
 

 

PPNOCS: Performance and Power Network on Chip Simulator 
based on SystemC 

El Sayed M. Saad1, Sameh A. Salem1, Medhat H. Awadalla1,2, and Ahmed M. Mostafa1 
 

1 Communication, Electronics and Computers Department, Faculty of Engineering, Helwan University, 
Helwan, Egypt 

 
2Electrical and Computer Engineering Department, SQU University, Oman 

 
 
 

Abstract 
As technology moves towards multi-core system-on-chips (SoCs), 
networks-on-chip (NoCs) are emerging as the scalable fabric for 
interconnecting the cores. Network-on-Chip architectures have a 
wide variety of parameters that can be adapted to the designer’s 
requirements. This paper proposes a performance and power 
network on chip simulator (PPNOCS) based on SystemC to 
explore the impact of various architectural level parameters of 
the on-chip interconnection network elements on its performance 
and power. PPNOCS supports an arbitrary size of mesh and torus 
topology, adopts five classic routing algorithms and seven 
synthetic traffic patterns. Developers also can develop and verify 
their own network design by modifying the corresponding 
modules. Experiments of using this simulator are carried out to 
study the power, latency and throughput of a 4x4 multi-core 
mesh network topology. Results show that PPNOCS provides a 
fast and convenient platform for researching and verification of 
NoC architectures and routing algorithms. 
Keywords: Network-on-Chip, Performance, Power, Simulation, 
SystemC. 

1. Introduction 

Networks-on-chip [1] are critical elements of modern 
system-on-chip as well as multi-core designs. They consist 
of routers, links, and well-defined network interfaces. 
Packet-switched interconnection networks [2] facilitate 
communication between cores by routing packets between 
them. The structured and localized wiring of such a NoC 
design simplifies timing convergence and enables robust 
design that scales well with device performance.  
One major difficulty that faces NoC architects is to select a 
communication network that suits a specific application or 
a range of specific applications with the constraints of cost, 
power and performance. Design decisions are typically 
made on the basis of simulation before resorting to 
emulation or implementation since it is cheap and flexible. 
To make a right decision on the network architecture, a 
simulation tool should enable to faster explore the 
architectural design space and assess design quality 
regarding performance, cost, and power. 

SystemC [3] and Transaction Level Modeling (TLM) [4] 
have become quite popular and have found a relatively 
wide range of applications both in academia and industry 
[5]. SystemC is an extension of C++, in the form of a 
hardware-oriented library of C++ classes [6]. TLM is a 
library of functions built on the top of SystemC. In the 
TLM terminology, a transaction represents the information 
being exchanged between the different system modules. 
TLM is particularly interested in separating the 
computational component from the communication 
component. For this purpose, TLM provides constructs to 
efficiently model the inter-module communication such as 
channels, interfaces and ports, which are objects provided 
by SystemC. 
This paper presents a performance and power network on 
chip simulator (PPNOCS) based on SystemC, to explore 
the impact of various architectural level parameters of the 
on-chip interconnection network elements on its 
performance and power. A general modularized NoC node 
structure is first realized under SystemC, and then 
connected to form the network. Users also can develop 
their own network topology and routing algorithm by 
modifying the corresponding modules. Then they can 
verify their design by loading different network traffic 
patterns to run the simulation. 
The paper is organized as follows: Section 2 provides a 
brief overview of related work. The simulation platform is 
described in Section 3. Experimental results are discussed 
in Section 4. Finally, Section 5 concludes the paper. 

2. Related Work 

With the emergence of the NoC concept, researchers have 
realized the need to evaluate NoC systems. This has led to 
the use of existing network simulators, which have been 
adapted for on-chip communication networks [7]. Xu et al. 
employed the OPNET network simulator for simulation of 
on-chip network systems [8]. Such an approach leverages 
the already existing tool, which has had time to mature. 
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However, on-chip communication is different than 
traditional networks and parallel computer communication 
networks. NoC simulation environment must accurately 
reflect on-chip behaviors. Nostrum is another attempt of 
NoC simulation developed at KTH, Stockholm and it 
offers a packet switched communication platform based on 
the traditional OSI model of computer networks [9]. 
Initially, mesh topology is selected to prove the concept of 
Nostrum simulator. Recently, attempts have also been 
made to extend Nostrum to support both regular and 
irregular NoC topologies [10]. 
Many simulation tools have been developed to research the 
design of router architectures [11, 12] and NoC topologies 
[13] with varying area/performance [14] trade-offs for 
general purpose SoCs. Kogel et. al. [15] presents a 
modular exploration framework to capture performance of 
point-to-point, shared bus and crossbar topologies. The 
impact of varying topologies, link and router parameters 
on the overall throughput, area and power consumption of 
SoCs using relevant traffic models is discussed in [16]. 
Orion [17] is a power-performance interconnection 
network simulator that is capable of providing power and 
performance statistics. Orion model estimates power 
consumed by router elements (crossbars, FIFOs and 
arbiters) by calculating switching capacitances of 
individual circuit elements. Most of these tools do not 
allow for exploration of the various link level options of 
wire width, pitch, serialization, repeater sizing, pipelining, 
supply voltage and operating frequency. 
In [18], Madsen et al. presented a NoC model which, 
together with a multiprocessor real-time operating system 
(RTOS) are used to model and analyze the behavior of a 
complex system that has a real-time application running on 
it. Mesh and torus are implemented in their design. Nurmi 
et al. [19] proposed a simulation environment by creating a 
library of pre-designed communication blocks that can be 
selected from a component library and configured by 
automated tools. From simulation point of view, these 
simulation tools are flexible to perform NoC design 
exploration. However, they are limited in topologies, and 
performance metrics [20]. 
In this paper, the proposed simulation platform is built 
from the ground up for Network-on-Chip simulation. The 
platform is built in SystemC, and takes advantage of the 
low-level modeling available in SystemC communication 
primitives, while leveraging the efficiency of C++ to 
achieve a balance between accuracy and performance. The 
main contributions of our simulation platform include the 
following: 

• Explore the impact of various architectural level 
parameters of the on-chip interconnection network 
elements on its performance and power. 

• Owing to the general NoC node structure and 
modularization modeling, users can extend the 

simulator with their own routing algorithm and 
network topology. 

• PPNOCS provides a fast and convenient platform for 
researching and verification of various Network-on-
Chip architectural designs. 

3. Simulation Platform 

A wormhole-router provides the necessary fine-grained flow 
control in terms of buffer and latency requirements, while 
the addition of virtual-channels aids in boosting 
performance and circumventing message-dependent 
deadlock [21]. Furthermore, Quality-of-Service (QoS) 
enhancements can be achieved by prioritizing the allocation 
of virtual-channels and switch bandwidth. For these reasons, 
PPNOCS implements the generic virtual-channel router 
shown in figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Virtual-Channel Router 

The router has P input ports and P output ports, supporting 
N virtual-channels (VCs) per port. Virtual-channel flow 
control exploits an array of buffers at each input port. By 
allocating different packets to each of these buffers, flits 
from multiple packets may be sent in an interleaved manner 
over a single physical channel. This improves both 
throughput and latency by allowing blocked packets to be 
bypassed. 

3.1 PPNOCS Node Structure 

To enable easy extensibility of the simulation platform, 
PPNOCS develop a modularized architecture for the 
generic router. Figure 2 shows the developed PPNOCS 
node structure. 
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Fig. 2 PPNOCS node structure 
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In PPNOCS, a packet is divided into flow control digits or 
flits. A flit is the basic unit of bandwidth and storage 
allocation used by most flow control methods. The 
position of a flit in a packet determines whether it is a head 
flit, body flit, or tail flit. A head flit is the first flit of a 
packet and carries the packet’s routing information. A head 
flit is followed by zero or more body flits and a tail flit. In 
a very short packet, there may be no body flits. In the 
following, a brief description of each module in the 
PPNOCS node structure is given. 

3.1.1 Input Port Module 

Input port module consists of a set of virtual channel 
modules. Each virtual channel consists of a FIFO buffer. 
The user can determine the number of virtual channels and 
the depth of each buffer in terms of flits. Any flit arrives at 
the input port contains a virtual channel identifier (VC_ID) 
which determines in which virtual channel buffer it will be 
stored.  
All of the flow control mechanisms that use buffering need 
to know the availability of buffers at the downstream nodes. 
Then the upstream nodes will determine when a buffer is 
available to hold the next flit to be transmitted. This type 
of buffer management provides backpressure by informing 
the upstream nodes when they should stop flit transmission 
because all of the downstream flit buffers are full. Three 
types of low-level flow control mechanisms are in common 
use today to provide such backpressure: credit-based, 
on/off, and ack/nack [22]. PPNOCS implements the credit-
based flow control mechanism. With credit-based flow 
control, the upstream router keeps a count of the number of 
free flit buffers in each virtual channel downstream. Then, 
each time the upstream router forwards a flit, thus 
consuming a downstream buffer, it decrements the 
appropriate count. If the count reaches zero, all of the 
downstream buffers are full and no further flits can be 
forwarded until a buffer becomes available. Once the 
downstream router forwards a flit and frees the associated 
buffer, it sends a credit to the upstream router for 
incrementing the buffer count. 

3.1.2 Routing Computation Module 

When a head flit of a new packet arrives at the input port, a 
routing request along with the routing information is sent 
to the routing computation module. According to the 
routing algorithm a set of valid output ports is produced 
and sent back to the input port module. The number of 
outputs produced by the routing computation module will 
depend on the routing algorithm. If more than one output 
produced, the selection function randomly select one of 
these outputs. PPNOCS implements five routing 
algorithms: 

XY Routing Algorithm: XY routing is a dimension 
ordered routing which routes packets first in x- or 
horizontal direction to the correct column and then in y- or 
vertical direction to the receiver. XY routing suits well on 
a network using mesh or torus topology. Addresses of the 
routers are their xy-coordinates. XY routing never runs 
into deadlock or livelock [23]. Figure 3 shows an example 
of XY routing. 

 

 

 

 

Fig. 3 XY routing from router A to router B 

West-First Routing Algorithm: A west-first routing 
algorithm prevents all turns to west. So the packets going 
to west must be first transmitted as far to west as necessary. 
Figure 4 shows the allowed turns in the west-first routing. 
 
 
 
 
 

Fig. 4 Allowed turns in west-first routing 

North-Last Routing Algorithm: Turns away from north 
are not possible in a north-last routing algorithm. Thus the 
packets which need to be routed to north must be 
transferred there at last. Figure 5 shows the allowed turns 
in the north-last routing. 

 

 
 
 

Fig. 5 Allowed turns in north-last routing 

Negative-First Routing Algorithm: Negative-first 
routing algorithm allows all other turns except turns from 
positive direction to negative direction. Packet routings to 
negative directions must be done before anything else [24]. 
Figure 6 shows the allowed turns in the negative-first 
routing. 
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Fig. 6 Allowed turns in negative-first routing 

Fully Adaptive Routing Algorithm: Fully adaptive 
routing algorithm uses always a route which is not 
congested. The algorithm does not care although the route 
is not the shortest path between sender and receiver [22]. 

3.1.3 Virtual Channel Allocation Module 

After selecting a specific output port for the packet, the 
input port module sends a virtual channel request along 
with the output port number to the virtual channel 
allocation module. Then, the virtual channel allocator 
module sends a virtual channel request to the specified 
input port module in the downstream router. After 
receiving the VC_ID from the downstream router, the 
virtual channel allocator module sends it back to the input 
port module. 

3.1.4 Switch Allocation Module 

Each flit waiting in a virtual channel buffer and has 
available space in the downstream buffer can send a switch 
request to the switch allocator module. PPNOCS 
implements 5 × 5 (5-input × 5-output) input-first separable 
allocator. In an input first separable allocator, arbitration is 
first performed to select a single request at each input port. 
Then, the outputs of these input arbiters are input to a set 
of output arbiters to select a single request for each output 
port. The result is a legal matching, since there is at most 
one grant asserted for each input and for each output. The 
switch allocator module sends a switch reply for each input 
port module wins in the arbitration. If multiple VCs in the 
input port have been requested the same output port which 
is granted by the switch allocator, then they will be 
serviced in a Round Robin (RR) fashion. Upon granting 
the switch allocation requests, the switch allocation module 
sends a switch configuration signals to the crossbar switch 
module. 

3.1.5 Crossbar Switch Module 

Flits that have been granted passage on the crossbar are 
passed to the appropriate output ports. 

3.2 Traffic Patterns 

Application-driven workloads can be too cumbersome to 
develop and control [22]. This motivates the inclusion of 

synthetic workloads, which capture the salient aspects of 
the application-driven workloads, but can also be more 
easily designed and manipulated. Synthetic workloads are 
divided into three independent aspects: traffic patterns, 
injection processes, and packet length.  
Traffic pattern is the spatial distribution of messages in 
interconnection networks. This message distribution is 
represented with a traffic matrix, where each matrix 
element λs,d gives the fraction of traffic sent from node s 
destined to node d. Table 1 lists some common static 
traffic patterns used to evaluate interconnection networks 
[22]. 

Table 1: Network traffic patterns 
Name Pattern 
Random λsd = 1/N 
Bit complement di = ￢si 
Bit reverse di = sb-i-1 
Bit Rotation di = si+1 mod b 
Shuffle di = si-1 mod b 
Transpose di = si+b/2 mod b 
 
PPNOCS supports seven synthetic traffic patterns 
(Uniform Random, Hotspot, Bit Reversal, Bit Complement, 
Bit Rotation, Shuffle, and Matrix Transpose). 
 
Random traffic: In which each source is equally likely to 
send to each destination is the most commonly used traffic 
pattern in network evaluation. Random traffic is very 
benign because, by making the traffic uniformly distributed, 
it balances load even for topologies and routing algorithms 
that normally have very poor load balance. Some very bad 
topologies and routing algorithms look very good when 
evaluated only with random traffic [22]. 
 
Hotspot Traffic: In hotspot traffic pattern, there’s a 
particular node that will receive more traffic than other 
nodes. In PPNOCS, the hotspot is specified along with the 
percentage of the traffic dedicated to it. 
 
Bit Reversal, Bit Complement, Bit Rotation, Shuffle, 
and Matrix Transpose: These are called Bit permutation 
patterns, in which each bit di of the b-bit destination 
address is a function of one bit of the source address, sj 
where j is a function of i. permutation traffic patterns 
stresses the network topology or the routing algorithm 
because each source s sends all of its traffic to a single 
destination. 
Injection process determines the average number of 
packets it injects per cycle (injection rate). The most 
common injection processes used in network simulations is 
the Bernoulli process [22]. For a Bernoulli process with 
rate r, the injection process A is a random variable with the 
probability of injection a packet equal to the process rate, 
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P(A = 1) = r. PPNOCS implements the Bernoulli process 
and the user can specify the packet injection rate before 
running the simulation. Also, the packet length in terms of 
flits can be specified. 

3.3 Architecture Parameters 

This section summarizes the different architectural 
parameters that can be configured before running the 
simulation. Table 2 shows a brief description for each 
parameter that can be specified by PPNOCS. 

Table 2: Network Architectural Parameters 
Parameter Name Description 
Topology 2D Mesh or 2D Torus 
DimX Number of columns 
DimY Number of rows 
NUM_INPUTS  Number of input and output 

ports 
VC_NUM Number of virtual channels 

in each input port 
VC_BUFFER_SIZE Number of buffers for each 

virtual channel 
PACKET_INJECTION_RATE Injection rate (< =1) 
TRAFFIC_DISTRIBUTION Uniform Random, Hotspot, 

Bit Reversal, Bit 
Complement, Bit Rotation, 
Shuffle, and Matrix 
Transpose 

ROUTING_ALGORITHM XY, West-First, North-Last, 
Negative-First, and Fully 
Adaptive 

PACKET_SIZE Number of flits in the packet 
WARM_UP_TIME The number of clock cycles 

after which the simulator 
starts to collect statistics 

SIMULATION_TIME The number of clock cycles 
that have to be simulated. 

 

3.3 Performance Metrics 

A standard set of performance metrics can be used to 
compare and contrast different NoC architectures. The 
performance metrics evaluated by PPNOCS include 
throughput and packet latency [22]. 

3.3.1 Throughput 

Throughput is the rate at which packets are delivered by 
the network for a particular traffic pattern. It is measured 
by counting the packets that arrive at destinations over a 
time interval for each flow (source-destination pair) in the 
traffic pattern and computing from these flow rates the 
fraction of the traffic pattern delivered [22]. Throughput, 
or accepted traffic, is to be contrasted with demand, or 
offered traffic, which is the rate at which packets are 

generated by the Intellectual Property (IP) block. 
Throughput can be defined as follows [16]: 
 

Total number of packets received at their destinations 
 

(Number of IP blocks) x (Total Time in Cycles) 

3.3.2 Packet latency 

Transport latency is defined as the time (in clock cycles) 
that elapses from between the occurrence of head flit 
injection into the network at the source node and the 
occurrence of the tail flit reception at the destination node 
[25]. 
In order to reach the destination node from some starting 
source node, flits must travel through a path consisting of a 
set of routers and interconnects [19]. Depending on the 
source/destination pair and the routing algorithm, each 
packet may have a different latency [19]. Therefore, for a 
given packet Pi, the latency Li is defined as: 
 
Li = receiving time (tail flit of Pi) − sending time (head flit of Pi) 
 
Let F be the total number of packets reaching their 
destination IPs and let Li be the latency of packet Pi, 
where i ranges from 1 to F. The average packet latency, 
Lavg, is then calculated according to the following equation 
[19]: 
 

 
                                                                                                                                                                                        

3.4 Power Model 

In PPNOCS, a power model at flit level is proposed 
depending on the results obtained from the Intel 80-core 
teraflop chip [26]. To explain the proposed model, 
consider a source IP injects a head flit into the write port of 
the input port module. The virtual channel module writes 
the flit into the tail of the FIFO buffer and emits a buffer 
write event, which triggers the buffer power model to 
compute buffer write power Pwrite. After the routing 
module determines the output port to which the head flit 
will be sent, a request is sent to the switch allocator 
module for the desired output port. The allocator module 
performs the required arbitration and generates an 
arbitration event, which signals the arbiter power model to 
compute arbitration power Parbiter. Assuming the request is 
granted, the arbitration result is sent to the config port of 
the crossbar module. A grant signal is also sent to the grant 
port of the virtual channel module, leading to the read port 
of the buffer module activated. The flit is then read, 
emitting a buffer read event, which causes the buffer power 
model to compute buffer read power Pread. The flit next 
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traverses the crossbar, from input port to the output port. 
The crossbar module emits a crossbar traversal event and 
the crossbar power model computes traversal energy 
Pcrossbar. Finally, the flit leaves the router and traverses the 
link. The link module emits a link traversal event, which 
calls the link power model to compute link traversal power 
Plink. 
The total power consumed by this head flit at this node and 
its outgoing link is as follows: 
Pflit = Pwrite + Parbiter + Pread + Pcrossbar + Plink (1) 
 
Let: 
 
Pbuffer = Pwrite + Pread    (2) 
 
Then by substituting Eq. (2) in Eq. (1): 
Pflit = Pbuffer + Parbiter + Pcrossbar + Plink  (3) 
 
The Intel 80-core teraflop chip recently introduced by Intel 
[26] is a good example of an aggressive NoC prototyping 
effort. The Teraflops Processor architecture contains 80 
tiles arranged in a 8 x 10 2D array and connected by a 
mesh network that is designed to operate at 5 GHz. A tile 
consists of a processing engine connected to a five-port 
router, which forwards packets between tiles. The 
communication power is significant at 28% of each 
processing tile’s total power. As shown in Figure 7, 
clocking power, 33%, is the largest component of router 
power, with the FIFO buffers the second largest 
component at 22%. Power due to physical links, crossbar 
switch, and arbiter come next at 17%, 15% and 7%, 
respectively. 
According to the proposed power model, it is required to 
compare and contrast different NoC architectures in terms 
of power consumed in buffers, links, crossbar, and arbiter. 
So, in PPNOCS, it is considered that a unit power (Up) is 
consumed by a flit to traverse from the input port to the 
output port of the router and leave through the outgoing 
link. Up is then divided between buffering, arbitration, 
crossbar traversal, and link traversal according to the 
power ratios presented by the Intel 80-core teraflop chip 
and shown in Figure 7. 

 

 

 

Fig. 7 Router power breakdown at 4 GHz, 1.2 V, and 110 C 

4. Experimental Results 

There are three potential ways of using PPNOCS for rapid 
exploration of network microarchitectures. 

• The architect may wish to explore the impact of 
two application traffic patterns on specific 
network microarchitecture. 

• The architect may wish to trade-off two 
configurations of microarchitecture, exploring 
their effect on network power and performance. 
This involves setting the network architectural 
parameters for the two configurations. Given a 
specific traffic pattern of the targeted application, 
the architect can feed the traffic pattern and 
configurations into two different instances of 
PPNOCS, and obtain their power and 
performance numbers. 

• The architect may develop new network 
microarchitecture and wish to explore its impact 
on power and performance, evaluating it against a 
base microarchitecture. Owing to the general NoC 
node structure and modularization of PPNOCS, 
the architect can extend the simulator easily with 
their own microarchitectures. 

In the experiments, a 16-node network organized as a 4 x 4 
mesh is implemented, as shown in Figure 8. Each router 
has five physical bidirectional ports (north, south, east, 
west, and injection/ejection). Each simulation is run for a 
warm-up phase of 1000 cycles and simulation phase of 
10000 cycles. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8 A 4×4 2D mesh network 

4.1 Exploring the effect of different traffic patterns 

In this experiment, a 4×4 mesh NoC with XY routing is 
implemented, and 6 different traffic patterns to run the 
simulation is loaded. The packet length is two flits and 
each input port has 4 virtual channels with FIFO buffer 
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depth equal to 4 packets. The result of this simulation is 
shown in Figure 9. 
 

 
(a) 

 
(b) 

Fig. 9 Results of different traffic patterns 

As shown in figure 9, Random traffic pattern gives better 
throughput and average packet latency according to its 
uniform and balanced distribution of load. 

4.2 Exploring the effect of different configurations 

This set of simulations is based on 4X4 mesh with XY 
routing, packet size equal two flits and under uniform 
random traffic. In this experiment, four different router 
configurations are simulated and compared:- 

• Wormhole router with 64-flit input buffer per port 
(WH64). 

• Virtual-channel (VC) router with 2 VCs per port 
and 16-flit input buffer per VC (VC_2_16). 

• Virtual-channel router with 4 VCs per port and 4-
flit input buffer per VC (VC_4_4). 

• Virtual-channel router with 8 VCs per port and 8-
flit input buffer per VC (VC8_8). 

 
Figure 10 shows results obtained from simulating these 
routers in PPNOCS. Figure 5(a) shows VC_8_8 out-
performing WH64, despite having the same total buffer 
size per input port, saturating at a higher packet injection 

rate of 0.35 packets/cycle/node. However, this 
performance improvement is achieved at the expense of 
higher power consumption, as indicated by Figure 11.  

 
(a) 

 
(b) 

Fig. 10 Results of different configurations 

 

Fig. 11 Results of different configurations on power consumption 

Beyond packet injection rate of 0.1 packets/cycle/node, 
VC_8_8 starts to consume more power than WH64, since 
it is still able to absorb the higher packet injection rate, so 
network activity continues to increase. For all 
configurations, total network power levels off after 
saturation, since the network cannot handle a higher packet 
injection rate, so the switching activity of the network 
remains constant. 
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It is interesting to note that VC_8_8 dissipates 
approximately the same amount of power as WH64 before 
saturation. Intuitively, since virtual-channel flow control is 
a more complicated protocol, requiring more complex 
hardware, we would expect a virtual-channel router to be 
more of a power hog than a wormhole router. The 
interpretation of this is that the power consumed by buffers, 
links and the crossbar switch is the dominant power 
consumption in a network node. 
Figure 12 shows the power consumed by each component 
of the router. From these results, it can be verified that the 
power consumption of the buffer and crossbar components 
of the router is much more than the power consumed in 
arbitration. 
 

 

Fig. 12 Power consumption of different router components 

4.3 Exploring the effect of different packet length 

This set of simulations is based on 4X4 mesh with XY 
routing under uniform random traffic. Figure 13 shows the 
throughput and average packet latency for packet length 
equal to 2, 4, and 8 flits.  
The throughput increase linearly when the injection rate is 
low. However, with the injection rate increasing, the 
confliction encountered in the network limits the increase 
of the throughput. Figure 13 shows that the average packet 
latency for 8 flits/packet is larger than that for 2 
flits/packet. This is due to two reasons. First, longer 
packets will take more time to receive. Second, longer 
packets will cause more confliction at intermediate routers 
on the path from the source to the destination. 

4.4 Exploring the effect of different routing algorithms 

This set of simulations is based on 4X4 mesh with packet 
size equal two flits and under uniform random traffic. 
Table 3 lists the total number of received packets for the 
XY, West-First, North-Last, Negative-First, and Fully 
Adaptive routing algorithms for injection rates of 0.1 
packets/cycle/node (under saturation), 0.3 

packets/cycle/node (saturation), and 0.5 
packets/cycle/node (above saturation). These results 
collected for the 10000 cycles simulation time. 

 
(a) 

 
(b) 

Fig. 13 Results of different packet length 

Table 3: Total number of received packets 

Routing 
Algorithm 

Injection Rate 
0.1 0.3 0.5 

XY Routing 15960 47226 46543 
West-First 
Routing 

16051 43662 42310 

North-Last 
Routing 

15992 44040 41915 

Negative-First 
Routing 

15933 43042 40653 

Fully Adaptive 
Routing 

15996 43546 41131 

 
From the above table it can be seen that deterministic XY 
routing is faster than the other three partially adaptive 
algorithms. Partially adaptive algorithms can potentially 
speed up the time to deliver individual packets, but 
globally the results point out to poorer performance than 
the XY algorithm. Glass and Ni [27] suggested that 
reducing the number of turns that a message takes may 
reduce blocking and hence improve performance. This can 
be justified because adaptive routing has a trend to 
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concentrate the traffic at the center of the network, 
increasing in this way the number of blocked paths. 

5. Conclusions 

In this paper, a performance and power network on chip 
simulator (PPNOCS) based on SystemC has been proposed.   As 
demonstrated, PPNOCS is a general NoC simulation and 
verification platform with high extensibility. Using 
PPNOCS, the impact of various architectural level 
parameters of the on-chip interconnection network 
elements on its performance and power can be explored. 
Owing to the general NoC node structure and 
modularization modeling, developers can develop their 
own routing algorithm and network topology in such a way 
that they can use either traffic patterns provided by 
PPNOCS or their own traffic pattern. Then, the simulation 
and design verification can be applied. By going through 
simulation experiments using five classic routing 
algorithms, the practical usage of PPNOCS is verified. 
Also, the impact of different traffic patterns, routing 
algorithms, virtual channel configurations, and packet 
length on the network performance and power is evaluated. 
As shown, PPNOCS provided a fast and convenient 
platform for researching and verification of NoC 
architecture and routing algorithm. 
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