
An Efficient and Secure Protocol for Ensuring Data Storage
Security in Cloud Computing

Syam Kumar P, Subramanian R

 Department of Computer Science, School of Engineering & Technology
Pondicherry University, Puducherry-605014, India

Abstract
Currently, there has been an increasing trend in outsourcing data
to remote cloud, where the people outsource their data at Cloud
Service Provider(CSP) who offers huge storage space with low
cost. Thus users can reduce the maintenance and burden of local
data storage. Meanwhile, once data goes into cloud they lose
control of their data, which inevitably brings new security risks
toward integrity and confidentiality. Hence, efficient and
effective methods are needed to ensure the data integrity and
confidentiality of outsource data on untrusted cloud servers. The
previously proposed protocols fail to provide strong security
assurance to the users. In this paper, we propose an efficient and
secure protocol to address these issues. Our design is based on
Elliptic Curve Cryptography and Sobol Sequence (random
sampling). Our method allows third party auditor to periodically
verify the data integrity stored at CSP without retrieving original
data. It generates probabilistic proofs of integrity by challenging
random sets of blocks from the server, which drastically reduces
the communication and I/O costs. The challenge-response
protocol transmits a small, constant amount of data, which
minimizes network communication. Most importantly, our
protocol is confidential: it never reveals the data contents to the
malicious parties. The proposed scheme also considers the
dynamic data operations at block level while maintaining the
same security assurance. Our solution removes the burden of
verification from the user, alleviates both the user’s and storage
service’s fear about data leakage and data corruptions. Through
security analysis, we prove that our method is secure and
through performance and experimental results, we also prove
that our method is efficient. To compare with existing schemes,
our scheme is more secure and efficient.

Keywords: data storage, integrity, confidentiality, Elliptive
Curve Cryptography(ECC), Sobol Sequence, Cloud Computing.

1. Introduction

Cloud storage becomes an increasing attraction in
cloud computing paradigm, which enables users to store
their data and access them wherever and whenever they
need using any device in a pay-as-you-go manner[1].
Moving data into cloud offers great conveniences to the
users since they do not have to care about the large capital
investment in both the maintenance and management of
the hardware infrastructures. Amazon’s Elastic Compute
Cloud (EC2) and Amazon Simple Storage Service (S3) [2]
and apple icloud[3] are well known examples of cloud
data storage. However, once data goes into cloud, the
users lose the control over the data. This lack of control

raises new formidable and challenging issues related to
confidentiality and integrity of data stored in cloud [4].

The confidentiality and integrity of the
outsourced data in clouds are of paramount importance for
their functionality. The reasons are listed as follows [5]:
1) the CSP, whose purpose is mainly to make a profit and
maintains a reputation, has intentionally hide data loss an
incident which is rarely accessed by the user’s 2) The
malicious CSP might delete some of data or is able to
easily obtain all the information and sell it to the biggest
rival of Company. 3) An attacker who intercepts and
captures the communications is able to know the user’s
sensitive information as well as some important business
secrets. 4) Cloud infrastructures are subject to wide range
of internal and external threats.
The examples of security breaches of cloud service
providers appear from time to time [6, 7]. The users
require that their data remain secure over the CSP and
they need to have a strong assurance from the cloud
servers that CSP store their data correctly without
tampering or partially deleting because the internal
operation details of service providers may not be known
to the cloud users. Thus, an efficient and secure scheme
for cloud data storage has to be in a position to ensure the
data integrity and confidentiality.

 Encrypting the data before storing in cloud can
handle the confidentiality issue. However, verifying
integrity of data is a difficult task without having a local
copy of data or retrieving it from the server. Due to this
reason, the straightforward cryptographic primitives
cannot be applied directly for protecting outsourced data.
Besides, a naive way to check the data integrity of data
storage is to download the stored data in order to validate
its integrity, which is impractical for excessive I/O cost,
high communication overhead across the network and
limited computing capability. Therefore, efficient and
effective mechanisms are needed to protect the
confidentiality and integrity of user’s data with minimum
computation, communication and storage overhead.

 Remote data integrity checking is a protocol that
focuses on how frequently and efficiently we verify
whether cloud server can faithfully store the user’s data
without retrieving it. In this protocol, the user generates
some metadata. Later, he can challenge the server for
integrity of certain file blocks through challenge-response

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 261

protocol. Then the server generates responses that the
server still possesses the data in its original form to
corresponding challenge sent by the verifier who may be
original user or trusted third party entity. Recently, several
researchers have proposed different variations of remote
data integrity checking protocols under different
cryptography schemes [8-21]. However, all these
protocols focus on static data verification.

One of the design principles of cloud storage is
to provide dynamic scalability of data for various
applications. This means, the data stored in cloud are not
only accessed by the users but also frequently updated
through block operations such as modification, insert and
delete operations. Hence, it is crucial to develop more
secure and efficient mechanism to support dynamic audit
services. The protocols to verify dynamic data in cloud
are proposed in [22-27].

Although the existing schemes aim at providing
integrity verification for different data storage systems,
but problem of confidentiality of data has not been fully
addressed.

The protocols [28-35] have been proposed to
ensure the confidentiality and integrity of remote data.
But, all these schemes are unable to provide strong
security assurance to the users, because these schemes
verifying integrity of outsourced data based on
pseudorandom sequence, which does not cover the whole
data while computing the integrity proof. Therefore,
probabilistic verification schemes based on pseudorandom
sequence does not give guarantee to the users about
security of their data. Syam et al. [27] proposed a
distributed verification protocol using Sobol sequence to
ensure availability and integrity of data, but it is also not
addressed the data confidentiality issue. How to achieve a
secure and efficient design to seamlessly integrate these
two important components for data storage service
remains an open challenging task in Cloud Computing.

In this paper, we propose an efficient and secure
protocol to ensure the confidentiality and integrity of data
storage in cloud computing using Elliptic Curve
Cryptography(ECC) [30, 37, 38] and Sobol Sequence [39].
The ECC can offer same levels of security with small
keys comparable to RSA and other PKC methods. It is
designed for devices with limited computing power and/or
memory, such as smartcards, mobile devices and PDAs.
In our design, first the user encrypts data to ensure the
confidentiality, then, compute metadata over encrypted
data. Later, the verifier can use remote data integrity
checking protocol to verify the integrity. The verifier
should able to detect any changes on data stored in cloud.
The security of our scheme relies on the hardness of
specific problems in Elliptic Curve Cryptography.
Compared to existing schemes, our scheme has several
advantages: 1) it should detect all data corruption if
anybody deletes or modifies the data in cloud storage,

since we are using Sobol sequence instead of
pseudorandom sequence for challenging the server for the
integrity verification. 2) Our scheme achieves the
confidentiality of data 3) It is efficient in terms of
computation, storage, because its key size is low
compared to RSA based solutions.

Main Contributions:

1) We propose an efficient and secure protocol.
This protocol efficiently provides the integrity
assurance to the users with strong evidence that
the CSP is in faithfully storing all data and this
data cannot be leaked to malicious parties. Our
protocol also supports public verifiability and
dynamic data operations such as modification,
insertion and deletion.

2) We prove the security (integrity and
confidentiality) of proposed scheme against
internal and external attacks. Cloud server can
provide valid response to the verifier challenges
only if they actually have all data in an
uncorrupted and update state.

3) We justify the performance of proposed protocol
through concrete analysis, experimental results
and comparison with existing schemes.

The rest of paper is organized as follows: Section 2
describes the related works. Sections 3 introduce the
system model: including: cloud storage model, security
threats, design goals and notations and permutations. In
Section 4, we provide the detailed description of our
scheme. Section 5 gives the security analysis and
Section 6 gives the performance and experimental
results and in Section 7 we give conclusion to our work.

2. Related Work
The security of remote storage applications has

been increasingly addressed in the recent years, which
has resulted in various approaches to the design of
storage verification primitives. The literature
distinguishes two main categories of verification
schemes [30]: Deterministic verification schemes check
the conservation of a remote data in a single, although
potentially more expensive operation and probabilistic
verification schemes rely on the random checking of
portions of outsourced data.

2.1. Deterministic Secure Storage
 Deterministic solutions are verifying the storage

of the entire data at each server. Deswarte et al. [8] and
Filho et al.[9] are firstly proposed a solution to remote
data integrity. Both use RSA-based functions to hash the
whole data file for every verification challenge. They
require pre-computed results of challenges to be stored at
verifier, where a challenge corresponds to the hashing of
the data concatenated with a random number. However,
both of them are inefficient for the large data files,

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 262

which need more time to compute and transfer their
hash values. Carmoni et al. [10] described a simple
deterministic approach with unlimited number of
challenges is proposed, where the verifier like the server
is storing the data. In this approach, the server has to
send MAC of data as the response to the challenge
message. The verifier sends a fresh unique random value
as the key for the message authentication code to prevent
the server from storing only the result of the previous
hashing of the data. Golle et al. [11] proposed a SEC
(Storage Enforcing Commitment) deterministic
verification approach. This approach uses homomorpic
verifiable tags, whose number is equal to two times of
number of data chunks and the verifier choose a random
value that will be used to shift indexes of tags to be
associated with the data chunks when the integrity proof
constructed by the server. Sebe et al. [12] presented a
remote data checking protocol such that it allows an
unlimited number of verifications and the maximum
running time can be chosen at setup time and traded off
against storage at verifier. However, none of the schemes
were considered the problem of remote data
confidentiality and dynamic data verifications.

To ensure the confidentiality of remote data,
Shah et al. [27, 28] proposed a privacy-preserving audit
protocol, which allows a third party auditor to keep
online storage honest. In their schemes, the client first
encrypts the data file and pre-computes a hash value over
encrypted data using keyed hash function and sends it to
the auditor. But, their schemes may potentially bring on-
line burden to the users when the keyed hashes are used
up. Oualha et al. [30] described a secure protocol for
ensuring self organizing data storage (P2P) through
periodic verifications, these verifications used for the
integrity checks since each holder generates a response
that they still having the data safely. In particular a data
owner can prevent data damage at a specific holder by
storing encrypted replicas crafted the use of elliptic curve
cryptography. Wang et al. [31] proposed a privacy-
preserving public auditing scheme for data storage
security in cloud computing by using homomorphic
authenticator and random masking. This scheme
conceals the content of the original data from the TPA
but not from the malicious servers. Similarly, Hao et al.
[32] introduced the multiple replicas remote data
possession checking protocol with public verifiability.
However, this scheme does not support to dynamic data
operations. In their subsequent work, Hao et al. [33]
proposed a RSA-based privacy-preserving data integrity
checking protocol with data dynamics in cloud
computing. Their scheme extended the sebe’s protocol
[12] to support public verifiability. It does not leak any
information to third party auditors. However, like[31] it
is also not protecting data leakage from the malicious
servers.

2.2. Probabilistically Secure Storage
The probabilistic verification schemes verify the

specific portions of data instead of entite data at servers.
Ateniese et al. [13] proposed a RDC using PDP.

In their system, the client pre-computes the tags for each
block of a file using homomorphic verifiable tags and
stores the file and it tags with the server. Then, the client
can verify that server integrity of the file by generating a
random challenge, which specifies the selected positions
of file blocks. Using the queried blocks and their
corresponding tags and the server generates a proof of
integrity. Juels et al. [14] proposed a formal definition
of POR and its security model. In this model, the
encrypted data is being divided into small data blocks,
which are encoded with Reed-Solomon codes. The
“sentinels” are embedded among encrypted data blocks to
detect whether it is intact. However, this can verify only
limited number of times because this scheme has only
finite number of “sentinels” in the file. When the finite
“sentinels” are exhausted, the file must be sent back to the
owner to re-compute new “sentinels”. Ateniese et al. [15]
proposed a new scheme with homomorphic linear
authenticators (HLA) of which communication
complexity is independent of the file length. This scheme
supports unlimited number of verification, but it cannot
verify publicly. Later, Shacham et al. [16] proposed the
two POR protocols: The first one built from BLS
signatures and has the shortest query and response with
public verifiability. The second one is based on
pseudorandom functions (PRFs) with private verifiability,
but it requires a longer query. Both schemes rely on the
homomorphic property-aggregating verification proofs
into a small value. Dodis et al [17] first formally define
the POR code, this construction improves the prior POR
constructions. The main insight of their work comes from
the simple connection between POR schemes and the
notion of hardness amplification, extensively studied in
complexity theory. Browers et al. [18] introduced a
theoretical framework for previous POR protocols [14-16]
using integrated forward error-correcting codes. In their
subsequent work, Browers et al. [19] described a HAIL
(High-Availability and Integrity Layer), in which the key
insight is to embedded MACs in the parity blocks of the
dispersal code. As both MACs and parity blocks can be
based on universal hash functions. Schwarz et al. [20]
used a XOR-based, parity m/n erasure codes to create n
shares of a file that stored at multiple sites. Curtomola et
al. [21] extended the PDP [13] to the multiple servers,
which are called Multiple Replica-Provable Data
Possession (MR-PDP), it is aimed to ensure availability
and reliability of data across distributed servers. In this
scheme, the user stores multiple replicas of a single file
across distributed servers, thus we can get an original file
from any one of the servers even if any server fails.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 263

Although all these schemes are aim at providing
integrity verification for different data storage systems but
the problem of data dynamics has not at fully addressed.

For the dynamic data integrity verification,
Ateniese et al. [22] have designed a highly efficient and
provably secure PDP with data dynamics is called
“Scalable Data Possession”. It was based on symmetric
key cryptography, while not requiring any bulk
encryption. It improves the RDC[13] in terms of storage,
bandwidth and computation overheads. However, it
cannot perform block insertions anywhere beacause each
update requires re-computing the all the remaining tokens,
which is problematic for large files. In addition, it does
not support public verifiability. Similarly, Wang et al.
[23] discussed the problem of ensuring the availability
and integrity of data storage in cloud computing. They
utilized the homomorphic token and error correcting
codes to achieve the integration of storage correctness
insurance and data error localization, but like[22] their
scheme do not support an efficent insert operation due to
the index positions of data blocks. To overcome this
probem, Erway et al. [24] firstly proposed a scheme to
support dynamic data operations effieciently at block
level instead of index positions[22, 23] by using rank-
based verification skip list in the cloud servers. Later,
Wang et al. [25] described a BLS based homomorpic
authenticator with public verifiability and supports of data
dynamics using Merkle Hash Tree (MHT) to verify the
data integrity checking in cloud computing. They
achieved the data integrity assurance with high efficiency.
Similarly, Zhu et al. [26] proposed a dynamic auditing
service for verification of integrity of outsourced data in
cloud. Their design is based on fragment structure,
random sampling and index-hash table. Their scheme
achieved the integrity assurance with low computation,
storage and computation overhead.

However, none of the schemes were address the
problem of outsorced data confidentiality.

Ayad et al. [34] proposed a Provable Possession
and Replication of Data over Cloud Servers with
dynamic data support. This scheme achieves the
availability, integrity and confidentiality of data storage
in cloud. Chen et al. [35] described an efficient remote
data possession in cloud computing. It has several
advantages while achieving security of remote data as
follows: First, it is efficient in terms of computation and
communication. Second, it allows verification without
the need for the challenger to compare against the
original data. Third, it uses only small challenges and
responses, and users need to store only two secret keys
and several random numbers. Yang et al. [36] proposed a
Provable Data Possession of Resource-constrained
Mobile Devices in Cloud Computing. In this framework,
the mobile terminal devices only need to generate some
secret keys and random numbers with the help of trusted

platform model (TPM) chips, and the needed computing
workload and storage space is fit for mobile devices.
Like [25], by using bilinear signature and Merkle hash
tree (MHT), this scheme aggregates the verification
tokens of the data file into one small signature to
reduce communication and storage burden.

All these schemes are unable to provide strong
security assurance to the users because all these schemes
are verifying integrity of data using pseudorandom
sequence. It does not cover the whole data while
computing integrity proof. Therefore, probabilistic
verification schemes based on pseudorandom sequence
does not give strong guarantee to the users about security
of their data.

To overcome this problem, Syam et al. [27]
proposed a homomorpic distributed verification protocol
to ensure data storage security in cloud computing using
Sobol Sequence instead of pseudorandom sequence,
which is more uniform than pseudorandom sequence.
Their scheme achieves the availability and integrity of
outsourced data in cloud but similar [23], it is also not
addressing data confidentiality issue.

To achieve all these security and performance
requirements of cloud storage, we propose an efficient
and secure protocol in section 4.

3. System Model
3.1. Cloud Data Storage Model

The cloud storage model considering here is
consists of three main components as illustrated in Fig. 1.

1) Cloud User: the user, who can be an individual or
an organization originally storing their data in cloud and
accessing the data.
2) Cloud Service Provider (CSP): the CSP, who
manages cloud servers (CSs) and provides a paid
storage space on its infrastructure to users as a service.
3) Third Party Auditor (TPA) or Verifier: the TPA
or Verifier, who has expertise and capabilities that users
may not have and verifies the integrity of outsourced
data in cloud on behalf of users. Based on the audit
result, the TPA could release an audit report to user.

Fig.1. Cloud Data Storage Model

Users
Cloud Service Provider (CSP)

Third Party Auditor (TPA)

Storage
servers

 Internet

Data Flow

Response

Challenge

 Security Message Flow

 Security Message
 Flow

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 264

Throughout this paper, terms verifier or TPA and cloud
server or CSP are used interchangeably

In cloud data storage model, the user stores his
data in cloud through cloud service provider and if he
wants to access the data back, sends a request to the CSP
and receives the original data. If data is in encrypted form
that can be decrypted using his secrete key. However, the
data is stored in cloud is vulnerable to malicious attacks; it
would bring irretrievable losses to the users, since their
data is stored at an untrusted storage servers. It doesn’t
matter that whether data is encrypted or not before storing
in cloud and no matter what trust relations the client and
the server may have a priori share. The existing security
mechanisms need to reevaluate. Thus, it is always
desirable to need an efficient and secure method for users
to verify that whether data is intact? If user does not have
the time, he assigns this task to third party auditor. The
auditor verifies the integrity of data on behalf of users.

3. 2. Security Threats

In this paper, we are considering two types of
attacks for cloud data storage those are: Internal Attacks
and External Attacks.
3.2.1. Internal Attacks: These are initiated by malicious
Cloud Service Provider (CSP) or malicious users. Those
are intentionally corrupting the user’s data inside the
cloud by modifying or deleting. They are also able obtain
all the information and may leaked it to outsiders.
3.2.2. External Attacks: these are initiated by
unauthorized parties from outside the cloud. The external
attacker, who is capable of comprising cloud servers and
can access the user’s data as long as they are internally
consistent i.e. he may delete or modify the customer’s
data and may leaked the user private information.

3.3. Design Goals

We have designed an efficient and secure storage
protocol to ensure the following goals. These goals are
classified into two categories: Efficiency and Security
Goals.
3.3.1. Efficiency

The following efficiency requirements ought
to be satisfied for a proposed scheme of practical use
of cloud storage:
Low computaion overhead: It includes the
initialization and verification overheads of the verifier and
the proof generating overheads of the server. It means that
the proposed scheme should be efficient in terms of
computation.

Less communication overhead: It refers to the total
data transferred between the verifier and server. It means
that the amount of communication should be low.
Low storage cost: It refers to the additional storage of
client and server required by the scheme. It means that the
additional storage should be low as possible.

3.3.2. Security

In this paper, we are considering two security
requirements, which are needs to be satisfied for the
security of proposed scheme:
Confidentiality: Confidentiality refers to only authorized
parties or systems having the ability to access protected
data.
Integrity: Data Integrity refers to the protection of data
from unauthorized deletion, modification or fabrication.
Further, detects any modifications to data stored in cloud.

3.4. Notations and Permutations

• F - the data file to be stored in cloud, the file F is
divide into n blocks of equal length: m1,m2,…,mn ,
where n=[|m|/l] .

• fkey(.)- Sobol Random Function (SRF) indexed on
some key, which is defined as
 f : {0,1}* ×key-{0,1}log

2
n.

• πkey(.)–Sobol Random Permutation (SRP) which
is defined as π : {0,1}log2(l) ×key– {0,1} log2(l).

Elliptic Curve Cryptography over ring Zn:
Let n be an integer and let a, b be two integers in

Zn such that gcd(4a3+27b2, n)=1. An elliptic curve
En(a, b) over the ring Zn is the set of points(x, y)∈
Zn× Zn satisfying the equation: y2+ax+b, together with
the point at infinity denoted as On.

4. Efficient and Secure Storage Protocol

To ensure the confidentiality and integrity of data
stored in cloud, we propose an Efficient and Secure
protocol. Our scheme is designed under the Elliptic Curve
Cryptography [30, 38] construction and use of Sobol
sequence to verify the integrity of storage data randomly.
This protocol consists of three phases, namely Setup,
Verification and Dynamic Data Operations and
Verification. The three process model is depicted in fig.2.
The construction of these phases is presented briefly as
follows:

4.1. Setup

In this phase, the user pre-processes the file
before storing in cloud. The Setup phase consists of
three algorithms, those are: 1) KeyGen
2) Encryption 3) MetadataGen.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 265

4.1.1. KeyGen
 In this algorithm, the user generates private key
and public key pair using algorithm 1, it takes k as input
and generates private key and public key pair as output as
follows: the given security parameter k (k>512), user
chooses two large primes p and q of size k such that p≡q≡
2 (mod 3). Then compute
 n=pq (1)
 and
 Nn=lcm(p+1,q+1). (2)
where Nn is a order of elliptic curve over the ring Zn
denoted by En (0, b), and b is a randomly chosen integer
such that gcd(b, n)=1 and compute P is a generator of
En(0, b). It outputs public key PK= {b, n, p} and private
key PR={ Nn)}.

 Algorithm 1: KeyGen

1. Procedure: KeyGen(k) ←{ PK,PR}
2. Take security parameter k (k>512)
3. Choose two random primes p an q of size k:

p≡q≡ 2 (mod 3)
4. Compute n=pq
5. Compute Nn = lcm(p+1, q+1)
6. Generate random integer b<n, gcd(b, n)=1
7. Compute P, is a generator of En(0,b)
8. Private key PR={ Nn }
9. Public key PK={n, b, P}
10. end procedure

4.1.2. Encryption

To ensure the confidentiality of data, the user
encrypts the each data block mi in the file F using
algorithm 2, it takes mi, keyed Sobol Ranodom
Function(SRF) and secrete random parameter s as inputs
and produce m'i as output as follows:
 niin mmmmF ≤≤== 121 }{},...,{ (3)

)(sfmmF kii +=′=′ (4)
where s is random of size l.

 Algorithm 2: Encryption

1. Procedure : Encryption(mi , s)←m'i
2. for 1 to n
3. Compute)(' sfmm kii +=
4. end for
5. end procedure

4.1.3. MetadataGen:

After encrypting the data, the user computes a
metadata over encrypted data to verify the integrity of
data using algorithm 3, which takes m'i, public key and
private key as inputs and produce metadata Ti as output:
Ti ← m'i P(mod Nn)) (5)
 where Pε En(0, b)

 Algorithm 3:MetadataGen

1. Procedure: MetadataGen(m'i ,n, b, P) ←Ti
2. for 1 to n
3. Compute Ti ← m'i P(mod Nn))
4. end for
5. end procedure

After computation of metadata, the user sends metadata,
public key to the TPA for later verification and sends file
F' to cloud servers for storage.

4.2. Verification Phase

Once data has stored in cloud, in order to ensure
the integrity of data, our scheme entirely relies on
verification phase. To verify the integrity of data, the
verifier first creates a challenge and sends to the server.
Upon receiving a challenge from the verifier, the server
computes a response as integrity proof and return to the
verifier. It consists of three algorithms: 1) Challenge,
2) ProofGen 3) CheckProof .

4.2. 1. Challenge

The verifier creates a challenge by running
algorithm 4, it takes kSRF,j, and Q as input and return chal
as output as follows: the verifier chooses a random keys
kSRF and kSRP using Sobol sequence and computes random
indices 1≤ij≤n (j= 1,….,c) of the set[1,n], where

)(cc
SRPkπ= (6)

which prevents the server from anticipating which blocks
will be queried in each challenge. The verifier also
generates a fresh random value r to guarantee that the
server does not reuse any values from the previous
challenge and computes

Q=rP. (7)
Then, verifier creates the challenge chal={ kSRF, j, Q} ,
and sends to the server.

 Algorithm 4: Challenge

1. Procedure: Challenge(kSRF,j,Q) ← chal
2. Generates a random keys kSRF, kSRP and fresh

random value using Sobol Sequence.
3. Compute

SRPkc π= (c)

4. Compute Q=rPε En(0, b)
5. Create challenge chal={ kSRF, j, Q}
6. end procedure

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 266

4.2.2. ProofGen
 Upon receiving a challenge from the verifier,
each server computes a response as integrity proof using
algorithm 5, it takes encrypted data m'i, challenge chal as
inputs and produce response R as output as follows: first,
it generates random numbers using Sobol random
Function (SRF) i.e.
)(jfa

SRFkj =

Then compute ∑
=

′=
c

j
ij j

mab
1 where 1≤ ij≤n

Later, computes a response nbQR mod= (10)

)mod(

mod

mod

1

1

1

nPmar

nrPma

nQma

c

j
ij

c

j
ij

c

j
ij

j

j

j

∑

∑

∑

=

=

=

′=

′=

′=

Algorithm 5: ProofGen

1. Procedure: ProofGen(m'i , kSRF, Q)←R
2. Generates a n random numbers using kSRF
3. for 1 to n
4. Generate)(jfa

SRFkj =
5. end for

6. compute ∑
=

′=
c

j
ij j

mab
1

7. compute R=bQ mod n
8. end procedure

4.2.3. CheckProof

After receiving a response from the server, the
verifier checks the integrity using algorithm 6, it takes
public key pk, challenge query chal, and proof R as inputs
and return output as 1 if the integrity of file is verified as
successfully or 0 as follows: the verifier re-generates
random numbers using Sobol Random function i.e.
)(jfa

SRFkj =

Then compute S= nTa
c

j
ij j

mod
1
∏
=

′

 nrSR mod'= (12)
 Now, verifier checks whether
 R'=R, (13)

if response is valid, then it returns 1 otherwise 0.

 Algorithm 6: CheckProof

1. Procedure: CheckProof(T'i , r, kSRF, n)←R'
2. Generates a n random numbers using key kSRF
3. for 1 to n
4. Generate)(jfa

SRFkj =
5. end for

6. compute S= nTa
c

j
ij j

mod
1
∏
=

′

7. compute nrSR mod'=
8. verify if (R'=R)
9. return true
10. else
11. return false
12. end if
13. end procedure

(9)

(8)

 (11)

Fig. 2. Efficient and Secure Storage Processing Model

(b) Verification Phase

User CSP TPA

TagGen←Ti

Encryption←F'

PR

KeyGen←PK

(a) Setup Phase

TPA CSP

Chalenge←chal
 ProofGen←R

ProofGen←R
Chalenge←chal

Checkproof

Checkproof

(c) Dynamic Data operations and
 Verification Phase

 User CSP

PrepareUpdate
(Mod/Ins/del)
 Execute

Update

Challenge
UpdateReponse

Check
Update

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 267

4.4. Dynamic Data Operations
 The proposed scheme also supports dynamic data
operations at block level [33] while maintaining same
security assurance, such as Block Modification (BM),
Block Insertion (BI) and Block Deletion (BD). These
operations are performed by the server based on the user
request in the general form (BlockOP, j, m’i), where
BlockOp indicates the block operation such as BM, BI
and BD. The parameter j indicates the particular block to
be updated and m*i is the new block.

In order to update data in cloud, the user creates
a request and sends to the server. Upon receiving an
update request from the user, the server performs the
particular update operation (modification/insert/delete).

Here, we show that how our scheme supports
dynamic data operations efficiently:

 Algorithm 7: PrepareUpdate

1. Procedure:PrepareUpdate←(BM/BI/BD,j, m'i)
2. Select a update block mj
3. if(update==modification/insert)
4. Encrypt)(' sfmm kjj +←

5. Compute njj NPmT mod'←
6. Update=(BM/BI, j, m'i)
7. else if(update==deletion)
8. Update =((BD, j)
9. Send update request to the server
10. end if

11. end procedure

4.4.1. Block Modification (BM):
 Data modification is one of the frequently used
operations in cloud data storage. Suppose, the user wants
to modify the block mj with m'i,, then the user runs the
algorithm 7 to do the following:

1) Create a new block mj
2) Encrypt the new block using equation (2)

)(' sfmm kjj +← (14)
3) Compute new metadata using equation

nNmod' PmT jj ← (15)
4) Create update request (BM, j, mi) and sends to

the server.
5) The Metadata sends to TPA for later verification

Upon receiving an update request, the server replace the
block m'i with m'j and construct update version of the file
F'' by running algorithm 8.

 Algorithm 8: ExecuteUpdate
1. Procedure: ExecuteUpdate←{F''}
2. if(update==modification)
3. replace mi with m'j in the file F'
4. update file F''
5. else if(update==insert)
6. insert m*x before mi or append
7. else if(update==deletion)
8. delete mi from file F'
9. update the file F''
10. move all blocks backward after ith block
11. end if
12. end procedure

4.4.2. Block Insertion (BI)

 In this operation, the user wants to insert a
new block m* after position j in the file F'= {m'1,..,m'n}.
The block insertion operation changes the logical
structure of the file; the proposed scheme can perform the
block insertion operation without re-computing metadata
of all blocks that have been shifted after inserting a block,
because block index is not included in the metadata. To
perform an insertion of a new block m* after position j in
a file, the user runs algorithm 7 to do the following:

1. Create a new block m*j
2. Encrypt the new block

)(*' sfmm kjj +←
 (16)

3. Compute new metadata

njj NPmT mod'* ← (17)
4. Create update request (BI, j, m'i) and sends

to the server.
5. The Metadata sends to TPA for later

verification
Upon receiving the update request, the server replace the
block m’j with m'j and construct update version of the file
F'' by run the algorithm 8.

4.4.3. Block Deletion (BD)

The Block deletion operation is the opposite of
insertion operation. When one block is deleted, all
subsequent blocks are moved one step forward. Suppose,
the user wants to delete a specific data block at position j
from the file F', creates a delete request (BD, j), sends to
the server and also sends request to the TPA to delete
corresponding block metadata. Upon receiving a delete
request from the user, the server deletes the block m'j
from the file and constructs update version of the file F''.
Similarly, the TPA deletes corresponding metadata. Here,
deletion of metadata do not depends on other block
metadata. The detail of delete operation is given in
algorithm 8.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 268

4.4.4. Verification
 To ensure the security of dynamic data

operations, the user verifies the integrity of updated block
immediately after updating as follows:

1) The user challenges the server immediately for
the proof of update operation i.e.

 rPQ = (18)
2) Upon receiving a request from the user, the

server computes a response for updated block
and returns to the user:

nPmR jj mod'← (19)
3) After receiving an update response from the

server, the user verifies whether response is
matched with metadata of particular block by
running algorithm 9, if it returns true, server has
been updated data successfully otherwise not.

Algorithm 9 : VerifyUpdate

1. Procedure: VerifyUpdate(pk, Q, R')→{1,0 }
2. if(update==modification/insert)
3. if(Tj=Rj)
4. return 1
5. else
6. return 0
7. end if
8. else if(update==deletion)
9. verification directly starts from static case
10. end if
11. end procedure

 In next section, we analyze the security of our scheme.
5. Security Analysis

In this section, we present the formal security
analysis of the proposed scheme. That means integrity
and confidentiality of data stored in cloud.

5.1. Integrity
To ensure the integrity, we need three properties:

Completeness, Soundness and Probability Detection.
Here, we define these terms as follows: for completeness,
soundness [30] and Probability Detection [24]
Completeness: After receiving a challenge from the
verifier, if server honestly computes a correct integrity
proof, the verifier always accepts the proof as valid.
Soundness: After receiving a challenge from the verifier,
the server dishonestly computes the integrity proof by
missing some data bits, the verifier accepts with
negligible probability.
Probability Detection: After receiving a response from
the server, the verifier check whether response is valid or
not? If it is not valid, then the verifier detects the
corruptions with high probability.

In our integrity analysis, we have depended on
the Finding order of elliptic curve and Elliptic curve
discrete logarithm problem denoted by ELDL problems.
1) Finding the order of elliptic curves:

The order of elliptic curve over the ring Zn is: let
n=pq is defined in [38,] as Nn =lcm(#Ep(a, b), #Eq(a,
b)). Nn is the order of the curve, i.e. for any Pε En(a,
b) and any integer k, such that
 (k Nn+1)P=P. (20)
If(a=0 and p≡q≡2 mod 3) or (b=0 and p≡q≡3 mod 4),
the order of En(a, b) is equal to Nn. The given
Nn =lcm(#Ep(a, b), #Eq(a, b))= lcm(p+1, q+1)
(21)
Solving Nn is computationally equitant to factoring
the corresponding number n.

 2) Elliptic Curve Discrete Logarithm
Problem(ECDLP)
Consider the equation Q=rp where Q, Pε En(a, b) and
r<n. it is relatively hard to determine r given Q and P.

Theorem 1. The proposed protocol is complete

Proof: Here, we are proving this theorem according
to the definition of sound and commutative property
of point multiplication in an elliptic curve [30].

 we have RR ='

∑

∏

∏

=

=

=

′=

′=

==

=

c

j
ij

ni

c

j
j

kji

c

j
j

nPma

nNPma

jfawherenTaS

nrSR

j

j

j

1

1

1

mod

mod)mod(

)(mod

mod'

R

nPmar

nPmar

nrSR

c

j
ij

i

c

j
j

j

j

=

′=

′=

=

∑

∏

=

=

)mod(

)mod((

mod'

1

1

From the equation (13), the protocol is
complete or valid. Then the verifier is
“probabilistically” assured that server still holds data
safely. In reality, verifier only verifies that server holds
the j [1, c] selective blocks where j is chosen randomly.

Theorem 2: The proposed protocol is sound
 Proof: In this proof, we show that our protocol is
sound against dishonest server based on previous
transactions and pre-computed metadata. There are four

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 269

possibilities that the server can compute the integrity
proof without storing the user’s data:
1) The server guessed or use pre-computed value.
However, guessing occurs with negligible probability and
pre-computing the correct response is not possible
because each time the verifier challenge the server with a
fresh challenge.
2) Other option is to cheat user, the server replayed the
previous response. In this case, the server would have to
find r from challenge chal to compute the correct proof.
since r is chosen randomly, finding r is hard based on
ELDL problem.
3) Another option for the server to cheat user, he has an
algorithm to compute m'i mod Nn with inputs instead of
storing m'i[1≤i≤n]. But this option is not possible, because,
the server cannot compute Nn based on the hardness of
solving the order of elliptic curve En(0, b) as we discussed
above.
4) Last option for server is, if the server does not store the
data {m'i} and it may try to collude with the other servers
for storing the same data. However, this option is not
feasible, since data stored at each server is securely
encrypted using Sobol Random Function (SRF). The f is a
keyed one-way function and s is a secrete parameter, so,
no one except the user can retrieve the original data mi
from m'i.

All these options lead to contradiction; so the server
cannot compute response without storing the data. Hence,
our protocol is complete.
Probability Detection

Here, we investigate how the probabilistic nature of
the proposed protocol makes it possible to enforce
integrity. We are making the following assumptions:
• The verifier’s random selection of indexes is

uniform, i.e., for n blocks, the probability to pick
any block is 1/n.

• If an attacker removes a portion d/n of data from the
storage file, this portion is referred to as the
corruption of the file.

• The verifier performs on average c challenges: 1≤ c
≤n (n is the number of blocks) and detects the
corruption with high probability.

 The detection probability Pd of disrupted blocks is an
important parameter to guarantee that these blocks can be
modified or detected in a time. We have detection of
probability is:

 c
n
d

dP)(11 −−= (22)

For a given probability of detection of a data corruption, it
is possible to probabilistically determine the average
number of challenges that the verifier should perform to
achieve the probability of detection. The number of
challenges c can be derived as follows[30]:

)1(log
1 d

n
d Pc −=

−
 (23)

Fig. 3 plots Pd for different values of n, c, d. To
understand the importance of Fig. 3, suppose that if a
fraction of the data file is corrupted, the Sobol’ sequence
achieves detection with high probability in a few number
of blocks to challenge, while pseudorandom data requires
more blocks and even sometimes it may not detect the
corruptions, since it do not covers the whole data in the
file while verifying the data integrity. For example if
d=1%n (data corruption) is corrupted, the proposed
scheme using sobol sequence detects corruption with 99%
in 4%n blocks whereas existing probabilistic checking
methods using pseudorandom sequence requires 10%n
blocks and sometimes these blocks may not detect the
corruption. Since, sobol sequence is more uniform than
pseudo random sequence.
 Therefore, the proposed method is more secure
and efficient than existing probabilistic remote data
checking methods.

Monte-Carlo Results.
 Now, we turn to Monte-Carlo simulation to
determine uniformity of random sequences. For the
goodness of random numbers, we calculated the Monte
Carlo integration using random numbers. The integration
of a function f(x) in the s-dimensional unit cube Is. we are
in fact calculating the average of the function at a set of
randomly sample points. Where there are N sample points
in the integral is:

)'(1
1
∑
=

=
N

i
xf

N
V

Where v is used to denote the approximation to the
integral and x1, x1,.. ,xN are the N, s-dimensional sample
points. The Monte Carlo integration of V sampling in the
region -1<x'<1 for the two cases: uncorrelated random
numbers (pseudorandom sequence) and Sobol sequence.
If pseudo-random sequence is used, the points x' will be
independently and identically distributed, the estimate the
expected error of integral is N-1/2, while sobol sequence is
used, whose fractional error decreases of N-1. In Figure 4
we presented for calculation of six dimensional integral is:

654321

1

0

1

0

1

0

1

0

1

0

1

0

1

0

6

1

)cos((dxdxdxdxdxdxixiI i
i

∫ ∫ ∫ ∫ ∫ ∫ ∫∏
=

=

The exact value of integral is:

∏
=

=
6

1

)sin(
i

iI

Fig.4 shows that the pseudorandom sequence gives worst
performance, whilst Sobol Sequence gives rapid
convergence to the solution. To conclude that it has been
shown that Sobol sequence can evaluate integrals more
efficient than pseudorandom sequences.

(25)

(24)

(26)

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 270

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

c(number of queried blocks)(as percentage of n)

n(
to

ta
l n

um
be

r o
f b

lo
ck

s)

0.99%
0.9%
0.8%
0.7%
0.6%
0.5%

0 20 40 60 80 100 120 140 160 180 200
-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Number of Points(in thousands)

V
al

ue
 o

f i
nt

eg
ra

l

Pseudorandom Data
Sobol Sequence

 Fig. 4. Monte Carlo simulation using random numbers

5.2. Confidentiality
 Now, we analyze the confidentiality of our

scheme: The stored data in cloud cannot be leaked to an
malicious attackers (servers and TPA). In this analysis, we
depend on the hardness of the Elliptive Curve Diffie-
Hellman (ECHP) and Elliptive Curve Discrete Logarithm
(ECDL) problems.

Theorem 3: The proposed protocol is confidential
against data leakage to attacker.

We prove this theorem under different attacks:
1) The secret parameter s cannot be derived by a

malicious user eavesdropping on the communication
link between the user and server because of Elliptive
Curve Diffie-Hellman (ECDH) problem. The public
parameter {b,n,P} cannot help the adversary to infer
or calculate any useful information that can reveal
the shared key between the user and server.

2) Suppose, If the malicious server wants to access
the data from the encrypted file F'=mi'. But it is not
possible, because in order to access the encrypted
data, he should need a secrete parameter, this secrete
key chosen by user randomly. If server try to get the

0 1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

c(number of queried blocks)(as percentage of n)

n(
to

ta
l n

um
be

r o
f b

lo
ck

s)

0.99%
0.9%
0.8%
0.7%
0.6%
0.5%

secret key by using different combinations of public
parameters but fail to do so due to the ECDL problem.
Hence, the server cannot learn anything from F'.
3) The TPA has Ti ← m'i P(mod Nn). If he tries to
access data content from metadata, the user computes
metadata over encrypted the data using secrete key.
However, it is not possible because the secrete
parameter chosen by the user from random. So there
is no chance to TPA get secrete parameter using
public key and metadata. Hence, The TPA cannot
learn anything from metadata Ti .

Therefore on the basis of ECDH and ECDL problems,
our protocol is confidential against data leakage.

6. Performance Analysis and Experimental
Results
6.1 Performance Analysis

In this section, we analyze the performance of
our scheme in terms of storage, communication and
computation complexity.
Storage cost:
 Here, we detail the storage cost required by the client,
TPA and server.
User Side: The user needs to store the only secrete
parameter. The storage cost for that is O (1).
Server Side: the server needs to be store the complete
file, the cost for storage file is O (n) bits.
TPA or Verifier: the verifier needs to store metadata and
public key. The metadata is a relatively smaller than
original file, so storage cost for metadata is O (1).
Communication Cost:

 Here, we consider the communication cost between
the server and verifier during verification phase. The
challenge sent by the verifier to the server, which consists
of O(1) and the response(it is a small size compare to
original file) sent by server to the verifier, which consists
 of O(1). Thus, total communication cost is O (1).

(b) z=1%l using pseudorandom sequence

(a) z=1%l using Sobol Sequence
Fig. 3: The detection probability pd against data corruption. We show pd as a function of l(total number of rows) and r(the number of rows
queried by the user, shown as percentage of l) for value of z(the number of rows modified by the adversary).

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 271

Computation Cost:
 We analyze the computation cost of the user,

verifier and server as follows:
User: during the setup phase, the user generates a private
key and public key whose cost is O(1) . Then, to encrypt a
file, the user needs to perform integer addition, its cost is
O(n). Finally, computes the metadata by performing n-bit
point multiplications whose cost is O(1). Hence, total
computation cost of the user is: O (1).
Verifier: During the verification phase, the TPA or
verifier needs to generate three random numbers ⟨kSRF,j,
r⟩, then compute

SRPkc π= (c) and Q = rP, whose cost

is O(1). Again, after receiving the response, the verifier
re-generates {aj} j=[1,c], the computation cost of each

jijma ′ corresponds to the sum of point multiplication of

two bits. Finally, the verifier computes R', the cost of R'
is a two point multiplications plus sum of 2 bit integer
plus generating random numbers cost, which is O(1)
respectively. Hence, the total computation cost at verifier
side is O(1).
Server Side: During the verification phase, the server
needs to generate n-Sobolrandom b-bit integers ai , then

it computes
ji

c

j
jmab ′= ∑

=1
R

nPmar
ji

n

i
j mod'

1
∑
=

= The computation of each

jijma ′ corresponds to the sum of point multiplication of

two bits. The computation cost of
jijma ′ is O(1). Next,

the server computes a proof, which consists of point
multiplications in ProofGen algorithm, its cost is O (1).
The total computation cost of server for generating
integrity proof (response) is O(1).

In table 1, we summarized the storage,
communication and computation costs.

Table 1: Summary of Storage, Communication and
Computation cost of Proposed Protocol

 Storage Cost Communication
Cost

Computation
Cost

Verif
ier

Serve
r

Verif
ier Server User Verifier Server

O(1) O(n) O(1) O(1) O(1)

O(1)

O(1)

6.2. Experimental Results

In this section, we present the experimental
results of our protocol. All experiments conducted using
C++ on system with dual core 2-GHZ processor and 4GB
RAM running Windows 2007. In our implementation, we
use MIRACL library version 5.4.2 to achieve better
security work on elliptic curve with 160-bit group order
instead of RSA on 1024 bits. Here, we are measuring total

time for computation cost of the verifier and server using
ECC and RSA respectively. .

100∗=
−

RSA
ECCRSA

Speedup (27)

Then, we compare computation cost of our protocol with
RSA-based remote data checking protocols, which
includes the verifier, server and user computation costs
and presented results in table 2, 3 & 4.

Table 2: Computation Cost at Verifier using RSA [13] and
ECC based schemes.

File
Size

Verifier side
using RSA[33]

Verifier Side
using ECC

Speedup

10MB 424.37 ms 316.26 ms 25%
20MB 482.81 ms 342.43 ms 29%
30MB 561.62 ms 376.03 ms 32%
40MB 641.46 ms 415.09 ms 35%
50MB 743.64 ms 465.13 ms 38%
Table 2 shows that the total computation cost of verifier
for our proposed scheme is faster than existing RSA based
scheme [33]
Table 3: Computation Cost at Server with RSA based
scheme and ECC scheme
l(bits) Server Side

with RSA[33]
Server Side
with ECC

Speedup(%)

10MB 388.01 ms 275.11 ms 29%
20MB 447.62 ms 312.43 ms 30%
30MB 508.39 ms 348.21 ms 31%
40MB 562.67 ms 381.21 ms 32%
50MB 625.16 ms 418.76 ms 33%

Table 3 shows that the total computation cost of the server
for proposed scheme is faster than existing RSA based
scheme [33].

Table 4: Metadata Computation Cost at user with RSA and
ECC based schemes
 l(bits) Server Side

with RSA[33]
Server Side
with ECC

SpeedUp(%)

10MB 244.11 ms 183.06 ms 25%
20MB 296.41 ms 218.32 ms 26%
30MB 352.53 ms 253.38 ms 28%
40MB 403.17 ms 289.63 ms 29%
50MB 467.26 ms 323.92 ms 30%

Table 4 shows that the total computation cost of
metadata at user side in our scheme is faster than existing
RSA based scheme [33]

6.3. Comparison with Existing Schemes

We compared our scheme with existing RSA
based verification schemes and probabilistic verifications
schemes

Most of the schemes that use RSA based
verification but the key length for secure RSA use as
increased over recent years and this put a heavier
processing burden on applications using RSA. To avoid
this problem, we proposed an ECC based verification
scheme. The principal of ECC compared to RSA is that it

and

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 272

appear to offer equal security for a far smaller key size, thereby it reduced the computation overhead.
 Table 5: Comparisons between Proposed Protocol and selective Existing Protocols

 RDC
[13]

C.wang
[21]

Q.wang
[23]

Yan[24] C.wang
[30]

Hao[32] Syam[27] Prposed
protocol

Type of Guaranty Prob Prob Prob Prob Prob Deter Prob Prob
Integrity Partial Partial Partial Partial Partial Yes Yes Yes
Confidentiality no no no no Partial Partial no Yes
Public
Verifiability no Yes Yes Yes Yes Yes no Yes

Data Dynamics no Partial Yes Yes Yes Yes Partial Yes
Communication
complexity O(1) O(clogn) O(logn) O(s) O(logn) O(1) O(1) O(1)

Server
Computation O(1) O(clogn) O(logn) O(c+s) O(nlogn) O(n) O(clogn) O(1)

Verifier
computation O(1) O(clogn) O(logn) O(c+s) O(logn) O(n) O(clogn) O(1)

Probability
Detection O(N-1/2) O(N-1/2) O(N-1/2) O(N-1/2) O(N-1/2) O(N-1/2) O(N-1) O(N-1)

Prob: Probabilistic Deter: Deterministic
Next, we compare our scheme with probabilistic

verification schemes. These schemes verify the integrity
of outsourced data based on pseudorandom sequence but
they do not provide satisfactory integrity assurance to the
users i.e. sometimes they may not detect the data
corruptions in cloud. Because, pseudorandom sequence is
not uniform (uncorrelated random numbers), and it will
take more time to detect data corruption, so its time
consuming whereas proposed protocol verifies the
integrity of the data using Sobol sequence. Our scheme
should detect all data corruptions with less number of
blocks since sobol sequence covers the entire data in the
file more uniformly than pseudorandom sequence.

Finally, the proposed protocol is private against
unauthorized data leakage because, we are encrypting the
data before storing in cloud. In Table 5, we summarize the
comparison between the selective existing protocols and
proposed protocol.

7. Conclusion

In this paper, we have studied the problem of
Integrity and Confidentiality of data storage in cloud
computing and proposed an efficient and secure protocol
using ECC and Sobol sequence. The proposed method is
mainly suitable for thin users who have less resources and
limited computing capability. It satisfies the all security
and performance requirements of cloud data storage. Our
method also supports public verifiability that enables TPA
to verify the integrity of data without retrieving original
data from the server and probability detects data
corruptions. Moreover, our scheme also supports dynamic
data operations, which performed by the user on data
stored in cloud while maintaining same security assurance.
We have proved that proposed scheme is secure in terms
of integrity and confidentiality through security analysis.
Through, performance analysis and experimental results
proved that proposed scheme is efficient. Compared with

previously proposed protocols, we have also proved that
proposed scheme is more secure and efficient.
Acknowledgments

The first author would like to acknowledge Prof.
J.A.K. Tareen, vice-chancellor for availing good research
environment and providing scholarship. The First author
also would like to thank HRD ministry of India for
providing the UGC-RGNF Fellowship.
References

[1] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I.
Brandic.“Cloud Computing and Emerging IT Platforms:
Vision, Hype, and Reality for Delivering Computing as
the 5th Utility,” Future Generation Computer Systems,
vol. 25, no. 6, June 2009, pp 599–616.

[2] Amazon.com, “Amazon Web Services (AWS),” Online at
http://aws.amazon.com, 2008.

[3] Apple “ICloud” Online
at http://www.apple.com/icloud/what-is.html 2010.

[4] T Mather, S Kumaraswamy, and S Latif “Cloud Security
and Privacy”, O’REILLY Publication, first edition, sep-
2009.

[5] H. Takabi, J.B.D. Joshi, and G. Ahn, “Security and
Privacy Challenges in Cloud Computing Environments”,
Article in IEEE Security and Privacy, vol. 8, no.6, Nov-
Dec. 2010, pp. 24-31.

[6] N. Gohring, “Amazon’s S3 down for several hours,”
Online at http://www.pcworld.com/businesscenter/ articl/
142549/amasons_down_for_sever_hours.html”, 2008 .

[7] J. Kincaid, “MediaMax/TheLinkup Closes Its Doors”,Online at
http://www.techcrunch.com/2008/07/10/mediamaxthelink
up-closes-its-doors/, July 2008.

[8] Y. Deswarte, J.-J. Quisquater, and A. Saidane. “Remote
integrity checking”. In Proc. of Conference on Integrity
and Internal Control in Information Systems (IICIS’03),
November 2003. lausanne, Switzerland.

[9] D. L. G. Filho and P. S. L. M. Barreto, “Demonstrating
Data Possession and Uncheatable Data Transfer,”
cryptology ePrint Archive, Report 2006/150,
2006, http://eprint.iacr.org/.

[10] G. Caronni and M. Waldvogel, “Establishing Trust in
Distributed Storage Providers”, In Third IEEE P2P
Conference, Linkoping 03, 2003.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 273

http://www.apple.com/icloud/what-is.html
http://eprint.iacr.org/

[11] P. Golle, S. Jarecki and I. Mironov, “Cryptographic
Primitives Enforcing Communication and Storage
Complexity”, In proc. of Financial Crypto 2002.
Southampton, Bermuda.

[12] F. Sebe. J. Domingo-Ferrer, and A. Martinez-Balleste,
Y. Deswarte, and J.-J. Quisquater, “Efficient Remote Data
Possession Checking in Critical Information
Infrastucures”, IEEE Trans. Knowledge and Data
Engineering, vol. 20, no. 8, aug-2008, pp. 1034-1038

[13] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L.
Kissner, Z. Peterson,and D. Song, “Remote Data
Checking using Provable Data Possession,” ACM Trans.
ACM Transactions on Information and System Security,
Vol. 14, No. 1, Article 12, may 2011, pp. 12.1–12.34.

[14] A. Juels and J. Burton S. Kaliski, “PORs: Proofs of
Retrievability for Large Files,” Proc. of CCS ’07, pp. 584–
597, 2007.Alexandria, Va, USA.

[15] G Ateniese, S. Kamara, J. Katz, “Proofs of Storage from
homomorphic identification protocols”. In Proc. of
ASIACRYPT '09, 2009, pp. 319-333.Tokyo, Japan.

[16] H.Shacham and B.Waters, “Compact Proofs of
Retrievability”, Proc.14th Int’l Conference Theory and
Application of Cryptology and Information Security:
Advances in Cryptology (ASIACRYPT), LNCS
5350,2008, pp.90-107. Melborne, Austrilia.

[17] Y. Dodis, S. Vadhan, D. Wichs. “Proofs of retrievability
via hardness amplification”. In: Proc. of TCC '09, 2009,
pp.109--127.CA, USA.

[18] K. D. Bowers, A. Juels, and A. Oprea, “Proofs of
Retrievability: Theory and Implementation,” Cryptology
ePrint Archive, Report 2008/175,
2008 http://eprint.iacr.org/.

[19] K. D. Bowers, A. Juels, and A. Oprea, “HAIL: A High-
Availability and Integrity Layer for Cloud Storage,”
Cryptology ePrint Archive, Report 2008/489,
2008, http://eprint.iacr.org/.

[20] T. S. J. Schwarz and E. L. Miller, “Store, Forget, and
Check: Using Algebraic Signatures to Check Remotely
Administered Storage,”Proc.of ICDCS’06,2006,pp.12–21,
Lisboa, Portugal.

[21] R. Curtmola, O. Khan, and R. Burns. “Robust remote data
checking”. In: Proc. of StorageSS '08, 2008, pp.63-68,
Virginal, USA.

[22] G. Ateniese, R. D. Pietro, L. V. Mancini, and G. Tsudik,
“Scalable and Efficient Provable Data Possession,” Proc.
of SecureComm ’08, pp. 1–10, 2008.Istanbul, Turkey.

[23] C. Wang, Q. Wang, K. Ren, N. cao and W. Lou ,
“Towards Secure and Dependable Storage Services in
Cloud Computing”, Accepted for publication in future
issue of IEEE Trans. Service Computing.
DOI:10.1109/TSC.2011.24.

[24] C. Erway, A. K¨upc¨u, C. Papamanthou, and R.
Tamassia, “Dynamic provable data possession,” in
CCS’09, ACM, 2009, pp. 213–222, Chicago, USA.

[25] Q. Wang, C. Wang, K. Ren W. Lou, and J. Li, “Enabling
public verifiability and data dynamics for storage security
in cloud computing,” IEEE Trans. Parallel and Distributed
Computing.VOL.22, NO.5, May 2011, pp.847-859

[26] Yan Zhu, Huaixi Wang, Zexing Hu, Gail-J. Ahn, Hongxin
Hu, Stephen S. Yau, “Dynamic Audit Services for
Integrity Verification of Outsourced Storages in Clouds,”
Proc. of the 26th ACM Symposium on Applied
Computing (SAC), Tunghai University, TaiChung,
Taiwan, March 21-24, 2011.

[27] P. Syam Kumar, R. Subramanian, “Homomorpic
Distributed Verification Ptorotocol for Ensuring Data
Storage in Cloud Computing”. International Journal of
Information, VOL. 14, NO.10, OCT-2011, pp.3465-3476.

[28] M. A. Shah, M. Baker, J. C. Mogul, and R. Swaminathan,
“Auditing to Keep Online Storage Services Honest,” Proc.
11th USENIX Workshop on Hot Topics in Operating
Systems (HOTOS ’07), 2007, pp. 1–6, CA, USA.

[29] M. A. Shah, R. Swaminathan, and M. Baker, “Privacy-
preserving audit and extraction of digital contents,”
Cryptology ePrint Archive, Report 2008/186,
2008, http://eprint.iacr.org/.

[30] N. Oualha, M. Onen, Y. Roudier,., “A Security Protocol
for Self-Organizing Data Storage”. Tech. Rep.
EURECOM+2399, Institut Eurecom, 200 8, France.

[31] C. Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-
preserving public auditing for data storage security in
cloud computing,” In Proc. of IEEE INFOCOM’10, ,
March 2010. San Diego, CA, USA.

[32] Z. Hao and N. Yu, “A multiple-replica remote data
possession checking protocol with public verifiability,” in
Second International Symposium on Data, Privacy, and E-
Commerce , 2010.Buffalo, Niagara Falls.

[33] Z. Hao, S. Zhong, and N. Yu, “A Privacy-Preserving
Remote Data Integrity Checking Protocol with Data
Dynamics and Public Verifiability”, Accepted for
publication in future issue of IEEE Trans. Knowledge and
Data Engineering, DOI: 10.1109/TKDE.2011.62

[34] A. F. Barsoum and M. A. Hasan, “Provable possession
and replication of data over cloud servers,” Centre For
Applied Cryptographic Research (CACR), University of
Waterloo,Report2010/32,2010,http://www.cacr.math.uwat
erloo.ca/ techreports/2010/cacr2010- 32.pdf.

[35] L. Chen, G. Guo, “An Efficient Remote Data Possession
Checking in Cloud Storage”, International Journal of
Digital Content Technology and its Applications. Volume
5, Number 4, April 2011, pp.43-50.

[36] J. Yang, H. Wang, J. Wang1, C. Tan and D. Yu, “Provable
Data Possession of Resource-constrained Mobile Devices
in Cloud Computing” JOURNAL OF NETWORKS,
VOL. 6, NO.7, JULY 2011, pp.1033-40.

[37] V. Miller, “Uses of elliptic curves in cryptography”,
advances in Cryptology, Proceedings of Crypto’85,
Lecture Notes in Computer Science, 218 Springer-Verlag,
pp.417-426. 1986.

[38] K. Koyama, U. Maurer, T. Okamoto, and S. Vanstone,
“New Public-Key Schemes Based on Elliptic Curves
over the Ring Zn”, Advances in Cryptology -
CRYPTO '91, Lecture Notes in Computer Science,
Springer-Verlag, vol. 576, Aug 1991, pp. 252-266,.

[39] Brately P and Fox B L “Algorithm 659: Implementing
Sobol’s Quasi-random Sequence Generator” ACM Trans.
Math. Software 14 (1), (1988) , pp. 88–100.

1P Syam Kumar: is currently Ph.D student (Computer Science), in
department of Computer Science, School of Engineering and
technology, Pondicherry University, Puducherry, India. He received
M.Tech Degree in 2006 from the department of Computer Science and
Technology in Andhra University, India, and received B.Tech
(graduation) in 2003 from CSE department, Vagdevi college of
Engineering, JNTU Warangal, India. He is especially interested on
Network Security, Cloud Computing, Distributed Systems etc.

2R. Subramanian: is Professor of Computer Science department, School
of Engineering and technology, Pondicherry University, Puducherry,
India. He received his Ph.D degree of The Department of Mathematics,
IIT Delhi, India in 1989. He received a M.Sc . degree in 1984 from IIT
Delhi, India and he received B.Sc. form Madurai Kamaraj University in
1982, Tamilanadu, India. He is especially interested in Parallel &
Distributed Algorithms, Cloud Computing, Evolutionary Algorithms,
Robotics, etc.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 274

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.cacr.math.uwaterloo.ca/%20techreports/2010/cacr2010-%2032.pdf
http://www.cacr.math.uwaterloo.ca/%20techreports/2010/cacr2010-%2032.pdf

