

PPNOCS: Performance and Power Network on Chip Simulator
based on SystemC

El Sayed M. Saad1, Sameh A. Salem1, Medhat H. Awadalla1,2, and Ahmed M. Mostafa1

1 Communication, Electronics and Computers Department, Faculty of Engineering, Helwan University,
Helwan, Egypt

2Electrical and Computer Engineering Department, SQU University, Oman

Abstract
As technology moves towards multi-core system-on-chips (SoCs),
networks-on-chip (NoCs) are emerging as the scalable fabric for
interconnecting the cores. Network-on-Chip architectures have a
wide variety of parameters that can be adapted to the designer’s
requirements. This paper proposes a performance and power
network on chip simulator (PPNOCS) based on SystemC to
explore the impact of various architectural level parameters of
the on-chip interconnection network elements on its performance
and power. PPNOCS supports an arbitrary size of mesh and torus
topology, adopts five classic routing algorithms and seven
synthetic traffic patterns. Developers also can develop and verify
their own network design by modifying the corresponding
modules. Experiments of using this simulator are carried out to
study the power, latency and throughput of a 4x4 multi-core
mesh network topology. Results show that PPNOCS provides a
fast and convenient platform for researching and verification of
NoC architectures and routing algorithms.
Keywords: Network-on-Chip, Performance, Power, Simulation,
SystemC.

1. Introduction

Networks-on-chip [1] are critical elements of modern
system-on-chip as well as multi-core designs. They consist
of routers, links, and well-defined network interfaces.
Packet-switched interconnection networks [2] facilitate
communication between cores by routing packets between
them. The structured and localized wiring of such a NoC
design simplifies timing convergence and enables robust
design that scales well with device performance.
One major difficulty that faces NoC architects is to select a
communication network that suits a specific application or
a range of specific applications with the constraints of cost,
power and performance. Design decisions are typically
made on the basis of simulation before resorting to
emulation or implementation since it is cheap and flexible.
To make a right decision on the network architecture, a
simulation tool should enable to faster explore the
architectural design space and assess design quality
regarding performance, cost, and power.

SystemC [3] and Transaction Level Modeling (TLM) [4]
have become quite popular and have found a relatively
wide range of applications both in academia and industry
[5]. SystemC is an extension of C++, in the form of a
hardware-oriented library of C++ classes [6]. TLM is a
library of functions built on the top of SystemC. In the
TLM terminology, a transaction represents the information
being exchanged between the different system modules.
TLM is particularly interested in separating the
computational component from the communication
component. For this purpose, TLM provides constructs to
efficiently model the inter-module communication such as
channels, interfaces and ports, which are objects provided
by SystemC.
This paper presents a performance and power network on
chip simulator (PPNOCS) based on SystemC, to explore
the impact of various architectural level parameters of the
on-chip interconnection network elements on its
performance and power. A general modularized NoC node
structure is first realized under SystemC, and then
connected to form the network. Users also can develop
their own network topology and routing algorithm by
modifying the corresponding modules. Then they can
verify their design by loading different network traffic
patterns to run the simulation.
The paper is organized as follows: Section 2 provides a
brief overview of related work. The simulation platform is
described in Section 3. Experimental results are discussed
in Section 4. Finally, Section 5 concludes the paper.

2. Related Work

With the emergence of the NoC concept, researchers have
realized the need to evaluate NoC systems. This has led to
the use of existing network simulators, which have been
adapted for on-chip communication networks [7]. Xu et al.
employed the OPNET network simulator for simulation of
on-chip network systems [8]. Such an approach leverages
the already existing tool, which has had time to mature.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 169

However, on-chip communication is different than
traditional networks and parallel computer communication
networks. NoC simulation environment must accurately
reflect on-chip behaviors. Nostrum is another attempt of
NoC simulation developed at KTH, Stockholm and it
offers a packet switched communication platform based on
the traditional OSI model of computer networks [9].
Initially, mesh topology is selected to prove the concept of
Nostrum simulator. Recently, attempts have also been
made to extend Nostrum to support both regular and
irregular NoC topologies [10].
Many simulation tools have been developed to research the
design of router architectures [11, 12] and NoC topologies
[13] with varying area/performance [14] trade-offs for
general purpose SoCs. Kogel et. al. [15] presents a
modular exploration framework to capture performance of
point-to-point, shared bus and crossbar topologies. The
impact of varying topologies, link and router parameters
on the overall throughput, area and power consumption of
SoCs using relevant traffic models is discussed in [16].
Orion [17] is a power-performance interconnection
network simulator that is capable of providing power and
performance statistics. Orion model estimates power
consumed by router elements (crossbars, FIFOs and
arbiters) by calculating switching capacitances of
individual circuit elements. Most of these tools do not
allow for exploration of the various link level options of
wire width, pitch, serialization, repeater sizing, pipelining,
supply voltage and operating frequency.
In [18], Madsen et al. presented a NoC model which,
together with a multiprocessor real-time operating system
(RTOS) are used to model and analyze the behavior of a
complex system that has a real-time application running on
it. Mesh and torus are implemented in their design. Nurmi
et al. [19] proposed a simulation environment by creating a
library of pre-designed communication blocks that can be
selected from a component library and configured by
automated tools. From simulation point of view, these
simulation tools are flexible to perform NoC design
exploration. However, they are limited in topologies, and
performance metrics [20].
In this paper, the proposed simulation platform is built
from the ground up for Network-on-Chip simulation. The
platform is built in SystemC, and takes advantage of the
low-level modeling available in SystemC communication
primitives, while leveraging the efficiency of C++ to
achieve a balance between accuracy and performance. The
main contributions of our simulation platform include the
following:

• Explore the impact of various architectural level
parameters of the on-chip interconnection network
elements on its performance and power.

• Owing to the general NoC node structure and
modularization modeling, users can extend the

simulator with their own routing algorithm and
network topology.

• PPNOCS provides a fast and convenient platform for
researching and verification of various Network-on-
Chip architectural designs.

3. Simulation Platform

A wormhole-router provides the necessary fine-grained flow
control in terms of buffer and latency requirements, while
the addition of virtual-channels aids in boosting
performance and circumventing message-dependent
deadlock [21]. Furthermore, Quality-of-Service (QoS)
enhancements can be achieved by prioritizing the allocation
of virtual-channels and switch bandwidth. For these reasons,
PPNOCS implements the generic virtual-channel router
shown in figure 1.

Fig. 1 Virtual-Channel Router

The router has P input ports and P output ports, supporting
N virtual-channels (VCs) per port. Virtual-channel flow
control exploits an array of buffers at each input port. By
allocating different packets to each of these buffers, flits
from multiple packets may be sent in an interleaved manner
over a single physical channel. This improves both
throughput and latency by allowing blocked packets to be
bypassed.

3.1 PPNOCS Node Structure

To enable easy extensibility of the simulation platform,
PPNOCS develop a modularized architecture for the
generic router. Figure 2 shows the developed PPNOCS
node structure.

Routing
Computation

VC
Allocation

Switch
Allocation

 VC Buffer

VC Identifier

Input Channel

Credit out

Input Channel

Credit out

Input Port

Crossbar
(P x P)

Output Channel

Output Channel

Credit in

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 170

Fig. 2 PPNOCS node structure

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 171

In PPNOCS, a packet is divided into flow control digits or
flits. A flit is the basic unit of bandwidth and storage
allocation used by most flow control methods. The
position of a flit in a packet determines whether it is a head
flit, body flit, or tail flit. A head flit is the first flit of a
packet and carries the packet’s routing information. A head
flit is followed by zero or more body flits and a tail flit. In
a very short packet, there may be no body flits. In the
following, a brief description of each module in the
PPNOCS node structure is given.

3.1.1 Input Port Module

Input port module consists of a set of virtual channel
modules. Each virtual channel consists of a FIFO buffer.
The user can determine the number of virtual channels and
the depth of each buffer in terms of flits. Any flit arrives at
the input port contains a virtual channel identifier (VC_ID)
which determines in which virtual channel buffer it will be
stored.
All of the flow control mechanisms that use buffering need
to know the availability of buffers at the downstream nodes.
Then the upstream nodes will determine when a buffer is
available to hold the next flit to be transmitted. This type
of buffer management provides backpressure by informing
the upstream nodes when they should stop flit transmission
because all of the downstream flit buffers are full. Three
types of low-level flow control mechanisms are in common
use today to provide such backpressure: credit-based,
on/off, and ack/nack [22]. PPNOCS implements the credit-
based flow control mechanism. With credit-based flow
control, the upstream router keeps a count of the number of
free flit buffers in each virtual channel downstream. Then,
each time the upstream router forwards a flit, thus
consuming a downstream buffer, it decrements the
appropriate count. If the count reaches zero, all of the
downstream buffers are full and no further flits can be
forwarded until a buffer becomes available. Once the
downstream router forwards a flit and frees the associated
buffer, it sends a credit to the upstream router for
incrementing the buffer count.

3.1.2 Routing Computation Module

When a head flit of a new packet arrives at the input port, a
routing request along with the routing information is sent
to the routing computation module. According to the
routing algorithm a set of valid output ports is produced
and sent back to the input port module. The number of
outputs produced by the routing computation module will
depend on the routing algorithm. If more than one output
produced, the selection function randomly select one of
these outputs. PPNOCS implements five routing
algorithms:

XY Routing Algorithm: XY routing is a dimension
ordered routing which routes packets first in x- or
horizontal direction to the correct column and then in y- or
vertical direction to the receiver. XY routing suits well on
a network using mesh or torus topology. Addresses of the
routers are their xy-coordinates. XY routing never runs
into deadlock or livelock [23]. Figure 3 shows an example
of XY routing.

Fig. 3 XY routing from router A to router B

West-First Routing Algorithm: A west-first routing
algorithm prevents all turns to west. So the packets going
to west must be first transmitted as far to west as necessary.
Figure 4 shows the allowed turns in the west-first routing.

Fig. 4 Allowed turns in west-first routing

North-Last Routing Algorithm: Turns away from north
are not possible in a north-last routing algorithm. Thus the
packets which need to be routed to north must be
transferred there at last. Figure 5 shows the allowed turns
in the north-last routing.

Fig. 5 Allowed turns in north-last routing

Negative-First Routing Algorithm: Negative-first
routing algorithm allows all other turns except turns from
positive direction to negative direction. Packet routings to
negative directions must be done before anything else [24].
Figure 6 shows the allowed turns in the negative-first
routing.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 172

Fig. 6 Allowed turns in negative-first routing

Fully Adaptive Routing Algorithm: Fully adaptive
routing algorithm uses always a route which is not
congested. The algorithm does not care although the route
is not the shortest path between sender and receiver [22].

3.1.3 Virtual Channel Allocation Module

After selecting a specific output port for the packet, the
input port module sends a virtual channel request along
with the output port number to the virtual channel
allocation module. Then, the virtual channel allocator
module sends a virtual channel request to the specified
input port module in the downstream router. After
receiving the VC_ID from the downstream router, the
virtual channel allocator module sends it back to the input
port module.

3.1.4 Switch Allocation Module

Each flit waiting in a virtual channel buffer and has
available space in the downstream buffer can send a switch
request to the switch allocator module. PPNOCS
implements 5 × 5 (5-input × 5-output) input-first separable
allocator. In an input first separable allocator, arbitration is
first performed to select a single request at each input port.
Then, the outputs of these input arbiters are input to a set
of output arbiters to select a single request for each output
port. The result is a legal matching, since there is at most
one grant asserted for each input and for each output. The
switch allocator module sends a switch reply for each input
port module wins in the arbitration. If multiple VCs in the
input port have been requested the same output port which
is granted by the switch allocator, then they will be
serviced in a Round Robin (RR) fashion. Upon granting
the switch allocation requests, the switch allocation module
sends a switch configuration signals to the crossbar switch
module.

3.1.5 Crossbar Switch Module

Flits that have been granted passage on the crossbar are
passed to the appropriate output ports.

3.2 Traffic Patterns

Application-driven workloads can be too cumbersome to
develop and control [22]. This motivates the inclusion of

synthetic workloads, which capture the salient aspects of
the application-driven workloads, but can also be more
easily designed and manipulated. Synthetic workloads are
divided into three independent aspects: traffic patterns,
injection processes, and packet length.
Traffic pattern is the spatial distribution of messages in
interconnection networks. This message distribution is
represented with a traffic matrix, where each matrix
element λs,d gives the fraction of traffic sent from node s
destined to node d. Table 1 lists some common static
traffic patterns used to evaluate interconnection networks
[22].

Table 1: Network traffic patterns
Name Pattern
Random λsd = 1/N
Bit complement di = ￢si
Bit reverse di = sb-i-1
Bit Rotation di = si+1 mod b
Shuffle di = si-1 mod b
Transpose di = si+b/2 mod b

PPNOCS supports seven synthetic traffic patterns
(Uniform Random, Hotspot, Bit Reversal, Bit Complement,
Bit Rotation, Shuffle, and Matrix Transpose).

Random traffic: In which each source is equally likely to
send to each destination is the most commonly used traffic
pattern in network evaluation. Random traffic is very
benign because, by making the traffic uniformly distributed,
it balances load even for topologies and routing algorithms
that normally have very poor load balance. Some very bad
topologies and routing algorithms look very good when
evaluated only with random traffic [22].

Hotspot Traffic: In hotspot traffic pattern, there’s a
particular node that will receive more traffic than other
nodes. In PPNOCS, the hotspot is specified along with the
percentage of the traffic dedicated to it.

Bit Reversal, Bit Complement, Bit Rotation, Shuffle,
and Matrix Transpose: These are called Bit permutation
patterns, in which each bit di of the b-bit destination
address is a function of one bit of the source address, sj
where j is a function of i. permutation traffic patterns
stresses the network topology or the routing algorithm
because each source s sends all of its traffic to a single
destination.
Injection process determines the average number of
packets it injects per cycle (injection rate). The most
common injection processes used in network simulations is
the Bernoulli process [22]. For a Bernoulli process with
rate r, the injection process A is a random variable with the
probability of injection a packet equal to the process rate,

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 173

P(A = 1) = r. PPNOCS implements the Bernoulli process
and the user can specify the packet injection rate before
running the simulation. Also, the packet length in terms of
flits can be specified.

3.3 Architecture Parameters

This section summarizes the different architectural
parameters that can be configured before running the
simulation. Table 2 shows a brief description for each
parameter that can be specified by PPNOCS.

Table 2: Network Architectural Parameters
Parameter Name Description
Topology 2D Mesh or 2D Torus
DimX Number of columns
DimY Number of rows
NUM_INPUTS Number of input and output

ports
VC_NUM Number of virtual channels

in each input port
VC_BUFFER_SIZE Number of buffers for each

virtual channel
PACKET_INJECTION_RATE Injection rate (< =1)
TRAFFIC_DISTRIBUTION Uniform Random, Hotspot,

Bit Reversal, Bit
Complement, Bit Rotation,
Shuffle, and Matrix
Transpose

ROUTING_ALGORITHM XY, West-First, North-Last,
Negative-First, and Fully
Adaptive

PACKET_SIZE Number of flits in the packet
WARM_UP_TIME The number of clock cycles

after which the simulator
starts to collect statistics

SIMULATION_TIME The number of clock cycles
that have to be simulated.

3.3 Performance Metrics

A standard set of performance metrics can be used to
compare and contrast different NoC architectures. The
performance metrics evaluated by PPNOCS include
throughput and packet latency [22].

3.3.1 Throughput

Throughput is the rate at which packets are delivered by
the network for a particular traffic pattern. It is measured
by counting the packets that arrive at destinations over a
time interval for each flow (source-destination pair) in the
traffic pattern and computing from these flow rates the
fraction of the traffic pattern delivered [22]. Throughput,
or accepted traffic, is to be contrasted with demand, or
offered traffic, which is the rate at which packets are

generated by the Intellectual Property (IP) block.
Throughput can be defined as follows [16]:

Total number of packets received at their destinations

(Number of IP blocks) x (Total Time in Cycles)

3.3.2 Packet latency

Transport latency is defined as the time (in clock cycles)
that elapses from between the occurrence of head flit
injection into the network at the source node and the
occurrence of the tail flit reception at the destination node
[25].
In order to reach the destination node from some starting
source node, flits must travel through a path consisting of a
set of routers and interconnects [19]. Depending on the
source/destination pair and the routing algorithm, each
packet may have a different latency [19]. Therefore, for a
given packet Pi, the latency Li is defined as:

Li = receiving time (tail flit of Pi) − sending time (head flit of Pi)

Let F be the total number of packets reaching their
destination IPs and let Li be the latency of packet Pi,
where i ranges from 1 to F. The average packet latency,
Lavg, is then calculated according to the following equation
[19]:

3.4 Power Model

In PPNOCS, a power model at flit level is proposed
depending on the results obtained from the Intel 80-core
teraflop chip [26]. To explain the proposed model,
consider a source IP injects a head flit into the write port of
the input port module. The virtual channel module writes
the flit into the tail of the FIFO buffer and emits a buffer
write event, which triggers the buffer power model to
compute buffer write power Pwrite. After the routing
module determines the output port to which the head flit
will be sent, a request is sent to the switch allocator
module for the desired output port. The allocator module
performs the required arbitration and generates an
arbitration event, which signals the arbiter power model to
compute arbitration power Parbiter. Assuming the request is
granted, the arbitration result is sent to the config port of
the crossbar module. A grant signal is also sent to the grant
port of the virtual channel module, leading to the read port
of the buffer module activated. The flit is then read,
emitting a buffer read event, which causes the buffer power
model to compute buffer read power Pread. The flit next

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 174

traverses the crossbar, from input port to the output port.
The crossbar module emits a crossbar traversal event and
the crossbar power model computes traversal energy
Pcrossbar. Finally, the flit leaves the router and traverses the
link. The link module emits a link traversal event, which
calls the link power model to compute link traversal power
Plink.
The total power consumed by this head flit at this node and
its outgoing link is as follows:
Pflit = Pwrite + Parbiter + Pread + Pcrossbar + Plink (1)

Let:

Pbuffer = Pwrite + Pread (2)

Then by substituting Eq. (2) in Eq. (1):
Pflit = Pbuffer + Parbiter + Pcrossbar + Plink (3)

The Intel 80-core teraflop chip recently introduced by Intel
[26] is a good example of an aggressive NoC prototyping
effort. The Teraflops Processor architecture contains 80
tiles arranged in a 8 x 10 2D array and connected by a
mesh network that is designed to operate at 5 GHz. A tile
consists of a processing engine connected to a five-port
router, which forwards packets between tiles. The
communication power is significant at 28% of each
processing tile’s total power. As shown in Figure 7,
clocking power, 33%, is the largest component of router
power, with the FIFO buffers the second largest
component at 22%. Power due to physical links, crossbar
switch, and arbiter come next at 17%, 15% and 7%,
respectively.
According to the proposed power model, it is required to
compare and contrast different NoC architectures in terms
of power consumed in buffers, links, crossbar, and arbiter.
So, in PPNOCS, it is considered that a unit power (Up) is
consumed by a flit to traverse from the input port to the
output port of the router and leave through the outgoing
link. Up is then divided between buffering, arbitration,
crossbar traversal, and link traversal according to the
power ratios presented by the Intel 80-core teraflop chip
and shown in Figure 7.

Fig. 7 Router power breakdown at 4 GHz, 1.2 V, and 110 C

4. Experimental Results

There are three potential ways of using PPNOCS for rapid
exploration of network microarchitectures.

• The architect may wish to explore the impact of
two application traffic patterns on specific
network microarchitecture.

• The architect may wish to trade-off two
configurations of microarchitecture, exploring
their effect on network power and performance.
This involves setting the network architectural
parameters for the two configurations. Given a
specific traffic pattern of the targeted application,
the architect can feed the traffic pattern and
configurations into two different instances of
PPNOCS, and obtain their power and
performance numbers.

• The architect may develop new network
microarchitecture and wish to explore its impact
on power and performance, evaluating it against a
base microarchitecture. Owing to the general NoC
node structure and modularization of PPNOCS,
the architect can extend the simulator easily with
their own microarchitectures.

In the experiments, a 16-node network organized as a 4 x 4
mesh is implemented, as shown in Figure 8. Each router
has five physical bidirectional ports (north, south, east,
west, and injection/ejection). Each simulation is run for a
warm-up phase of 1000 cycles and simulation phase of
10000 cycles.

Fig. 8 A 4×4 2D mesh network

4.1 Exploring the effect of different traffic patterns

In this experiment, a 4×4 mesh NoC with XY routing is
implemented, and 6 different traffic patterns to run the
simulation is loaded. The packet length is two flits and
each input port has 4 virtual channels with FIFO buffer

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 175

depth equal to 4 packets. The result of this simulation is
shown in Figure 9.

(a)

(b)

Fig. 9 Results of different traffic patterns

As shown in figure 9, Random traffic pattern gives better
throughput and average packet latency according to its
uniform and balanced distribution of load.

4.2 Exploring the effect of different configurations

This set of simulations is based on 4X4 mesh with XY
routing, packet size equal two flits and under uniform
random traffic. In this experiment, four different router
configurations are simulated and compared:-

• Wormhole router with 64-flit input buffer per port
(WH64).

• Virtual-channel (VC) router with 2 VCs per port
and 16-flit input buffer per VC (VC_2_16).

• Virtual-channel router with 4 VCs per port and 4-
flit input buffer per VC (VC_4_4).

• Virtual-channel router with 8 VCs per port and 8-
flit input buffer per VC (VC8_8).

Figure 10 shows results obtained from simulating these
routers in PPNOCS. Figure 5(a) shows VC_8_8 out-
performing WH64, despite having the same total buffer
size per input port, saturating at a higher packet injection

rate of 0.35 packets/cycle/node. However, this
performance improvement is achieved at the expense of
higher power consumption, as indicated by Figure 11.

(a)

(b)

Fig. 10 Results of different configurations

Fig. 11 Results of different configurations on power consumption

Beyond packet injection rate of 0.1 packets/cycle/node,
VC_8_8 starts to consume more power than WH64, since
it is still able to absorb the higher packet injection rate, so
network activity continues to increase. For all
configurations, total network power levels off after
saturation, since the network cannot handle a higher packet
injection rate, so the switching activity of the network
remains constant.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 176

It is interesting to note that VC_8_8 dissipates
approximately the same amount of power as WH64 before
saturation. Intuitively, since virtual-channel flow control is
a more complicated protocol, requiring more complex
hardware, we would expect a virtual-channel router to be
more of a power hog than a wormhole router. The
interpretation of this is that the power consumed by buffers,
links and the crossbar switch is the dominant power
consumption in a network node.
Figure 12 shows the power consumed by each component
of the router. From these results, it can be verified that the
power consumption of the buffer and crossbar components
of the router is much more than the power consumed in
arbitration.

Fig. 12 Power consumption of different router components

4.3 Exploring the effect of different packet length

This set of simulations is based on 4X4 mesh with XY
routing under uniform random traffic. Figure 13 shows the
throughput and average packet latency for packet length
equal to 2, 4, and 8 flits.
The throughput increase linearly when the injection rate is
low. However, with the injection rate increasing, the
confliction encountered in the network limits the increase
of the throughput. Figure 13 shows that the average packet
latency for 8 flits/packet is larger than that for 2
flits/packet. This is due to two reasons. First, longer
packets will take more time to receive. Second, longer
packets will cause more confliction at intermediate routers
on the path from the source to the destination.

4.4 Exploring the effect of different routing algorithms

This set of simulations is based on 4X4 mesh with packet
size equal two flits and under uniform random traffic.
Table 3 lists the total number of received packets for the
XY, West-First, North-Last, Negative-First, and Fully
Adaptive routing algorithms for injection rates of 0.1
packets/cycle/node (under saturation), 0.3

packets/cycle/node (saturation), and 0.5
packets/cycle/node (above saturation). These results
collected for the 10000 cycles simulation time.

(a)

(b)

Fig. 13 Results of different packet length

Table 3: Total number of received packets

Routing
Algorithm

Injection Rate
0.1 0.3 0.5

XY Routing 15960 47226 46543
West-First
Routing

16051 43662 42310

North-Last
Routing

15992 44040 41915

Negative-First
Routing

15933 43042 40653

Fully Adaptive
Routing

15996 43546 41131

From the above table it can be seen that deterministic XY
routing is faster than the other three partially adaptive
algorithms. Partially adaptive algorithms can potentially
speed up the time to deliver individual packets, but
globally the results point out to poorer performance than
the XY algorithm. Glass and Ni [27] suggested that
reducing the number of turns that a message takes may
reduce blocking and hence improve performance. This can
be justified because adaptive routing has a trend to

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 177

concentrate the traffic at the center of the network,
increasing in this way the number of blocked paths.

5. Conclusions

In this paper, a performance and power network on chip
simulator (PPNOCS) based on SystemC has been proposed. As
demonstrated, PPNOCS is a general NoC simulation and
verification platform with high extensibility. Using
PPNOCS, the impact of various architectural level
parameters of the on-chip interconnection network
elements on its performance and power can be explored.
Owing to the general NoC node structure and
modularization modeling, developers can develop their
own routing algorithm and network topology in such a way
that they can use either traffic patterns provided by
PPNOCS or their own traffic pattern. Then, the simulation
and design verification can be applied. By going through
simulation experiments using five classic routing
algorithms, the practical usage of PPNOCS is verified.
Also, the impact of different traffic patterns, routing
algorithms, virtual channel configurations, and packet
length on the network performance and power is evaluated.
As shown, PPNOCS provided a fast and convenient
platform for researching and verification of NoC
architecture and routing algorithm.

References
[1] L. Benini et al., "Networks on Chips: A New SoC Paradigm",

Computer, vol. 35, no. 1, Jan. 2002, pp. 70-78.
[2] W.J. Dally and B. Towles, "Route Packets, Not Wires: On-

Chip Interconnection Networks", Proc. 38th Design
Automation Conf., ACM Press, 2001, pp. 681-689.

[3] http://www.systemc.org/, “Open systemc initiative.”
[4] Cai L, Gajski D, "Transaction-level modeling in system level

design", CECS technical report (03-10), Center for
Embedded Computer Systems, Information and Computer
Science, University of California, Irvine, March 2003.

[5] Sandro Penolazzi, "A System-Level Framework for Energy
and Performance Estimation of System-on-Chip
Architectures", Ph.D. thesis, KTH School of Information and
Communication Technology, Stockholm, Sweden, 2011.

[6] Thorsten Grotker, System Design with SystemC, Kluwer
Academic Publishers, Norwell, MA, USA, 2002.

[7] Gul N. Khan and V. Dumitriu, "A Modelling tool for
simulating and design of on-chip network systems",
Embedded Hardware Design-Microprocessors and
Microsystems, Vol. 34, No. 3-4, pp. 84-95, 2010.

[8] J. Xu, W. Wolf, J. Henkel, S. Chakradhar, "A design
methodology for application specific networks-on-chip",
ACM Transactions on Embedded Computing Systems, 2006,
pp. 263–280.

[9] M. Millberg, E. Nilsson, R. Thid, S. Kumar, A. Jantsch, "The
nostrum backbone – a communication protocol stack for
networks on chip", in: Proceedings of the 17th International
Conference on VLSI Design, 2004, pp. 693–696.

[10] L. Papadopoulos, S. Mamagkakis, S. Catthoor, D. Soudris,
"Application – specific NoC platform design based on system
level optimization", in: IEEE Computer Society Annual
Symposium on VLSI, March 2007, pp. 311–316.

[11] K. Lee, S.-J. Lee, and H.-J. Yoo, "Low-power network-on-
chip for high-perforamance soc design", IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 14, pp.
148–160, Feb. 2006.

[12] S. E. Lee, J. H. Bahn, and N. Bagherzadeh, "Design of a
feasible on-chip interconnection network for a chip
multiprocessor (cmp)", in Proc. Of, Computer Architecture
and High Performance Computing. Intl. Symp. on, pp. 211–
218, 2007.

[13] F. Karim et. al., "An interconnect architecture for
networking systems on chips", IEEE Micro, vol. 22, pp. 36–
45, Oct. 2002.

[14] Rehan Maroofi, Vilas Nitnaware, and Shyam Limaye, "Area
Efficient Design of Routing Node for Network-on-Chip",
International Journal of Computer Science Issues (IJCSI),
Vol. 8, Issue 4, No 1, July 2011.

[15] T. Kogel et. al., "A modular simulation framework for
architectural exploration of on-chip interconnection
networks", in Proc. of, Hardware/Software Codesign and
System Synthesis, 2003, pp. 338–351.

[16] P. P. Pande, C. Grecu, M. Jones, A. Ivanov, and R. Saleh,
"Performance evaluation and design trade-offs for network-
on-chip interconnect architectures", IEEE Transactions on
Computers, vol. 54, pp. 1025–1040, Aug. 2005.

[17] H.-S. Wang, X. Zhu, L.-S. Peh, and S. Malik, "Orion: A
power performance simulator for interconnection networks",
in Proc. of, MICRO 35, 2002.

[18] J. Madsen, S. Mahadevan, K. Virk, and M. Gonzalez,
"Network-on-chip modeling for system-level multiprocessor
simulation", Proc. 24th IEEE Real-Time Systems Symp.
(RTSS), 2003, pp. 265-274.

[19] D. Siguenza-Tortosa and J. Nurmi, "VHDL-based
simulation environment for proteo NoC", Proc. 7th IEEE Int'l
High-Level Design Validation and Test Workshop, 2002, pp.
1-6.

[20] Xinan Zhou, "Performance evaluation of network-on-chip
interconnect architectures", M.S. thesis, Department of
Electrical and Computer Engineering, University of Nevada,
Las Vegas, 2009.

[21] Robert Mullins, Andrew West, and Simon Moore, "Low-
latency virtual-channel routers for on-chip networks". In
Proceedings of the International Symposium on Computer
Architecture, 2004.

[22] W.J. Dally, B. Towles, "Principles and Practices of
Interconnection Networks", Morgan Kaufmann, 2004.

[23] M. Dehyadgari, M. Nickray, A. Afzali-kusha, Z. Navabi,
"Evaluation of Pseudo Adaptive XY Routing Using an
Object Oriented Model for NOC", The 17th International
Conference on Microelectronics, December 2005.

[24] H. Kariniemi, J. Nurmi, "Arbitration and Routing Schemes
for On-chip Packet Networks", Interconnect-Centric Design
for Advanced SoC and NoC, Kluwer Academic Publishers,
2004, pp. 253–282.

[25] P. P. Pande, C. Grecu, A. Ivanov, and R. Saleh, "Design of a
switch for network on chip applications", Proc. Int'l Symp.
Circuits and Systems (ISCAS), 2003, pp. 217-220.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 178

[26] S. Vangal et al., "An 80-tile 1.28TFLOPS network-on-chip
in 65 nm CMOS", in Proc. Solid-State Circuits Conf., Feb.
2007, pp. 98–589.

[27] Glass, C.; Ni, L., "The Turn Model for Adaptive Routing.
Journal of the Association for Computing Machinery", v.
41(5), Sep. 1994, pp. 874-902.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 179

