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Abstract 
 
The paper presents a comparison and application of metaheuristic 
population-based optimization algorithms to a flexible 
manufacturing automation scenario in a metacasting foundry. It 
presents a novel application and comparison of Bee Colony 
Algorithm (BCA) with variations of Particle Swarm 
Optimization (PSO) and Ant Colony Optimization (ACO) for 
object recognition problem in a robot material handling system. 
To enable robust pick and place activity of metalcasted parts by a 
six axis industrial robot manipulator, it is important that the 
correct orientation of the parts is input to the manipulator, via the 
digital image captured by the vision system. This information is 
then used for orienting the robot gripper to grip the part from a 
moving conveyor belt. The objective is to find the reference 
templates on the manufactured parts from the target landscape 
picture which may contain noise. The Normalized cross-
correlation (NCC) function is used as an objection function in the 
optimization procedure. The ultimate goal is to test improved 
algorithms that could prove useful in practical manufacturing 
automation scenarios.  
Keywords: Bee Colony Algorithm, Particle Swarm Optimization, 
Ant Colony Optimization, Foundry Automation 

1. Introduction 

In the 21st century, under the influences of globalization, 
manufacturing companies are required to meet 
continuously changing customer demands. Flexible 
manufacturing systems (FMS) has emerged as a science 
and industrial practice to bring about solutions for 
unpredictable and frequently changing market conditions 
[21]. Existing FMS implementations in manufacturing 
companies have demonstrated a number of benefits by 
helping lower production costs, increased factory floor 
utilization, reduced work-in-process, etc. However, there 
are a number of problems faced during the life cycle of an 
FMS, which could be classified into work flow design, 
production leveling, and control problems [21]. In 
particular, the production leveling is important owing to 
the dynamic nature of FMS such as flexible machines, 
tools and workflow. This work is primarily concerned with 
production leveling problem. Over the last decade, most 
research in FMS has been focused on scheduling of FMSs 

for single or multi objective problems. The present work, 
however, compares three evolutionary computation 
techniques Particle Swarm Optimization (PSO), Bee 
Colony Algorithm (BCA) and Ant Colony Optimization 
(ACO). The goal of the paper is not to declare one of the 
techniques as better than the other, but to test their 
applications after modification to suit the manufacturing 
scenario discussed, as well as their limitations. The case 
study is a small-to-medium batch manufacturing foundry 
and we intend to test the suitability of the algorithms for 
the purpose of lean workflow and reducing machine 
starvation in the manufacturing facility.  
 
1.1 Earlier Research 
 
1.1.1 Flexible Manufacturing Systems 
 
During the last two decades much research has been done 
in this area. The heuristic algorithms developed include 
enumerative procedures, mathematical programming and 
approximation techniques, i.e., linear programming, 
integer programming, goal programming, dynamic 
programming, network analysis, branch and bound, 
genetic algorithm (GA), etc.  
 
Shankar and Tzen [39] considered scheduling problems in 
a random FMS as composite independent tasks. Lee [25] 
presented a goal-programming model for multiple 
conflicting objectives in manufacturing.  Toker et al. [45] 
proposed an approximation algorithm for ‘n’ job ‘m’ 
machine problem. Steeke and Soldverg [43] investigated 
various operating strategies on a caterpillar FMS by means 
of deterministic simulation with the number of completed 
assemblies on a performance criterion manufacturing 
problem associated with parallel identical machines 
throughout simulation. Chan and Pak [3] proposed two 
heuristic algorithms for solving the scheduling problem 
with the goal of minimizing total cost in a statictically 
loaded FMS. Shaw and Winston [40] addressed an 
artificial intelligence approach to the scheduling of FMS. 
Schultz and Merkens [38] compared the performance of an 
ES, a GA and priority rules for production systems. 
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Further, a comprehensive survey on FMS was done by 
Chan et al. [3]. 
 
Many authors have been trying to emphasize the 
utilization of heuristics in flexible manufacturing 
automation. In this context, it has been proposed a 
comparative study on the application of evolutionary 
algorithms in a specific manufacturing environment i.e. 
metalcasting foundries.  
 
1.1.2 Object Recognition in Flexible Manufacturing  
 
The challenge of object recognition is to develop the 
ability to recognize objects even with significant variations 
in visual appearance. In recent years, a number of 
metaheuristic algorithms have been proposed. They have 
been applied to several real world combinatorial problems 
in manufacturing. For example, Silva, Lopes and Lima 
[41] as well as Perlin, Lopes and Centeno [36] presented 
two metaheuristic approaches, one based on compact 
Genetic Algorithm (CGA) and the other based on Particle 
Swarm Optimization (PSO). Results show that both 
methods can be efficiently applied to practical situations 
with reasonable computational costs.  
 
Some other related works have been presented using 
variations of metaheurisitc algorithms.  Tereshko and 
Loengarov [44] proposed a collective decision model 
considering a bee colony as a dynamical system where 
intelligent decision making arises from an enhanced level 
of communication among individuals. In their work, they 
discussed how the information exchange between 
individuals leads to globally intelligent selection of food 
sources in an unpredictable environment. Karaboga [19] 
proposed the Artificial Bee Colony (ABC) algorithm, 
based on the foraging behavior of real bees, and later 
compared its performance with other evolutionary and 
swarm intelligence based algorithms using a large set of 
numerical functions.  Karaboga et al. [19] concluded that 
the ABC algorithm is a robust optimization algorithm that 
can be efficiently used in the optimization of multimodal 
and multi-variable problems. Another version of a bee 
swarm-based algorithm was proposed by Pham and Zaidi 
[37], named Bees Algorithm (BA), which can be used for 
both combinatorial and multi-parameter functional 
optimization. 
 
More recently, Hackel and Dippold [13] developed an 
algorithm inspired in bee colony for the vehicle routing 
problem with time windows. According to Mishra [30], 
the algorithms mentioned before have an inherent 
probabilistic nature and thus may not always obtain best 
solutions with certainty. This paper uses the Matlab 
toolbox from Karaboga which minimizes or maximizes 
functions. We have adapted it in order to be able to take 4 

templates and landscape image and be able to maximize 
the NCC value obtained by the equation 1, which is 
defined as “objective function” for maximization. Plotting 
commands have been added to the program to represent 
the matching between both images and so to be able to 
determine the accuracy of the program. Another command 
to calculate the time expended in each run has been added 
as well. 

2. Problem Description 

One important application of a robot vision system is to 
recognize whether or not a given part is a member of a 
particular class of parts. Currently, common examples of 
object recognition can be found in areas such as industry, 
engineering, medical diagnosis etc. Generally, recognition 
of objects in images using traditional search algorithms is 
computationally expensive. For many industrial 
applications, these algorithms should normally be executed 
in real-time. Hence, fast algorithms are essential at all 
stages of the recognition process in images. This fact 
suggests the use of fast algorithms based on 
metaheuristics. Recently, besides the traditional image 
processing techniques, several methodologies based on 
computational intelligence have been developed and 
applied to object recognition problem, so as to reduce 
computational cost and to improve efficiency. Amongst 
them, metaheurisitc population-based optimization 
algorithms, such as those from the Swarm Intelligence 
area, were successfully applied to the problems.  
 
Recognizing orientation of objects is a challenging task 
due to constant changes in images in the real world. The 
most straightforward technique for part orientation 
recognition is called template matching [2]. Template 
matching is the process of determining the optimal 
matching between the same scenes taken at different times 
or under different conditions and the template known 
according to some similarity measure. [26]. In other 
words, the basic idea is to find a match of the pattern in 
some part of the landscape image. The most common way 
of finding the matching point between the landscape image 
and the template is by calculating the correlation function 
value which indicates the percentage of matching of both 
images for a specific matching point. The bigger this 
parameter is, the closer the two images will be.  
 
Normalized Cross Correlation (NCC) is the most robust 
correlation measure for determining similarity between 
points in two or more images providing an accurate 
foundation for motion tracking images [17]. This 
technique has been used on several works. Cole [6] used 
this technique to reduce the size of a set of images to 
which new images were compared. Modegi [31] proposed 



IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org     21 

 

a structured template matching technique for recognizing 
small objects in satellite images. There are other methods 
of tracking that do not use NCC, including Gradient 
Descent Search (GDS) and Active Contour Matching [1]. 
The GDS is based on a first order approximation to image 
motion and has a restriction that the feature translation is 
small. 
 
The method of template matching loops the template 
through all the pixels in the captured image and compares 
the similarity. While this method is simple and easy to 
implement, it is the slowest one. [48] This speed problem 
could be reduced by the application of the metaheuristic 
population-based optimization algorithms. 
 

1a.  1b.  1c. 1d.  

Fig. 1  Image of the sample part on the assembly conveyor belt, as seen 
from the overhead camera image. 1a 1b 1c 1d The templates to be 

detected on the part to predict its orientation for handling by the robot 
gripper. 

In this work, we want to find a reference image in the 
target landscape image. When the pattern is found in the 
target image, its rotation angle is determined. To evaluate 
a candidate solution, the measure of similarity  between 

the reference and target landscape image has been 
proposed.  Several similarity measures have been proposed 
in the literature, such as mutual information and sum of 
square of differences between pixels [2][6]. In this work, 
we used the relation in equation 1, considering the degree 
of similarity between the images. 

ߛ ൌ
∑ ∑ ൣிሺ௫ା௜,௬ା௝ሻିிത೔,ೕ൧ڄሾ்ሺ௜,௝ሻି ത்ሿ೙షభ
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೘షభ
೔సబ

మ೙షభ
ೕసబ

೘షభ
೔సబ ቅ

భ మ⁄       (1)        

 
In the equation (1), F(x,y) is the landscape image, ܨത௜,௝  is 
the grey-scale average intensity of the captured image in 
the region coincident with the template image, T(x,y) 
represents the template image and തܶ  is the average 
intensity of the template image. We have to address that 
the dimensions of the matrix F is MxN and the size of the 

template T is mxn. The maximum value of  is 1, will say 

that the match between the landscape and the template is 
perfect. [48]. 
 
The FMS layout considered in this work, depicted below, 
consists of a six axis ABB ERB 6400 robot, a vision 
camera, and a material handling system- a conveyor belt. 
The Sony XCG-U100E overhead camera (Figure 2b) is 
used for identifying the orientation of the part lying on a 
conveyor belt (Figure 2c). 

2a.  2b.  2c.  

Fig. 2a. The Assembly Robot  2b. Overhead Camera 2c. Conveyor Belt. 

The image captured by the camera is transferred via closed 
network Ethernet connection to the testing PC. The ABB 
robot tracks the conveyor belt using a conveyor tracking 
system which is included in the robot controller. The part 
orientation information is transferred to the robot gripper 
via the Ethernet, which then orients itself accordingly to 
pick the part. The object recognition problem is to find the 
templates on the parts, such as the one chosen in this case, 
considering the possible position of the images within the 
required tact time allocated to the robot assembly cell. 
 

3a.  3b.    

Fig. 3a.  Gripper orienting to pick the part 3b. Part lifted from conveyor 
belt 

While the simulations provided in this paper are based on 
real assembly shop data in a company, the actual part 
details, the assembly cell rates and the gripper construction 
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details are not revealed due to the proprietary nature of the 
information.  

3. Proposed Methodology 

3.1 Bee Colony Algorithm (BCA) 

The Bee Colony Algorithm [19] is inspired by the 
collective behavior of a colony of honeybees working to 
find food sources around the hive. Although a colony of 
honeybees has a queen, the control is decentralized rather 
than hierarchical. The beehive can be understood as a self-
organizing system with a multiplicity of agents [24]. A 
self-organizing system is based on characteristics of 
positive and negative feedback, random fluctuation as well 
as the interaction of the system’s individuals. The use of 
preferably good food sources is an emergent property of 
the beehive. 
 
In BCA algorithm, the position of a food source represents 
a possible solution to the optimization problem and the 
nectar amount of a food source corresponds to the quality 
(fitness) of the associated solution. A colony of honey bees 
can move itself over long distances and in multiple 
directions simultaneously to exploit a large number of 
food sources. The goal of the colony is to achieve good 
food sources, which depend on some factors such as the 
distance to the hive, richness or concentration of nectar 
and easiness of extracting the nectar.  
 

 

Fig. 4  Behavior of honeybee foraging for nectar (Adapted from 
Karaboga et al. 2009). 

A colony of honey bees is classified into three categories; 
employed bees, onlooker bees and scout bees. All bees that 
are currently exploiting a food source are known as 
employed bees. The employed bees exploit the food source 
and they carry the profitability of the food source back to 
the hive and share this information with onlooker bees by 
dancing in the designated dance area inside the hive. 
Onlooker bees look for a food source to exploit. They 
watch the dance and choose a food source according to the 

probability proportional to the quality of that food source.  
Therefore, good food sources attract more onlooker bees 
compared to bad ones. Whenever a food source is 
exploited fully, all the employed bees associated with it 
abandon the food source, and become scouts. Scout bees 
will always be searching for new food sources near the 
hive. The mean number of scouts is about 5–10%. Scout 
bees can be visualized as performing the job of exploration, 
whereas employed and onlooker bees can be visualized as 
performing the job of exploitation. 

 
The main steps of the algorithm are as below: [19] 
1: Initialize Population 
2: repeat 
3: Place the employed bees on their food sources 
4: Place the onlooker bees on the food sources depending 
on their nectar amounts 
5: Send the scouts to the search area for discovering new 
food sources 
6: Memorize the best food source found so far 
7: Until requirements are met 

 
In BCA algorithm, each cycle of the search consists of 
three steps: sending the employed bees onto their food 
sources and evaluating their nectar amounts; after sharing 
the nectar information of food sources, the selection of 
food source regions by the onlookers and evaluating the 
nectar amount of the food sources; determining the scout 
bees and then sending them randomly onto possible new 
food sources. At the initialization stage, a set of food 
sources is randomly selected by the bees and their nectar 
amounts are determined. At the first step of the cycle, 
these bees come into the hive and share the nectar 
information of the sources with the bees waiting on the 
dance area. A bee waiting on the dance area for making 
decision to choose a food source is called onlooker and the 
bee going to the food source visited by herself just before 
is named as employed bee. 
 

After sharing their information with onlookers, every 
employed bee goes to the food source area visited by itself 
at the previous cycle since that food source exists in her 
memory, and then chooses a new food source by means of 
visual information in the neighbourhood of the one in her 
memory and evaluates its nectar amount. At the second 
step, an onlooker prefers a food source area depending on 
the nectar information distributed by the employed bees on 
the dance area. As the nectar amount of a food source 
increases, the probability of that food source chosen also 
increases. After arriving at the selected area, she chooses a 
new food source in the neighbourhood of the one in the 
memory depending on visual information as in the case of 
employed bees. The determination of the new food source 
is carried out by the bees based on the comparison process 
of food source positions visually. At the third step of the 
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cycle, when the nectar of a food source is abandoned by 
the bees, a new food source is randomly determined by a 
scout bee and replaced with the abandoned one. In our 
model, at each cycle at most one scout goes outside for 
searching a new food source and the number of employed 
and onlooker bees is selected to be equal to each other. 
These three steps are repeated through a predetermined 
number of cycles called Maximum Cycle Number MCN or 
until a termination criterion is satisfied. 
 
An artificial onlooker bee chooses a food source 
depending on the probability value associated with that 

food source ip  calculated by Eq. (2): 

    1

i
i SN

n
n

fit
p

fit





                                                                (2)

 

where fiti is the fitness value of the solution i which is 
proportional to the nectar amount of the food source in the 
position i and SN is the number of food sources which is 
equal to the number of employed bees or onlooker bees. 

 
In order to produce a candidate food position from the old 
one in memory, the BCA uses Eq. (3): 
 

    
( )ij ij ij ij kjv x x x                                                (3) 

 
where k Є {1,2,…., SN} and j Є {1,2,…., C} are randomly 
chosen indexes. Although k is determined randomly, it has 

to be different from i. ij is a random number between      

[-1,1]. It controls the production of neighbour food sources 

around ijx and represents the comparison of two food 

positions visually by a bee. As the difference between the 

parameters ijx and kjx  decreases, the perturbation on the 

position 
ijx gets decreased, too. Thus, as the search 

approaches the optimum solution in the search space, the 
step length is adaptively reduced. 
 
If a parameter value produced by this operation exceeds its 
predetermined limit, the parameter can be set to an 
acceptable value. In this work, the value of the parameter 
exceeding its limit is set to its limit value. 
 
The food source of which the nectar is abandoned by the 
bees is replaced with a new food source by the scouts. In 
BCA, this is simulated by producing a position randomly 
and replacing it with the abandoned one. If a position 
cannot be improved further through a predetermined 
number of cycles, then that food source is assumed to be 

abandoned. Assume that the abandoned source is ix  and

{1, 2,....., }j D , then the scout discovers a new food 

source to be replaced with ix . This operation can be 

defined as in Eq. (4) 
 

    min max min[0,1]( )j j j j
ix x rand x x                            (4) 

 
After each candidate source position vi,j is produced and 
then evaluated by the artificial bee, its performance is 
compared with that of its old one. If the new food source 
has an equal or better nectar than the old source, it is 
replaced with the old one in the memory. Otherwise, the 
old one is retained in the memory. In other words, a greedy 
selection mechanism is employed as the selection 
operation between the old and the candidate one 
 
3.2 Ant Colony Optimization (ACO) 
 

Ant colony optimization was formalized into a 
metaheuristic for combinatorial optimization problems by 
Dorigo and co-workers [27], [28]. One can find ACO 
metaheuristic application to real-world applications 
mentioned in the literature such as by Price et al. [29], who 
have applied ACO to an industrial scheduling problem in 
an aluminum casting center, and by Bautista and Pereira 
[18], who successfully applied ACO to solve an assembly 
line balancing problem with multiple objectives and 
constraints between tasks.  

 
In ACO algorithms a colony of artificial ants iteratively 
constructs solutions for the problem under consideration 
using artificial pheromone trails and heuristic information. 
Its main characteristic is that, at each iteration, the 
pheromone values are updated by all the m  ants that have 

built a solution in the iteration itself. The pheromone ij , 

associated with the edges i  and j , is updated as follows: 

1

(1 ).
m

k
ij ij ij

k

   


                                      (5) 

where   is the evaporation rate, m  is the number of 

ants, k
ij  is the quantity of pheromone laid on the edge 

( , )i j  by ant k . 

k
ij

k

Q

L
                                                                (6) 

if ant k uses edge ( , )i j  in its tour, and 0 otherwise. In 

the equation above, Q is a constant, and kL is the length 

of the tour constructed by ant k . 
 

In the construction of a solution, ants select the following 
city to be visited through a stochastic mechanism. When 
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ant k is in city i and has so far constructed the partial 

solution ps ,the probability of going to city j is given by: 

( )p
il

ij ijk
ij

il il
c N s

p
 

 

 
 






                                               (7) 

if ( )p
ijc N s , and  0  otherwise. In the equation above 

( )pN s is the set of feasible components; that is, edges 

( , )i l where l is a city not yet visited by ant k . The 

parameters   and  control the relative importance of 

the pheromone versus the heuristic information ij , which 

is given by: 
1

ij
ijd

                                                                   (8) 

where ijd is the distance between the cities i and j . 

 
The pheromone trails are modified by ants during the 
algorithm execution in order to store information about 
‘good’ solutions. We apply the Ant Colony System (ACS) 
[9,10], a particular ACO algorithm to the problem on 
hand, which follows the algorithmic scheme given below: 
 
1: Set parameters, initialize pheromone trails 
2: while (termination condition not met) 
3: ConstructSolutions 
4: (ApplyLocalSearch) 
5: UpdateTrails 
6: end while 
 
ACO are solution construction algorithms, which, in 
contrast to local search algorithms, may not find a locally 
optimal solution. Many of the best performing ACO 
algorithms improve their solutions by applying a local 
search algorithm after the solution construction phase. Our 
primary goal in this work is to analyze the manufacturing 
related application capabilities of ACO, hence in this first 
investigation we do not use local search. 

3.3 Particle Swarm Optimization (PSO) 

The initial ideas on particle swarms of Kennedy and 
Eberhart were essentially aimed at producing 
computational intelligence by exploiting simple analogues 
of social interaction, rather than purely individual 
cognitive abilities [34]. The first simulations [20] were 
influenced by Heppner and Grenander’s work [16] and 
involved analogues of bird flocks searching for corn. 
These soon developed [9][10] into a powerful optimization 
method— Particle Swarm Optimization (PSO).  

PSO is an optimization algorithm that is based on swarm 
intelligence principle [9], which are widely used in 
application domains such as function optimization, neural 
network training, fuzzy system control and so on at present 
[33]. It has been proved to be very effective for solving 
global optimization in various engineering application 
such as image and video analysis and design and 
optimization of communication networks. However, most 
applications in this field are using PSO to train ANN. A 
direct application of PSO variant in maintenance 
optimization will be shown in this paper. 

3.3.1 Basic PSO Algorithm Description 

The Particle Swarm Optimization (PSO) algorithm is a 
heuristic approach motivated by the observation of social 
behavior of composed organisms such as birds flocking 
(Fig.5). A number of simple entities – the particles – are 
placed in the search space of some problem or function, 
and each evaluates the objective function at its current 
location. Each individual in the particle swarm is 
composed of D dimensional vectors, where D is the 
dimensionality of the search space.  

( )ix t


( ( ) ( ))i ip t x t
 



( ( ))g ip x t
 



( 1)ix t



( 1)iv t





( )iv t


 

Fig. 5. Bird Flocking of PSO 
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The current position ݔԦ௜  can be considered as a set of 
coordinates describing a point in space. If the current 
position is better than any that has been found so far, then 
the coordinates are stored in the vector ݌Ԧ௜. The value of the 
best function result so far is stored in a variable that can be 
called Ԧ௚݌  . The objective, of course, is to keep finding 
better positions and updating ݌Ԧ௜  and ݌Ԧ௚ . New points are 
chosen by adding  ݒԦ௜ coordinates to ݒԦ௜, and the algorithm 
operates by adjusting ݒԦ௜, which can effectively be seen as a 
step size. The steps of implementing PSO are shown as 
follows: 

1: Initialize a population array of particles with random 
positions and velocities on D dimensions in the search 
space. 

2: Loop 

3: For each particle, evaluate the desired optimization 
fitness function in D variables. 

4: Compare particle’s fitness evaluation with that of its ݌Ԧ௜. 
If current value is better than that of ݌Ԧ௜, then set  ݌Ԧ௜ equal 
to the current coordinates. 

5: Identify the particle in the neighborhood with the best 
success so far, and assign it to the variable ݌Ԧ௚. 

6: Change the velocity and position of the particle 
according to the following equation: 

ݐԦ௜ሺݒ ൅ 1ሻ ൌ ߱ · ሻݐԦ௜ሺݒ ൅ ܿଵ · Ԧ௜݌ଵ൫ݎ െ ሻ൯ݐԦ௜ሺݔ ൅ ܿଶ · Ԧ௚݌ଶሺݎ െ
 ሻሻ                                                                                (9)ݐԦ௜ሺݔ

ݐԦ௜ሺݔ ൅ 1ሻ ൌ ሻݐԦ௜ሺݔ ൅ ݐԦ௜ሺݒ ൅ 1ሻ                                       (10) 

Where:  is the inertia weighting; c1 and c2 are 
acceleration coefficients, positive constraint; r1 and r2 are 
the random numbers deferring uniform distribution on [0, 
1]; i represents ith iteration. 

7: If a criterion is met (usually a sufficiently good fitness 
or a maximum number of iterations), exit loop.  

8: End loop 

In PSO, every particle remembers its own previous best 
value as well as the neighborhood best; therefore it has a 
more effective memory capability than an algorithm such 
as the GA. In addition, PSO is easier to implement and 
there are fewer parameters to adjust compared with GA [8]. 

 

 

3.3.2 Discrete PSO (DPSO) Algorithm Description 

The general concepts behind optimization techniques 
initially developed for problems defined over real-valued 
vector spaces, such as PSO, can also be applied to discrete 
valued search spaces where either binary or integer 
variables have to be arranged into particles [8]. When 
integer solutions (not necessarily 0 or 1) are needed, the 
optimal solution can be determined by rounding off the 
real optimum values to the nearest integer. DPSO has been 
developed specifically for solving discrete problems. The 
new velocity and position for each is determined according 
to the velocity and position update equations given by (8) 
and (9). 

ݐԦ௜ሺݒ ൅ 1ሻ ൌ ሺ߱݀݊ݑ݋ݎ · ሻݐԦ௜ሺݒ ൅ ܿଵ · Ԧ௜݌ଵ൫ݎ െ ሻ൯ݐԦ௜ሺݔ ൅ ܿଶ ·
Ԧ௚݌ଶሺݎ െ  ሻሻሻ                                                              (11)ݐԦ௜ሺݔ

ݐԦ௜ሺݔ ൅ 1ሻ ൌ ሻݐԦ௜ሺݔ ൅ ݐԦ௜ሺݒ ൅ 1ሻ                                       (12) 

In equation (11), the value of velocity is binary or integer 
because round () function can round off the value.  

3.3.3 Improved DPSO (IDPSO) Algorithm Description 

DPSO or PSO performs well in the early iterations, but 
they have problems approaching a near-optimal solution. 
If a particle’s current position accords with the global best 
and its inertia weight multiply previous velocity is close to 
zero, the particle will only fall into a specific position. If 
their previous velocities are very close to zero, all the 
particles will stop moving around the near-optimal 
solution, which may lead to premature convergence of 
algorithm. All the particles have converged to the best 
position discovered so far which may be not the optimal 
solution. So, an improved DPSO is proposed here. 

In IDPSO, before updating the velocities and positions in 
every iteration, the particles are ranked according to their 
fitness values in descending order. Select the first part of 
particles (suppose mutation rate is α, fist part is (1-α)) and 
put them into the next iteration directly. Regenerate the 
rest part of particles (α) randomly. In this project, we can 
regenerate the positions and velocities according to the 
following equation: 

௜ௗݔ ൌ ݀݊ܽݎሺ݀݊ݑ݋ݎ · ሺܵ୫ୟ୶ሺ݆ሻ െ ܵ୫୧୬ሺ݆ሻሻ ൅ ܵ୫୧୬ሺ݆ሻሻ                                

                                                                                       (13) 

ሻݐ௜ௗሺݒ ൌ ௠௔௫ݒ െ ݀݊ݑ݋ݎ · ሺ݀݊ܽݎ ൈ ሻݐ௜ௗሺݒ        ௠௔௫ሻݒ2 א
ሾെݒ௠௔௫,  ௠௔௫ሿ                                                               (14)ݒ

Because of the characteristics of the flexible 
manufacturing environment, PSO needs to be discretized. 
The PSO was modified in order to improve the 
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optimization effect. Therefore, an improved discrete PSO 
(IDPSO) was applied in this case. 

4. Results and Comparison  

4.1 Bee Colony Algorithm 
 
There exist in literature [36] many ways to implement a 
BCA algorithm. In this paper the bee colony algorithm 
was implemented in Matlab. For inital tests, we defined 
the number of employed bees or initial solutions as 100, 
the maximum number of cycles as 300, and the scout bees 
as 10% of employed bees. During the search, the 
stagnation criterion was the non-improvement of the 
solutions for 10% of the cycles. When stagnation occurred, 
explosion was performed. All experiments were run to 
evaluate the object recognition task in digital color and 
grey images. 
 
The objective of the experiment is to identify the strategies 
that maximize the average fitness and the number of best 
solutions that have fitness values greater than 0.95. This 
value was empirically found and indicates that the object is 
identified by the algorithm with almost correct 
coordinates, except by a small tolerance.  
 
The number of food sources in the program can affect to 
the precision and the velocity of the program. The 
variation of running time of the program with different 
number of food sources is shown below to appreciate the 
differences. In both runs the rule of the same number of 
employed and onlooker bees have been kept.  
 

4.1.1 With 500 Food Sources 

For this experiment, the limit of iterations has been 
eliminated. This is to avoid be many errors due to the fact 
that with less food sources there should be more iterations. 
The Y axis shows the Fitness Values in all plots. With 500 
food sources the following was observed: 

 The average running time is of 14.70 seconds.  
 There has not been any error in the detection of 

the correct coordinates, all of the templates have 
reached an NCC higher than 0.52 before 500 
iterations. 

 

Fig. 6. Testing with 500 food sources 

4.1.2 With 100 Food Sources 

 The average running time is of 9.19 seconds.  
 All of the templates reached NCC value higher 

than 0.52 before 500 iterations. 

 

Fig. 7. Testing with 100 food sources 

4.1.3 With 10 Food Sources 

It was observed that the average number of iterations per 
template is significantly bigger (4,500) than with more 
food sources. 
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Fig. 8. Testing with 10 food sources 

We also noticed that a minimum number of food sources 
of 10 was the bottom limit required to obtain any 
resolution with the Bee Colony Algorithm application to 
the discussed problem. 
 
4.2 Improved Discrete Particle Swarm Optimization 
(IDPSO) 
 
4.2.1 With 150 particles 
To implement IDPSO, a population size of 150 particles 
was chosen to provide sufficient diversity into the 
population taking into account the dimensionality and 
complexity of the problem. This population size ensured 
that the domain was examined in full but at the expense of 
an increase in execution time. The other parameters of 
DPSO and IDPSO were: c1 = c2 = 2.0, ω = 1.2 - 0.8 with 
linearly decreasing, total iteration = 300 and V  [-3, 3]. 
 

 

Fig. 9. Testing with 150 particles 

 
The average NCC value of the templates obtained in the 
experiments was .998 or greater in less than 1000 
iterations. 
  

4.2.2 With 500 particles 
 
The average NCC value of the templates obtained in the 
experiments was .998 or greater in less than 1000 
iterations. 

 

Fig. 10. Testing with 500 particles 

4.3 Ant Colony Optimization (ACO) 
 
With ACO we chose the following settings

010, 2, 0.98, 0.1m q        

and k
ij

k

Q

L
  .[27][28] 

 
The location of the four templates/markers (Figure 11) by 
the three algorithms is shown in Figure 12. It took an 
average 8.86 seconds for ACO to find the four templates, 
and hence the fastest of the three algorithms. Results 
showed the limits of robustness of the Bee Colony 
Algorithm, for different food sources. When compared 
with the results obtained by a particle swarm algorithm 
[36] for the same problem, they are generally equivalent. 
The average time taken by ACO, was the closest match to 
the robot assembly cell takt time of 9 seconds that would 
be required to establish a lean workflow and reduce 
machine starvation at the manufacturing facility. 
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Fig. 11. Templates detected by ACO algorithm 

 

Fig. 12. Coordinates of the 4 templates as solved by ACO, BCA and 
modified PSO 

5. Conclusion 

In this paper, the BCA algorithm was tested with variants 
of Particle Swarm Optimization and Ant Colony 
Algorithm, and a combination of different strategies, such 
as generation of scout bees, varying the number of food 
sources, and explosion of stagnated population. The 
performance of the Bee Colony Algorithm is good when 
dealing with images without scaling factor, but this wasn’t 
necessary for our particular manufacturing case study 
scenario. The choice of algorithms for a manufacturing 
assembly scenario could vary with the required tact times 
in the assembly cell, and the production environment such 
as vibration, dust etc. With real world images, the 
performance degrades to certain limits, but still finds 
optimal solution in more than 75% of the cases, and with 
greater than 10 food sources. It is observed that the 
computational cost effectiveness of the BCA varies 
according to the number of food sources chosen. The 

algorithm can still offer good solutions in the presence of 
noise within reasonable ranges. Future work will focus on 
improving the robustness of the algorithm in such 
situations. 
  
We plan to test other approaches such as comparing the 
performance of modification such as conventional weight 
aggregation (CWA) and dynamic weight aggregation 
(DWA) in multi-objective optimization problems [35], and 
also compare with other competing evolutionary 
algorithms, like Genetic Algorithm.  
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