care about the large capital 
investment in both the maintenance and management of 
the hardware infrastructures. Amazon’s Elastic Compute 
Cloud (EC2) and Amazon Simple Storage Service (S3) [2] 
and apple icloud[3] are well known examples of cloud 
data storage. However, once data goes into cloud, the 
users lose the control over the data. This lack of control 

raises new formidable and challenging issues related to 
confidentiality and integrity of data stored in cloud [4]. 

The confidentiality and integrity of the 
outsourced data in clouds are of paramount importance for 
their functionality. The reasons are listed as follows [5]:  
1) the CSP, whose purpose is mainly to make a profit and 
maintains a reputation, has intentionally hide data loss an 
incident which is rarely accessed by the user’s 2) The 
malicious CSP might delete some of data or is able to 
easily obtain all the information and sell it to the biggest 
rival of Company. 3) An attacker who intercepts and 
captures the communications is able to know the user’s 
sensitive information as well as some important business 
secrets. 4) Cloud infrastructures are subject to wide range 
of internal and external threats.  
The examples of security breaches of cloud service 
providers appear from time to time [6, 7]. The users 
require that their data remain secure over the CSP and 
they need to have a strong assurance from the cloud 
servers that CSP store their data correctly without 
tampering or partially deleting because the internal 
operation details of service providers may not be known 
to the cloud users. Thus, an efficient and secure scheme 
for cloud data storage has to be in a position to ensure the 
data integrity and confidentiality. 

 Encrypting the data before storing in cloud can 
handle the confidentiality issue. However, verifying 
integrity of data is a difficult task without having a local 
copy of data or retrieving it from the server. Due to this 
reason, the straightforward cryptographic primitives 
cannot be applied directly for protecting outsourced data. 
Besides, a naive way to check the data integrity of data 
storage is to download the stored data in order to validate 
its integrity, which is impractical for excessive I/O cost, 
high communication overhead across the network and 
limited computing capability. Therefore, efficient and 
effective mechanisms are needed to protect the 
confidentiality and integrity of user’s data with minimum 
computation, communication and storage overhead.  

 Remote data integrity checking is a protocol that 
focuses on how frequently and efficiently we verify 
whether cloud server can faithfully store the user’s data 
without retrieving it. In this protocol, the user generates 
some metadata. Later, he can challenge the server for 
integrity of certain file blocks through challenge-response 
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protocol. Then the server generates responses that the 
server still possesses the data in its original form to 
corresponding challenge sent by the verifier who may be 
original user or trusted third party entity. Recently, several 
researchers have proposed different variations of remote 
data integrity checking protocols under different 
cryptography schemes [8-21]. However, all these 
protocols focus on static data verification. 

One of the design principles of cloud storage is 
to provide dynamic scalability of data for various 
applications. This means, the data stored in cloud are not 
only accessed by the users but also frequently updated 
through block operations such as modification, insert and 
delete operations. Hence, it is crucial to develop more 
secure and efficient mechanism to support dynamic audit 
services. The protocols to verify dynamic data in cloud 
are proposed in [22-27].  

Although the existing schemes aim at providing 
integrity verification for different data storage systems, 
but problem of confidentiality of data has not been fully 
addressed.  

The protocols [28-35] have been proposed to 
ensure the confidentiality and integrity of remote data.  
But, all these schemes are unable to provide strong 
security assurance to the users, because these schemes 
verifying integrity of outsourced data based on 
pseudorandom sequence, which does not cover the whole 
data while computing the integrity proof. Therefore, 
probabilistic verification schemes based on pseudorandom 
sequence does not give guarantee to the users about 
security of their data. Syam et al. [27] proposed a 
distributed verification protocol using Sobol sequence to 
ensure availability and integrity of data, but it is also not 
addressed the data confidentiality issue. How to achieve a 
secure and efficient design to seamlessly integrate these 
two important components for data storage service 
remains an open challenging task in Cloud Computing. 

In this paper, we propose an efficient and secure 
protocol to ensure the confidentiality and integrity of data 
storage in cloud computing using Elliptic Curve 
Cryptography(ECC) [30, 37, 38] and Sobol Sequence [39]. 
The ECC can offer same levels of security with small 
keys comparable to RSA and other PKC methods. It is 
designed for devices with limited computing power and/or 
memory, such as smartcards, mobile devices and PDAs. 
In our design, first the user encrypts data to ensure the 
confidentiality, then, compute metadata over encrypted 
data. Later, the verifier can use remote data integrity 
checking protocol to verify the integrity. The verifier 
should able to detect any changes on data stored in cloud. 
The security of our scheme relies on the hardness of 
specific problems in Elliptic Curve Cryptography. 
Compared to existing schemes, our scheme has several 
advantages: 1) it should detect all data corruption if 
anybody deletes or modifies the data in cloud storage, 

since we are using Sobol sequence instead of 
pseudorandom sequence for challenging the server for the 
integrity verification. 2) Our scheme achieves the 
confidentiality of data 3) It is efficient in terms of 
computation, storage, because its key size is low 
compared to RSA based solutions. 

 
Main Contributions: 

1) We propose an efficient and secure protocol. 
This protocol efficiently provides the integrity 
assurance to the users with strong evidence that 
the CSP is in faithfully storing all data and this 
data cannot be leaked to malicious parties. Our 
protocol also supports public verifiability and 
dynamic data operations such as modification, 
insertion and deletion. 

2) We prove the security (integrity and 
confidentiality) of proposed scheme against 
internal and external attacks. Cloud server can 
provide valid response to the verifier challenges 
only if they actually have all data in an 
uncorrupted and update state. 

3) We justify the performance of proposed protocol 
through concrete analysis, experimental results 
and comparison with existing schemes.  

The rest of paper is organized as follows: Section 2 
describes the related works. Sections 3 introduce the 
system model: including: cloud storage model, security 
threats, design goals and notations and permutations. In 
Section 4, we provide the detailed description of our 
scheme.  Section 5 gives the security analysis and 
Section 6 gives the performance and experimental 
results and in Section 7 we give conclusion to our work. 
 

2. Related Work 
The security of remote storage applications has 

been increasingly addressed in the recent years, which 
has resulted in various approaches to the design of 
storage verification primitives. The literature 
distinguishes two main categories of verification 
schemes [30]: Deterministic verification schemes check 
the conservation of a remote data in a single, although 
potentially more expensive operation and probabilistic 
verification schemes rely on the random checking of 
portions of outsourced data. 

2.1. Deterministic Secure Storage  
 Deterministic solutions are verifying the storage 

of the entire data at each server. Deswarte  et al.  [8] and 
Filho  et al.[9] are firstly proposed a solution to  remote 
data integrity.  Both use RSA-based functions to hash the 
whole data file for every verification challenge.  They 
require pre-computed results of challenges to be stored at 
verifier, where a challenge corresponds to the hashing of 
the data concatenated with a random number. However,  
both  of  them  are inefficient  for  the large  data  files,  
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which  need  more  time  to compute and transfer their 
hash values. Carmoni et al. [10] described a simple 
deterministic approach with unlimited number of 
challenges is proposed, where the verifier like the server 
is storing the data. In this approach, the server has to 
send MAC of data as the response to the challenge 
message. The verifier sends a fresh unique random value 
as the key for the message authentication code to prevent 
the server from storing only the result of the previous 
hashing of the data. Golle et al. [11] proposed a SEC 
(Storage Enforcing Commitment) deterministic 
verification approach. This approach uses homomorpic 
verifiable tags, whose number is equal to two times of 
number of data chunks and the verifier choose a random 
value that will be used to shift indexes of tags to be 
associated with the data chunks when the integrity proof 
constructed by the server. Sebe et al. [12] presented a 
remote data checking protocol such that it allows an 
unlimited number of verifications and the maximum 
running time can be chosen at setup time and traded off 
against storage at verifier. However, none of the schemes 
were considered the problem of remote data 
confidentiality and dynamic data verifications.  

To ensure the confidentiality of remote data, 
Shah et al. [27, 28] proposed a privacy-preserving audit 
protocol, which allows a third party auditor to keep 
online storage honest. In their schemes, the client first 
encrypts the data file and pre-computes a hash value over 
encrypted data using keyed hash function and sends it to 
the auditor. But, their schemes may potentially bring on-
line burden to the users when the keyed hashes are used 
up. Oualha et al. [30] described a secure protocol for 
ensuring self organizing data storage (P2P) through 
periodic verifications, these verifications used for the 
integrity checks since each holder generates a response 
that they still having the data safely. In particular a data 
owner can prevent data damage at a specific holder by 
storing encrypted replicas crafted the use of elliptic curve 
cryptography. Wang et al. [31] proposed a privacy-
preserving public auditing scheme for data storage 
security in cloud computing by using homomorphic 
authenticator and random masking. This scheme 
conceals the content of the original data from the TPA 
but not from the malicious servers. Similarly, Hao et al. 
[32] introduced the multiple replicas remote data 
possession checking protocol with public verifiability. 
However, this scheme does not support to dynamic data 
operations. In their subsequent work, Hao et al. [33] 
proposed a RSA-based privacy-preserving data integrity 
checking protocol with data dynamics in cloud 
computing. Their scheme extended the sebe’s protocol 
[12] to support public verifiability. It does not leak any 
information to third party auditors. However, like[31] it 
is also not protecting data leakage from the malicious 
servers.  

2.2. Probabilistically Secure Storage  
The probabilistic verification schemes verify the 

specific portions of data instead of entite data at servers. 
Ateniese et al. [13] proposed a RDC using PDP.  

In their system, the client pre-computes the tags for each 
block of a file using homomorphic verifiable tags and 
stores the file and it tags with the server. Then, the client 
can verify that server integrity of the file by generating a 
random challenge, which specifies the selected positions 
of file blocks. Using the queried blocks and their 
corresponding tags and the server generates a proof of 
integrity. Juels et al.  [14]  proposed  a  formal definition  
of  POR  and  its  security  model.  In this model, the 
encrypted data is being divided into small data blocks, 
which are encoded with Reed-Solomon codes. The 
“sentinels” are embedded among encrypted data blocks to 
detect whether it is intact. However, this can verify only 
limited number of times because this scheme has only 
finite number of “sentinels” in the file. When the finite 
“sentinels” are exhausted, the file must be sent back to the 
owner to re-compute new “sentinels”. Ateniese et al. [15] 
proposed  a  new  scheme  with  homomorphic  linear 
authenticators  (HLA)  of  which  communication 
complexity is independent of the file length. This scheme 
supports unlimited number of verification, but it cannot 
verify publicly. Later, Shacham et al.  [16] proposed the 
two POR protocols:  The first one built from BLS 
signatures and has the shortest query and response with 
public verifiability. The second one is based on 
pseudorandom functions (PRFs) with private verifiability, 
but it requires a longer query. Both schemes rely on the 
homomorphic property-aggregating verification proofs 
into a small value.   Dodis et al [17] first formally define 
the POR code, this construction improves the prior POR 
constructions. The main insight of their work comes from 
the simple connection between POR schemes and the 
notion of hardness amplification, extensively studied in 
complexity theory. Browers et al. [18] introduced a 
theoretical framework for previous POR protocols [14-16] 
using integrated forward error-correcting codes. In their 
subsequent work, Browers et al. [19] described a HAIL 
(High-Availability and Integrity Layer), in which the key 
insight is to embedded MACs in the parity blocks of the 
dispersal code. As both MACs and parity blocks can be 
based on universal hash functions. Schwarz et al. [20] 
used a XOR-based, parity m/n erasure codes to create n 
shares of a file that stored at multiple sites. Curtomola et 
al. [21] extended the PDP [13] to the multiple servers, 
which are called Multiple Replica-Provable Data 
Possession (MR-PDP), it is aimed to ensure availability 
and reliability of data across distributed servers. In this 
scheme, the user stores multiple replicas of a single file 
across distributed servers, thus we can get an original file 
from any one of the servers even if any server fails. 
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Although all these schemes are aim at providing 
integrity verification for different data storage systems but 
the problem of data dynamics has not at fully addressed.  

For the dynamic data integrity verification, 
Ateniese et al. [22] have designed a highly efficient and 
provably secure PDP with data dynamics is called 
“Scalable Data Possession”. It was based on symmetric 
key cryptography, while not requiring any bulk 
encryption. It improves the RDC[13] in terms of storage, 
bandwidth and computation overheads. However, it 
cannot perform block insertions anywhere beacause each 
update requires re-computing the all the remaining tokens, 
which is problematic for large files. In addition, it does 
not support public verifiability. Similarly, Wang et al. 
[23] discussed the problem of ensuring the availability 
and integrity of data storage in cloud computing. They 
utilized the homomorphic token and error correcting 
codes to achieve the integration of storage correctness 
insurance and data error localization, but like[22] their 
scheme do not support an efficent insert operation due to 
the index positions of data blocks. To overcome this 
probem, Erway et al. [24] firstly proposed a  scheme to 
support dynamic data operations effieciently at block 
level instead of index positions[22, 23] by using rank-
based verification skip list in the cloud servers. Later, 
Wang et al. [25] described a BLS based homomorpic 
authenticator with public verifiability and supports of data 
dynamics using Merkle Hash Tree (MHT) to verify the 
data integrity checking in cloud computing. They 
achieved the data integrity assurance with high efficiency. 
Similarly, Zhu et al. [26] proposed a dynamic auditing 
service for verification of integrity of outsourced data in 
cloud. Their design is based on fragment structure, 
random sampling and index-hash table. Their scheme 
achieved the integrity assurance with low computation, 
storage and computation overhead.   

However, none of the schemes were address the 
problem of outsorced data confidentiality. 

Ayad et al. [34] proposed a Provable Possession 
and Replication of Data over Cloud Servers with 
dynamic data support. This scheme achieves the 
availability, integrity and confidentiality of data storage 
in cloud. Chen et al. [35] described an efficient remote 
data possession in cloud computing. It has several 
advantages while achieving security of remote data as 
follows: First, it is efficient in terms of computation and 
communication. Second, it allows verification without 
the need for the challenger to compare against the 
original data. Third, it uses only small challenges and 
responses, and users need to store only two secret keys 
and several random numbers. Yang et al. [36] proposed a 
Provable Data Possession of Resource-constrained 
Mobile Devices in Cloud Computing. In this framework, 
the mobile terminal devices only need to generate some 
secret keys and random numbers with the help of trusted 

platform model (TPM) chips, and the needed computing 
workload and storage space is fit for mobile devices. 
Like [25], by using bilinear signature and  Merkle  hash  
tree  (MHT),  this  scheme aggregates the verification 
tokens of the data file into one small  signature  to  
reduce  communication  and  storage burden.   

All these schemes are unable to provide strong 
security assurance to the users because all these schemes 
are verifying integrity of data using pseudorandom 
sequence. It does not cover the whole data while 
computing integrity proof. Therefore, probabilistic 
verification schemes based on pseudorandom sequence 
does not give strong guarantee to the users about security 
of their data. 

To overcome this problem, Syam et al. [27] 
proposed a homomorpic distributed verification protocol 
to ensure data storage security in cloud computing using 
Sobol Sequence instead of pseudorandom sequence, 
which is more uniform than pseudorandom sequence. 
Their scheme achieves the availability and integrity of 
outsourced data in cloud but similar [23], it is also not 
addressing data confidentiality issue. 

To achieve all these security and performance 
requirements of cloud storage, we propose an efficient 
and secure protocol in section 4. 

 
3. System Model 
3.1. Cloud Data Storage Model 

The cloud storage model considering here is 
consists of three main components as illustrated in Fig. 1.  

1) Cloud User: the user, who can be an individual or 
an organization originally storing their data in cloud and 
accessing the data. 
2) Cloud Service Provider (CSP): the CSP, who 
manages cloud servers (CSs) and provides a paid 
storage space on its infrastructure to users as a service. 
3) Third Party Auditor (TPA) or Verifier: the TPA 
or Verifier, who has expertise and capabilities that users  
may not have and verifies the integrity of outsourced 
data in cloud on behalf of users. Based on the audit 
result, the TPA could release an audit report to user.  

 
 
 
 
 
 

               
 

 
 
 

Fig.1. Cloud Data Storage Model 
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Throughout this paper, terms verifier or TPA and cloud 
server or CSP are used interchangeably 

In cloud data storage model, the user stores his 
data in cloud through cloud service provider and if he 
wants to access the data back, sends a request to the CSP 
and receives the original data. If data is in encrypted form 
that can be decrypted using his secrete key. However, the 
data is stored in cloud is vulnerable to malicious attacks; it 
would bring irretrievable losses to the users, since their 
data is stored at an untrusted storage servers. It doesn’t 
matter that whether data is encrypted or not before storing 
in cloud and no matter what trust relations the client and 
the server may have a priori share. The existing security 
mechanisms need to reevaluate. Thus, it is always 
desirable to need an efficient and secure method for users 
to verify that whether data is intact? If user does not have 
the time, he assigns this task to third party auditor. The 
auditor verifies the integrity of data on behalf of users. 

 
3. 2. Security Threats 

In this paper, we are considering two types of 
attacks for cloud data storage those are: Internal Attacks 
and External Attacks. 
3.2.1. Internal Attacks: These are initiated by malicious 
Cloud Service Provider (CSP) or malicious users. Those 
are intentionally corrupting the user’s data inside the 
cloud by modifying or deleting. They are also able obtain 
all the information and may leaked it to outsiders.  
3.2.2. External Attacks: these are initiated by 
unauthorized parties from outside the cloud. The external 
attacker, who is capable of comprising  cloud servers and 
can access the user’s data as long as they are internally 
consistent i.e. he may delete or modify the customer’s 
data and may leaked the user private information. 

 
3.3. Design Goals 

We have designed an efficient and secure storage 
protocol to ensure the following goals. These goals are 
classified into two categories: Efficiency and Security 
Goals. 
3.3.1. Efficiency 

The following efficiency requirements ought 
to be satisfied for a proposed scheme of practical use 
of cloud storage: 
Low computaion overhead: It includes the 
initialization and verification overheads of the verifier and 
the proof generating overheads of the server. It means that 
the proposed scheme should be efficient in terms of 
computation. 

 

Less communication overhead: It refers to the total 
data transferred between the verifier and server. It means 
that the amount of communication should be low.  
Low storage cost: It refers to the additional storage of 
client and server required by the scheme. It means that the 
additional storage should be low as possible. 
 
3.3.2. Security 

In this paper, we are considering two security 
requirements, which are needs to be satisfied for the 
security of proposed scheme: 
Confidentiality: Confidentiality refers to only authorized 
parties or systems having the ability to access protected 
data. 
Integrity: Data Integrity refers to the protection of data 
from unauthorized deletion, modification or fabrication. 
Further, detects any modifications to data stored in cloud. 
 
3.4. Notations and Permutations 

• F - the data file to be stored in cloud, the file F is 
divide into n blocks of equal length: m1,m2,…,mn , 
where n=[|m|/l] . 

• fkey(.)- Sobol Random Function (SRF) indexed on 
some key, which is defined as  
  f : {0,1}* ×key-{0,1}log

2
n. 

• πkey(.)–Sobol Random Permutation (SRP) which 
is defined as  π : {0,1}log2(l) ×key– {0,1} log2(l). 
 

Elliptic Curve Cryptography over ring Zn: 
Let n be an integer and let a, b be two integers in 

Zn such that gcd(4a3+27b2, n)=1. An elliptic curve 
En(a, b) over the ring Zn is the set of points(x, y)∈  
Zn× Zn satisfying the equation: y2+ax+b, together with 
the point at infinity denoted as On. 

 
4. Efficient and Secure Storage Protocol 

To ensure the confidentiality and integrity of data 
stored in cloud, we propose an Efficient and Secure 
protocol. Our scheme is designed under the Elliptic Curve 
Cryptography [30, 38] construction and use of Sobol 
sequence to verify the integrity of storage data randomly. 
This protocol consists of three phases, namely Setup, 
Verification and Dynamic Data Operations and 
Verification. The three process model is depicted in fig.2. 
The construction of these phases is presented briefly as 
follows: 
 
4.1. Setup 

In this phase, the user pre-processes the file 
before storing in cloud. The Setup phase consists of 
three algorithms, those are: 1) KeyGen  
2) Encryption 3) MetadataGen. 
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4.1.1. KeyGen 
  In this algorithm, the user generates private key 
and public key pair using algorithm 1, it takes k as input 
and generates private key and public key pair as output as 
follows: the given security parameter k (k>512), user 
chooses two large primes p and q of size k such that p≡q≡ 
2 (mod 3). Then compute 
                                 n=pq                                                (1) 
                   and  
                     Nn=lcm(p+1,q+1).                                      (2) 
where Nn is a order of elliptic curve over the ring Zn 
denoted by En (0, b), and b is a randomly chosen integer 
such that gcd(b, n)=1 and compute P is a generator of 
En(0, b). It outputs public key PK= {b, n, p} and private 
key PR={ Nn)}.  
 
   Algorithm 1: KeyGen 

1. Procedure: KeyGen(k) ←{ PK,PR} 
2. Take security parameter k (k>512) 
3. Choose two random primes p an q of size k:  

p≡q≡ 2 (mod 3)   
4.  Compute n=pq 
5. Compute Nn  = lcm(p+1, q+1) 
6. Generate random integer b<n,  gcd(b, n)=1  
7. Compute P, is a generator of  En(0,b)   
8. Private key PR={ Nn } 
9. Public key PK={n, b, P} 
10. end procedure 

 
4.1.2. Encryption 

To ensure the confidentiality of data, the user 
encrypts the each data block mi in the file F using 
algorithm 2, it takes mi, keyed Sobol Ranodom 
Function(SRF) and secrete random parameter s as inputs 
and produce m'i as output as follows: 
  niin mmmmF ≤≤== 121 }{},...,{                                  (3) 

     )(sfmmF kii +=′=′         (4)              
where s is random of size l. 
 
    Algorithm 2: Encryption 

1. Procedure : Encryption(mi , s)←m'i 
2. for 1 to n 
3.          Compute )(' sfmm kii +=  
4. end for 
5. end procedure 

 
4.1.3. MetadataGen:  

After encrypting the data, the user computes a 
metadata over encrypted data to verify the integrity of 
data using algorithm 3, which takes m'i, public key and 
private key as inputs and produce metadata Ti as output:  
Ti ← m'i P(mod Nn))                                                        (5) 
 where Pε En(0, b)                             
 

 
    Algorithm 3:MetadataGen 

1. Procedure: MetadataGen(m'i ,n, b, P) ←Ti 
2. for 1 to n 
3.  Compute Ti ← m'i P(mod Nn))  
4. end for 
5. end procedure 

 
After computation of metadata, the user sends metadata, 
public key to the TPA for later verification and sends file 
F' to cloud servers for storage. 
 
4.2. Verification Phase 

Once data has stored in cloud, in order to ensure 
the integrity of data, our scheme entirely relies on 
verification phase. To verify the integrity of data, the 
verifier first creates a challenge and sends to the server. 
Upon receiving a challenge from the verifier, the server 
computes a response as integrity proof and return to the 
verifier. It consists of three algorithms: 1) Challenge,  
2) ProofGen 3) CheckProof . 

 
4.2. 1. Challenge 

The verifier creates a challenge by running 
algorithm 4, it takes kSRF,j, and Q as input and return chal 
as output as follows: the verifier chooses a random keys 
kSRF and kSRP using Sobol sequence and computes random 
indices 1≤ij≤n (j= 1,….,c) of the set[1,n], where          

)(cc
SRPkπ=                                                        (6) 

which prevents the server from anticipating which blocks 
will be queried in each challenge. The verifier also 
generates a fresh random value r to guarantee that the 
server does not reuse any values from the previous 
challenge and computes 

Q=rP.         (7) 
Then, verifier creates the challenge chal={ kSRF, j, Q} , 
and sends to the server. 
   
   Algorithm 4: Challenge 

1. Procedure: Challenge(kSRF,j,Q) ← chal 
2. Generates a random keys kSRF, kSRP  and fresh  

random value using Sobol Sequence. 
3. Compute 

SRPkc π= (c)         

4. Compute Q=rPε En(0, b) 
5.  Create challenge chal={ kSRF, j, Q} 
6. end procedure 
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4.2.2. ProofGen 
  Upon receiving a challenge from the verifier, 
each server computes a response as integrity proof using 
algorithm 5, it takes encrypted data m'i, challenge chal as 
inputs and produce response R as output as follows: first, 
it generates random numbers using Sobol random 
Function (SRF) i.e. 
                             )( jfa

SRFkj =  

Then compute  ∑
=

′=
c

j
ij j

mab
1   where 1≤ ij≤n

 

Later, computes a response  nbQR mod=               (10)                    
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Algorithm 5: ProofGen 

1. Procedure: ProofGen(m'i , kSRF, Q)←R  
2. Generates a n random numbers using kSRF  
3.  for 1 to n 
4. Generate )( jfa

SRFkj =  
5. end for      

6. compute  ∑
=

′=
c

j
ij j

mab
1

 

7. compute  R=bQ mod n 
8. end procedure 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.2.3. CheckProof 

After receiving a response from the server, the 
verifier checks the integrity using algorithm 6, it takes 
public key pk, challenge query chal, and proof R as inputs 
and return output as 1 if the integrity of file is verified as 
successfully or 0 as follows:  the verifier re-generates 
random numbers using Sobol Random function i.e. 
                                 )( jfa

SRFkj =  

Then compute   S= nTa
c

j
ij j

mod
1
∏
=

′  

                             nrSR mod'=                                 (12) 
 Now, verifier checks whether  
                                       R'=R,                                        (13) 

if response is valid, then  it returns 1 otherwise 0. 
 
   Algorithm 6: CheckProof 

1. Procedure: CheckProof(T'i , r, kSRF, n)←R'  
2. Generates a n random numbers using key kSRF  
3.  for 1 to n 
4. Generate  )( jfa

SRFkj =  
5. end for      

6. compute  S= nTa
c

j
ij j

mod
1
∏
=

′  

7. compute  nrSR mod'=  
8. verify if (R'=R) 
9. return true 
10. else 
11. return false 
12. end if 
13. end procedure 

(9) 

(8) 

 (11) 

Fig. 2. Efficient and Secure Storage Processing Model 
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4.4. Dynamic Data Operations 
  The proposed scheme also supports dynamic data 
operations at block level [33] while maintaining same 
security assurance, such as Block Modification (BM), 
Block Insertion (BI) and Block Deletion (BD). These 
operations are performed by the server based on the user 
request in the general form (BlockOP, j, m’i), where 
BlockOp indicates the block operation such as BM, BI 
and BD. The parameter j indicates the particular block to 
be updated and m*i  is the new block. 

In order to update data in cloud, the user creates 
a request and sends to the server. Upon receiving an 
update request from the user, the server performs the 
particular update operation (modification/insert/delete).  

Here, we show that how our scheme supports 
dynamic data operations efficiently:  
 
      Algorithm 7: PrepareUpdate 

1. Procedure:PrepareUpdate←(BM/BI/BD,j, m'i) 
2. Select a update block mj 
3. if(update==modification/insert) 
4. Encrypt )(' sfmm kjj +←   

5. Compute njj NPmT mod'←  
6. Update=(BM/BI,  j, m'i)  
7. else if(update==deletion) 
8. Update =((BD, j) 
9. Send update request  to the server 
10. end if  

11. end procedure 
 
4.4.1. Block Modification (BM): 
        Data modification is one of the frequently used 
operations in cloud data storage. Suppose, the user wants 
to modify the block mj with m'i,, then the user runs  the 
algorithm 7 to do the following: 

1) Create a new block mj 
2) Encrypt the new block using equation (2) 

)(' sfmm kjj +←                                        (14) 
3) Compute new metadata using equation      

nNmod' PmT jj ←                                    (15) 
4) Create update request (BM, j, mi) and sends to 

the server. 
5) The Metadata sends to TPA for later verification 

 
Upon receiving an update request, the server replace the 
block m'i with m'j and construct update version of the file 
F'' by running algorithm 8. 
 
 
 
 
 

           Algorithm 8: ExecuteUpdate 
1. Procedure: ExecuteUpdate←{F''} 
2. if(update==modification) 
3. replace mi with m'j  in the file F'  
4. update file F''  
5. else if(update==insert) 
6. insert m*x before mi or append 
7. else if(update==deletion) 
8. delete mi from file F' 
9. update the file F'' 
10. move all blocks backward after ith block 
11. end if  
12. end procedure 

 
4.4.2. Block Insertion (BI) 

        In this operation, the user wants to insert a 
new block m* after position j in the file F'= {m'1,..,m'n}. 
The block insertion operation changes the logical 
structure of the file; the proposed scheme can perform the 
block insertion operation without re-computing metadata 
of all blocks that have been shifted after inserting a block, 
because block index is not included in the metadata. To 
perform an insertion of a new block m* after position j in 
a file, the user runs algorithm 7 to do the following: 

1. Create a new block m*j 
2. Encrypt the new block  

)(*' sfmm kjj +←
                              (16) 

3. Compute new metadata   

njj NPmT mod'* ←                          (17) 
4. Create update request (BI, j, m'i)  and sends 

to the server. 
5. The Metadata sends to TPA for later 

verification 
Upon receiving the update request, the server replace the 
block m’j with m'j and construct update version of the file 
F'' by run the algorithm 8. 
 
4.4.3. Block Deletion (BD) 

The Block deletion operation is the opposite of 
insertion operation. When one block is deleted, all 
subsequent blocks are moved one step forward. Suppose, 
the user wants to delete a specific data block at position j 
from the file F', creates a delete request (BD, j), sends to 
the server and also sends request to the TPA to delete 
corresponding block metadata. Upon receiving a delete 
request from the user, the server deletes the block m'j 
from the file and constructs update version of the file F''. 
Similarly, the TPA deletes corresponding metadata.  Here, 
deletion of metadata do not depends on other block 
metadata. The detail of delete operation is given in 
algorithm 8. 
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4.4.4. Verification 
 To ensure the security of dynamic data 

operations, the user verifies the integrity of updated block 
immediately after updating as follows: 

1) The user challenges the server immediately for 
the proof of update operation i.e.  

                      rPQ =                                                 (18) 
2) Upon receiving a request from the user, the 

server computes a response for updated block 
and returns  to the user: 

nPmR jj mod'←                                      (19) 
3) After receiving an update response from the 

server, the user verifies whether response is 
matched with metadata of particular block by 
running algorithm 9, if it returns true, server has 
been updated data successfully otherwise not. 

 
Algorithm 9 : VerifyUpdate 

      
1. Procedure: VerifyUpdate(pk, Q, R')→{1,0 } 
2.     if(update==modification/insert) 
3.           if(Tj=Rj) 
4.                return   1 
5.                     else 
6.                  return 0 
7.                end if 
8.        else if(update==deletion) 
9.      verification directly starts from static case   
10.    end if 
11. end procedure 

 
      In next section, we analyze the security of our scheme. 
5. Security Analysis 

In this section, we present the formal security 
analysis of the proposed scheme. That means integrity 
and confidentiality of data stored in cloud.  

5.1. Integrity  
To ensure the integrity, we need three properties: 

Completeness, Soundness and Probability Detection. 
Here, we define these terms as follows: for completeness, 
soundness [30] and Probability Detection [24] 
Completeness: After receiving a challenge from the 
verifier, if server honestly computes a correct integrity 
proof, the verifier always accepts the proof as valid. 
Soundness: After receiving a challenge from the verifier, 
the server dishonestly computes the integrity proof by 
missing some data bits, the verifier accepts with 
negligible probability. 
Probability Detection:  After receiving a response from 
the server, the verifier check whether response is valid or 
not? If it is not valid, then the verifier detects the 
corruptions with high probability. 

In our integrity analysis, we have depended on 
the Finding order of elliptic curve and Elliptic curve 
discrete logarithm problem denoted by ELDL problems. 
1) Finding the order of elliptic curves: 

The order of elliptic curve over the ring Zn is: let 
n=pq is defined in [38,] as Nn =lcm(#Ep(a, b), #Eq(a, 
b)).  Nn is the order of the curve, i.e. for any Pε En(a, 
b) and any integer k, such that 
               (k Nn+1)P=P.                                            (20) 
If(a=0 and p≡q≡2 mod 3) or (b=0 and p≡q≡3 mod 4), 
the order of En(a, b) is equal to Nn. The given  
Nn =lcm(#Ep(a, b), #Eq(a, b))= lcm(p+1, q+1)      
(21) 
Solving Nn is computationally equitant to factoring 
the corresponding number n. 

 2) Elliptic Curve Discrete Logarithm 
Problem(ECDLP) 
Consider the equation Q=rp where Q, Pε En(a, b) and 
r<n. it is relatively hard to determine r given Q and P.  

 
Theorem 1. The proposed protocol is complete 

Proof:  Here, we are proving this theorem according 
to the definition of sound and commutative property 
of point multiplication in an elliptic curve [30]. 
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From the equation (13), the protocol is 
complete or valid. Then the verifier is 
“probabilistically” assured that server still holds data 
safely. In reality, verifier only verifies that server holds 
the j [1, c] selective blocks where j is chosen randomly. 

 
Theorem 2: The proposed protocol is sound 
      Proof:  In this proof, we show that our protocol is 
sound against dishonest server based on previous 
transactions and pre-computed metadata. There are four 
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possibilities that the server can compute the integrity 
proof without storing the user’s data: 
1) The server guessed or use pre-computed value. 
However, guessing occurs with negligible probability and 
pre-computing the correct response is not possible 
because each time the verifier challenge the server with a 
fresh challenge. 
2) Other option is to cheat user, the server replayed the 
previous response. In this case, the server would have to 
find r from challenge chal to compute the correct proof. 
since r is chosen randomly, finding r is hard based on 
ELDL problem.  
3) Another option for the server to cheat user, he has an 
algorithm to compute m'i mod Nn with inputs instead of 
storing m'i[1≤i≤n]. But this option is not possible, because, 
the server cannot compute Nn based on the hardness of 
solving the order of elliptic curve En(0, b) as we discussed 
above.  
4) Last option for server is, if the server does not store the 
data {m'i} and it may try to collude with the other servers 
for storing the same data. However, this option is not 
feasible, since data stored at each server is securely 
encrypted using Sobol Random Function (SRF). The f is a 
keyed one-way function and s is a secrete parameter, so, 
no one except the user can retrieve the original data mi 
from m'i.  

All these options lead to contradiction; so the server 
cannot compute response without storing the data. Hence, 
our protocol is complete. 
Probability Detection 

Here, we investigate how the probabilistic nature of 
the proposed protocol makes it possible to enforce 
integrity. We are making the following assumptions:  
• The verifier’s random selection of indexes is 

uniform, i.e., for n blocks, the probability to pick 
any block is 1/n. 

• If an attacker removes a portion d/n of data from the 
storage file, this portion is referred to as the 
corruption of the file.  

• The verifier performs on average c challenges: 1≤ c 
≤n (n is the number of blocks) and detects the 
corruption with high probability. 

 The detection probability Pd of disrupted blocks is an 
important parameter to guarantee that these blocks can be 
modified or detected in a time. We have detection of 
probability is: 

                              c
n
d

dP )(11 −−=                         (22) 

For a given probability of detection of a data corruption, it 
is possible to probabilistically determine the average 
number of challenges that the verifier should perform to 
achieve the probability of detection. The number of 
challenges c can be derived as follows[30]: 

                         )1(log
1 d

n
d Pc −=

−
                             (23) 

Fig. 3 plots Pd for different values of n, c, d.  To 
understand the importance of Fig. 3, suppose that if a 
fraction of the data file is corrupted, the Sobol’ sequence 
achieves detection with high probability in a few number 
of blocks to challenge, while pseudorandom data requires 
more blocks and even sometimes it may not detect the 
corruptions, since it do not covers the whole data in the 
file while verifying the data integrity. For example if 
d=1%n (data corruption) is corrupted, the proposed 
scheme using sobol sequence detects corruption with 99% 
in 4%n blocks whereas existing probabilistic checking 
methods using pseudorandom sequence requires 10%n 
blocks and sometimes these blocks may not detect the 
corruption. Since, sobol sequence is more uniform than 
pseudo random sequence. 
 Therefore, the proposed method is more secure 
and efficient than existing probabilistic remote data 
checking methods. 
 
Monte-Carlo Results.  
  Now, we turn to Monte-Carlo simulation to 
determine uniformity of random sequences.  For the 
goodness of random numbers, we calculated the Monte 
Carlo integration using random numbers. The integration 
of a function f(x) in the s-dimensional unit cube Is. we are 
in fact calculating the average of the function at a set of 
randomly sample points. Where there are N sample points 
in the integral is: 

)'(1
1
∑
=

=
N

i
xf

N
V  

Where v is used to denote the approximation to the 
integral and x1, x1,.. ,xN are the N, s-dimensional sample 
points. The Monte Carlo integration of V sampling in the 
region -1<x'<1 for the two cases: uncorrelated random 
numbers (pseudorandom sequence) and Sobol sequence.  
If pseudo-random sequence is used, the points x' will be 
independently and identically distributed, the estimate the 
expected error of integral is N-1/2, while sobol sequence is 
used, whose fractional error decreases of N-1. In Figure 4 
we presented for calculation of six dimensional integral is: 

654321
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Fig.4 shows that the pseudorandom sequence gives worst 
performance, whilst Sobol Sequence gives rapid 
convergence to the solution. To conclude that it has been 
shown that Sobol sequence can evaluate integrals more 
efficient than pseudorandom sequences. 

(25) 

(24) 

(26) 
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                Fig. 4. Monte Carlo simulation using random numbers  

5.2. Confidentiality 
 Now, we analyze the confidentiality of our 

scheme: The stored data in cloud cannot be leaked to an 
malicious attackers (servers and TPA). In this analysis, we 
depend on the hardness of the Elliptive Curve Diffie-
Hellman (ECHP) and Elliptive Curve Discrete Logarithm 
(ECDL) problems. 
 
Theorem 3: The proposed protocol is confidential 
against data leakage to attacker. 

We prove this theorem under different attacks:  
1) The secret parameter s cannot be derived by a 

malicious user eavesdropping on the communication 
link between the user and server because of Elliptive 
Curve Diffie-Hellman (ECDH) problem. The public 
parameter {b,n,P} cannot help the adversary to infer 
or calculate any useful information that can reveal 
the shared key between the user and server. 

2) Suppose, If the malicious server wants to access 
the data from the encrypted file F'=mi'. But it is not 
possible, because in order to access the encrypted 
data, he should need a secrete parameter, this secrete 
key chosen by user randomly. If server try to get the 
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secret key by using different combinations of public 
parameters but fail to do so due to the ECDL problem. 
Hence, the server cannot learn anything from F'. 
3) The TPA has Ti ← m'i P(mod Nn). If he tries to 
access data content from metadata, the user computes 
metadata over encrypted the data using secrete key. 
However, it is not possible because the secrete 
parameter chosen by the user from random. So there 
is no chance to TPA get secrete parameter using 
public key and metadata. Hence, The TPA cannot 
learn anything from metadata Ti . 

Therefore on the basis of ECDH and ECDL problems, 
our protocol is confidential against data leakage.  

 
6. Performance Analysis and Experimental 
Results 
6.1 Performance Analysis 

In this section, we analyze the performance of 
our scheme in terms of storage, communication and 
computation complexity. 
Storage cost: 
      Here, we detail the storage cost required by the client, 
TPA and server. 
User Side: The user needs to store the only secrete 
parameter. The storage cost for that is O (1). 
Server Side: the server needs to be store the complete 
file, the cost for storage file is O (n) bits. 
TPA or Verifier: the verifier needs to store metadata and 
public key. The metadata is a relatively smaller than 
original file, so storage cost for metadata is O (1).  
Communication Cost: 

       Here, we consider the communication cost between 
the server and verifier during verification phase. The 
challenge sent by the verifier to the server, which consists 
of O(1) and the response(it is a small size compare to 
original file) sent by server to the verifier, which consists  
 of O(1). Thus, total communication cost is O (1).  
 

(b)  z=1%l using pseudorandom sequence 
 

(a) z=1%l using Sobol Sequence  
Fig. 3: The detection probability pd against data corruption. We show pd as a function of l(total number of rows) and r(the number of rows 
queried by the user, shown as percentage of l) for value of z(the number of rows modified by the adversary). 
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Computation Cost:  
 We analyze the computation cost of the user, 

verifier and server as follows: 
User: during the setup phase, the user generates a private 
key and public key whose cost is O(1) . Then, to encrypt a 
file, the user needs to perform integer addition, its cost is 
O(n). Finally, computes the metadata by performing n-bit 
point multiplications whose cost is O(1). Hence, total 
computation cost of the user is: O (1). 
Verifier: During the verification phase, the TPA or 
verifier needs to generate three random numbers ⟨kSRF,j, 
r⟩, then compute  

SRPkc π= (c) and  Q = rP, whose cost 

is O(1). Again, after receiving the response, the verifier 
re-generates {aj} j=[1,c], the computation cost of each  

jijma ′  corresponds to the sum of point multiplication of 

two bits.  Finally,  the verifier computes R', the cost of R' 
is a two point multiplications plus sum of 2 bit integer 
plus generating random numbers cost, which is O(1) 
respectively. Hence, the total computation cost at verifier 
side is O(1). 
Server Side: During the verification phase, the server 
needs to generate n-Sobolrandom  b-bit integers ai , then 

it  computes 
ji

c

j
jmab ′= ∑

=1         
R 

nPmar
ji

n

i
j mod'

1
∑
=

=   The computation of each  

jijma ′  corresponds to the sum of point multiplication of 

two bits. The computation cost of  
jijma ′   is O(1). Next, 

the server computes a proof, which consists of point 
multiplications in ProofGen algorithm, its cost is O (1). 
The total computation cost of server for generating 
integrity proof (response) is O(1). 

In table 1, we summarized the storage, 
communication and computation costs. 

Table 1: Summary of Storage, Communication and 
Computation cost of Proposed Protocol 

        Storage Cost Communication 
Cost 

Computation 
Cost 

Verif
ier 

Serve
r 

Verif
ier Server User Verifier Server 

O(1) O(n) O(1) O(1) O(1) 
 

O(1) 
 

O(1) 

 
6.2. Experimental Results 

In this section, we present the experimental 
results of our protocol. All experiments conducted using 
C++ on system with dual core 2-GHZ processor and 4GB 
RAM running Windows 2007. In our implementation, we 
use MIRACL library version 5.4.2 to achieve better 
security work on elliptic curve with 160-bit group order 
instead of RSA on 1024 bits. Here, we are measuring total 

time for computation cost of the verifier and server using 
ECC and RSA respectively.                                  .                                              

100∗=
−

RSA
ECCRSA

Speedup                                     (27) 

Then, we compare computation cost of our protocol with 
RSA-based remote data checking protocols, which 
includes the verifier, server and user computation costs 
and presented results in table 2, 3 & 4.  

Table 2: Computation Cost at Verifier using RSA [13] and 
ECC based schemes. 

File 
Size 

Verifier side 
using RSA[33] 

Verifier Side 
using ECC 

Speedup 

10MB  424.37 ms 316.26 ms 25% 
20MB 482.81 ms 342.43 ms 29% 
30MB 561.62 ms 376.03 ms 32% 
40MB 641.46 ms 415.09 ms 35% 
50MB 743.64 ms 465.13 ms 38% 
Table 2 shows that the total computation cost of verifier 
for our proposed scheme is faster than existing RSA based 
scheme [33] 
Table 3: Computation Cost at Server with RSA based 
scheme and ECC scheme 
l(bits) Server Side 

with RSA[33] 
Server Side  
with ECC 

Speedup(%) 

10MB 388.01 ms 275.11 ms 29% 
20MB 447.62 ms 312.43 ms 30% 
30MB 508.39 ms 348.21 ms 31% 
40MB 562.67 ms 381.21 ms 32% 
50MB 625.16 ms 418.76 ms 33% 

Table 3 shows that the total computation cost of the server 
for proposed scheme is faster than existing RSA based 
scheme [33].  

Table 4: Metadata Computation Cost at user with RSA and 
ECC based schemes 
 l(bits) Server Side 

with RSA[33] 
Server Side  
with ECC 

SpeedUp(%) 

10MB 244.11 ms 183.06 ms 25% 
20MB 296.41 ms 218.32 ms 26% 
30MB 352.53 ms 253.38 ms 28% 
40MB 403.17 ms 289.63 ms 29% 
50MB 467.26 ms 323.92 ms 30% 

Table 4 shows that the total computation cost of 
metadata at user side in our scheme is faster than existing 
RSA based scheme [33] 

 
6.3. Comparison with Existing Schemes 

We compared our scheme with existing RSA 
based verification schemes and probabilistic verifications 
schemes  

Most of the schemes that use RSA based 
verification but the key length for secure RSA use as 
increased over recent years and this put a heavier 
processing burden on applications using RSA. To avoid 
this problem, we proposed an ECC based verification 
scheme. The principal of ECC compared to RSA is that it 

and 
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appear to offer equal security for a far smaller key size, thereby it  reduced the computation overhead. 
                                   Table 5: Comparisons between Proposed Protocol and selective Existing Protocols 

 RDC 
[13] 

C.wang 
[21] 

Q.wang 
[23] 

Yan[24] C.wang 
[30] 

Hao[32] Syam[27] Prposed 
protocol 

Type of Guaranty Prob Prob Prob Prob Prob Deter Prob Prob 
Integrity Partial Partial Partial Partial Partial Yes Yes Yes 
Confidentiality no no no no Partial Partial no Yes 
Public 
Verifiability no Yes Yes Yes Yes Yes no Yes 

Data Dynamics no Partial Yes Yes Yes Yes Partial Yes 
Communication 
complexity O(1) O(clogn) O(logn) O(s) O(logn) O(1) O(1) O(1) 

Server 
Computation O(1) O(clogn) O(logn) O(c+s) O(nlogn) O(n) O(clogn) O(1) 

Verifier 
computation O(1) O(clogn) O(logn) O(c+s) O(logn) O(n) O(clogn) O(1) 

Probability 
Detection O(N-1/2) O(N-1/2) O(N-1/2) O(N-1/2) O(N-1/2) O(N-1/2) O(N-1) O(N-1) 

Prob: Probabilistic   Deter: Deterministic 
Next, we compare our scheme with probabilistic 

verification schemes. These schemes verify the integrity 
of outsourced data based on pseudorandom sequence but 
they do not provide satisfactory integrity assurance to the 
users i.e. sometimes they may not detect the data 
corruptions in cloud. Because, pseudorandom sequence is 
not uniform (uncorrelated random numbers), and it will 
take more time to detect data corruption, so its time 
consuming whereas proposed protocol verifies the 
integrity of the data using Sobol sequence. Our scheme 
should detect all data corruptions with less number of 
blocks since sobol sequence covers the entire data in the 
file more uniformly than pseudorandom sequence.  

Finally, the proposed protocol is private against 
unauthorized data leakage because, we are encrypting the 
data before storing in cloud. In Table 5, we summarize the 
comparison between the selective existing protocols and 
proposed protocol. 

 
7. Conclusion 

In this paper, we have studied the problem of 
Integrity and Confidentiality of data storage in cloud 
computing and proposed an efficient and secure protocol 
using ECC and Sobol sequence. The proposed method is 
mainly suitable for thin users who have less resources and 
limited computing capability. It satisfies the all security 
and performance requirements of cloud data storage. Our 
method also supports public verifiability that enables TPA 
to verify the integrity of data without retrieving original 
data from the server and probability detects data 
corruptions. Moreover, our scheme also supports dynamic 
data operations, which performed by the user on data 
stored in cloud while maintaining same security assurance.  
We have proved that proposed scheme is secure in terms 
of integrity and confidentiality through security analysis. 
Through, performance analysis and experimental results 
proved that proposed scheme is efficient. Compared with 

previously proposed protocols, we have also proved that 
proposed scheme is more secure and efficient.  
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