
IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 19

Comparison and Application of Metaheuristic Population-Based
Optimization Algorithms in Manufacturing Automation

Rhythm Suren Wadhwa1 and Terje K. Lien2

 1,2 Inst. for produksjons- og kvalitetstek.
Trondheim, 7491, Norway

Abstract

The paper presents a comparison and application of metaheuristic
population-based optimization algorithms to a flexible
manufacturing automation scenario in a metacasting foundry. It
presents a novel application and comparison of Bee Colony
Algorithm (BCA) with variations of Particle Swarm
Optimization (PSO) and Ant Colony Optimization (ACO) for
object recognition problem in a robot material handling system.
To enable robust pick and place activity of metalcasted parts by a
six axis industrial robot manipulator, it is important that the
correct orientation of the parts is input to the manipulator, via the
digital image captured by the vision system. This information is
then used for orienting the robot gripper to grip the part from a
moving conveyor belt. The objective is to find the reference
templates on the manufactured parts from the target landscape
picture which may contain noise. The Normalized cross-
correlation (NCC) function is used as an objection function in the
optimization procedure. The ultimate goal is to test improved
algorithms that could prove useful in practical manufacturing
automation scenarios.
Keywords: Bee Colony Algorithm, Particle Swarm Optimization,
Ant Colony Optimization, Foundry Automation

1. Introduction

In the 21st century, under the influences of globalization,
manufacturing companies are required to meet
continuously changing customer demands. Flexible
manufacturing systems (FMS) has emerged as a science
and industrial practice to bring about solutions for
unpredictable and frequently changing market conditions
[21]. Existing FMS implementations in manufacturing
companies have demonstrated a number of benefits by
helping lower production costs, increased factory floor
utilization, reduced work-in-process, etc. However, there
are a number of problems faced during the life cycle of an
FMS, which could be classified into work flow design,
production leveling, and control problems [21]. In
particular, the production leveling is important owing to
the dynamic nature of FMS such as flexible machines,
tools and workflow. This work is primarily concerned with
production leveling problem. Over the last decade, most
research in FMS has been focused on scheduling of FMSs

for single or multi objective problems. The present work,
however, compares three evolutionary computation
techniques Particle Swarm Optimization (PSO), Bee
Colony Algorithm (BCA) and Ant Colony Optimization
(ACO). The goal of the paper is not to declare one of the
techniques as better than the other, but to test their
applications after modification to suit the manufacturing
scenario discussed, as well as their limitations. The case
study is a small-to-medium batch manufacturing foundry
and we intend to test the suitability of the algorithms for
the purpose of lean workflow and reducing machine
starvation in the manufacturing facility.

1.1 Earlier Research

1.1.1 Flexible Manufacturing Systems

During the last two decades much research has been done
in this area. The heuristic algorithms developed include
enumerative procedures, mathematical programming and
approximation techniques, i.e., linear programming,
integer programming, goal programming, dynamic
programming, network analysis, branch and bound,
genetic algorithm (GA), etc.

Shankar and Tzen [39] considered scheduling problems in
a random FMS as composite independent tasks. Lee [25]
presented a goal-programming model for multiple
conflicting objectives in manufacturing. Toker et al. [45]
proposed an approximation algorithm for ‘n’ job ‘m’
machine problem. Steeke and Soldverg [43] investigated
various operating strategies on a caterpillar FMS by means
of deterministic simulation with the number of completed
assemblies on a performance criterion manufacturing
problem associated with parallel identical machines
throughout simulation. Chan and Pak [3] proposed two
heuristic algorithms for solving the scheduling problem
with the goal of minimizing total cost in a statictically
loaded FMS. Shaw and Winston [40] addressed an
artificial intelligence approach to the scheduling of FMS.
Schultz and Merkens [38] compared the performance of an
ES, a GA and priority rules for production systems.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 20

Further, a comprehensive survey on FMS was done by
Chan et al. [3].

Many authors have been trying to emphasize the
utilization of heuristics in flexible manufacturing
automation. In this context, it has been proposed a
comparative study on the application of evolutionary
algorithms in a specific manufacturing environment i.e.
metalcasting foundries.

1.1.2 Object Recognition in Flexible Manufacturing

The challenge of object recognition is to develop the
ability to recognize objects even with significant variations
in visual appearance. In recent years, a number of
metaheuristic algorithms have been proposed. They have
been applied to several real world combinatorial problems
in manufacturing. For example, Silva, Lopes and Lima
[41] as well as Perlin, Lopes and Centeno [36] presented
two metaheuristic approaches, one based on compact
Genetic Algorithm (CGA) and the other based on Particle
Swarm Optimization (PSO). Results show that both
methods can be efficiently applied to practical situations
with reasonable computational costs.

Some other related works have been presented using
variations of metaheurisitc algorithms. Tereshko and
Loengarov [44] proposed a collective decision model
considering a bee colony as a dynamical system where
intelligent decision making arises from an enhanced level
of communication among individuals. In their work, they
discussed how the information exchange between
individuals leads to globally intelligent selection of food
sources in an unpredictable environment. Karaboga [19]
proposed the Artificial Bee Colony (ABC) algorithm,
based on the foraging behavior of real bees, and later
compared its performance with other evolutionary and
swarm intelligence based algorithms using a large set of
numerical functions. Karaboga et al. [19] concluded that
the ABC algorithm is a robust optimization algorithm that
can be efficiently used in the optimization of multimodal
and multi-variable problems. Another version of a bee
swarm-based algorithm was proposed by Pham and Zaidi
[37], named Bees Algorithm (BA), which can be used for
both combinatorial and multi-parameter functional
optimization.

More recently, Hackel and Dippold [13] developed an
algorithm inspired in bee colony for the vehicle routing
problem with time windows. According to Mishra [30],
the algorithms mentioned before have an inherent
probabilistic nature and thus may not always obtain best
solutions with certainty. This paper uses the Matlab
toolbox from Karaboga which minimizes or maximizes
functions. We have adapted it in order to be able to take 4

templates and landscape image and be able to maximize
the NCC value obtained by the equation 1, which is
defined as “objective function” for maximization. Plotting
commands have been added to the program to represent
the matching between both images and so to be able to
determine the accuracy of the program. Another command
to calculate the time expended in each run has been added
as well.

2. Problem Description

One important application of a robot vision system is to
recognize whether or not a given part is a member of a
particular class of parts. Currently, common examples of
object recognition can be found in areas such as industry,
engineering, medical diagnosis etc. Generally, recognition
of objects in images using traditional search algorithms is
computationally expensive. For many industrial
applications, these algorithms should normally be executed
in real-time. Hence, fast algorithms are essential at all
stages of the recognition process in images. This fact
suggests the use of fast algorithms based on
metaheuristics. Recently, besides the traditional image
processing techniques, several methodologies based on
computational intelligence have been developed and
applied to object recognition problem, so as to reduce
computational cost and to improve efficiency. Amongst
them, metaheurisitc population-based optimization
algorithms, such as those from the Swarm Intelligence
area, were successfully applied to the problems.

Recognizing orientation of objects is a challenging task
due to constant changes in images in the real world. The
most straightforward technique for part orientation
recognition is called template matching [2]. Template
matching is the process of determining the optimal
matching between the same scenes taken at different times
or under different conditions and the template known
according to some similarity measure. [26]. In other
words, the basic idea is to find a match of the pattern in
some part of the landscape image. The most common way
of finding the matching point between the landscape image
and the template is by calculating the correlation function
value which indicates the percentage of matching of both
images for a specific matching point. The bigger this
parameter is, the closer the two images will be.

Normalized Cross Correlation (NCC) is the most robust
correlation measure for determining similarity between
points in two or more images providing an accurate
foundation for motion tracking images [17]. This
technique has been used on several works. Cole [6] used
this technique to reduce the size of a set of images to
which new images were compared. Modegi [31] proposed

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 21

a structured template matching technique for recognizing
small objects in satellite images. There are other methods
of tracking that do not use NCC, including Gradient
Descent Search (GDS) and Active Contour Matching [1].
The GDS is based on a first order approximation to image
motion and has a restriction that the feature translation is
small.

The method of template matching loops the template
through all the pixels in the captured image and compares
the similarity. While this method is simple and easy to
implement, it is the slowest one. [48] This speed problem
could be reduced by the application of the metaheuristic
population-based optimization algorithms.

1a. 1b. 1c. 1d.

Fig. 1 Image of the sample part on the assembly conveyor belt, as seen
from the overhead camera image. 1a 1b 1c 1d The templates to be

detected on the part to predict its orientation for handling by the robot
gripper.

In this work, we want to find a reference image in the
target landscape image. When the pattern is found in the
target image, its rotation angle is determined. To evaluate
a candidate solution, the measure of similarity  between

the reference and target landscape image has been
proposed. Several similarity measures have been proposed
in the literature, such as mutual information and sum of
square of differences between pixels [2][6]. In this work,
we used the relation in equation 1, considering the degree
of similarity between the images.

ߛ ൌ
∑ ∑ ൣிሺ௫ା௜,௬ା௝ሻିிത೔,ೕ൧ڄሾ்ሺ௜,௝ሻି ത்ሿ೙షభ

ೕసబ
೘షభ
೔సబ

ቄ∑ ∑ ൣிሺ௫ା௜,௬ା௝ሻିிത೔,ೕ൧
మ

∑ڄ ∑ ሾ்ሺ௜,௝ሻି ത்ሿ೙షభ
ೕసబ

೘షభ
೔సబ

మ೙షభ
ೕసబ

೘షభ
೔సబ ቅ

భ మ⁄ (1)

In the equation (1), F(x,y) is the landscape image, ܨത௜,௝ is
the grey-scale average intensity of the captured image in
the region coincident with the template image, T(x,y)
represents the template image and തܶ is the average
intensity of the template image. We have to address that
the dimensions of the matrix F is MxN and the size of the

template T is mxn. The maximum value of  is 1, will say

that the match between the landscape and the template is
perfect. [48].

The FMS layout considered in this work, depicted below,
consists of a six axis ABB ERB 6400 robot, a vision
camera, and a material handling system- a conveyor belt.
The Sony XCG-U100E overhead camera (Figure 2b) is
used for identifying the orientation of the part lying on a
conveyor belt (Figure 2c).

2a. 2b. 2c.

Fig. 2a. The Assembly Robot 2b. Overhead Camera 2c. Conveyor Belt.

The image captured by the camera is transferred via closed
network Ethernet connection to the testing PC. The ABB
robot tracks the conveyor belt using a conveyor tracking
system which is included in the robot controller. The part
orientation information is transferred to the robot gripper
via the Ethernet, which then orients itself accordingly to
pick the part. The object recognition problem is to find the
templates on the parts, such as the one chosen in this case,
considering the possible position of the images within the
required tact time allocated to the robot assembly cell.

3a. 3b.

Fig. 3a. Gripper orienting to pick the part 3b. Part lifted from conveyor
belt

While the simulations provided in this paper are based on
real assembly shop data in a company, the actual part
details, the assembly cell rates and the gripper construction

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 22

details are not revealed due to the proprietary nature of the
information.

3. Proposed Methodology

3.1 Bee Colony Algorithm (BCA)

The Bee Colony Algorithm [19] is inspired by the
collective behavior of a colony of honeybees working to
find food sources around the hive. Although a colony of
honeybees has a queen, the control is decentralized rather
than hierarchical. The beehive can be understood as a self-
organizing system with a multiplicity of agents [24]. A
self-organizing system is based on characteristics of
positive and negative feedback, random fluctuation as well
as the interaction of the system’s individuals. The use of
preferably good food sources is an emergent property of
the beehive.

In BCA algorithm, the position of a food source represents
a possible solution to the optimization problem and the
nectar amount of a food source corresponds to the quality
(fitness) of the associated solution. A colony of honey bees
can move itself over long distances and in multiple
directions simultaneously to exploit a large number of
food sources. The goal of the colony is to achieve good
food sources, which depend on some factors such as the
distance to the hive, richness or concentration of nectar
and easiness of extracting the nectar.

Fig. 4 Behavior of honeybee foraging for nectar (Adapted from
Karaboga et al. 2009).

A colony of honey bees is classified into three categories;
employed bees, onlooker bees and scout bees. All bees that
are currently exploiting a food source are known as
employed bees. The employed bees exploit the food source
and they carry the profitability of the food source back to
the hive and share this information with onlooker bees by
dancing in the designated dance area inside the hive.
Onlooker bees look for a food source to exploit. They
watch the dance and choose a food source according to the

probability proportional to the quality of that food source.
Therefore, good food sources attract more onlooker bees
compared to bad ones. Whenever a food source is
exploited fully, all the employed bees associated with it
abandon the food source, and become scouts. Scout bees
will always be searching for new food sources near the
hive. The mean number of scouts is about 5–10%. Scout
bees can be visualized as performing the job of exploration,
whereas employed and onlooker bees can be visualized as
performing the job of exploitation.

The main steps of the algorithm are as below: [19]
1: Initialize Population
2: repeat
3: Place the employed bees on their food sources
4: Place the onlooker bees on the food sources depending
on their nectar amounts
5: Send the scouts to the search area for discovering new
food sources
6: Memorize the best food source found so far
7: Until requirements are met

In BCA algorithm, each cycle of the search consists of
three steps: sending the employed bees onto their food
sources and evaluating their nectar amounts; after sharing
the nectar information of food sources, the selection of
food source regions by the onlookers and evaluating the
nectar amount of the food sources; determining the scout
bees and then sending them randomly onto possible new
food sources. At the initialization stage, a set of food
sources is randomly selected by the bees and their nectar
amounts are determined. At the first step of the cycle,
these bees come into the hive and share the nectar
information of the sources with the bees waiting on the
dance area. A bee waiting on the dance area for making
decision to choose a food source is called onlooker and the
bee going to the food source visited by herself just before
is named as employed bee.

After sharing their information with onlookers, every
employed bee goes to the food source area visited by itself
at the previous cycle since that food source exists in her
memory, and then chooses a new food source by means of
visual information in the neighbourhood of the one in her
memory and evaluates its nectar amount. At the second
step, an onlooker prefers a food source area depending on
the nectar information distributed by the employed bees on
the dance area. As the nectar amount of a food source
increases, the probability of that food source chosen also
increases. After arriving at the selected area, she chooses a
new food source in the neighbourhood of the one in the
memory depending on visual information as in the case of
employed bees. The determination of the new food source
is carried out by the bees based on the comparison process
of food source positions visually. At the third step of the

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 23

cycle, when the nectar of a food source is abandoned by
the bees, a new food source is randomly determined by a
scout bee and replaced with the abandoned one. In our
model, at each cycle at most one scout goes outside for
searching a new food source and the number of employed
and onlooker bees is selected to be equal to each other.
These three steps are repeated through a predetermined
number of cycles called Maximum Cycle Number MCN or
until a termination criterion is satisfied.

An artificial onlooker bee chooses a food source
depending on the probability value associated with that

food source ip calculated by Eq. (2):

 1

i
i SN

n
n

fit
p

fit





 (2)

where fiti is the fitness value of the solution i which is
proportional to the nectar amount of the food source in the
position i and SN is the number of food sources which is
equal to the number of employed bees or onlooker bees.

In order to produce a candidate food position from the old
one in memory, the BCA uses Eq. (3):

()ij ij ij ij kjv x x x   (3)

where k Є {1,2,…., SN} and j Є {1,2,…., C} are randomly
chosen indexes. Although k is determined randomly, it has

to be different from i. ij is a random number between

[-1,1]. It controls the production of neighbour food sources

around ijx and represents the comparison of two food

positions visually by a bee. As the difference between the

parameters ijx and kjx decreases, the perturbation on the

position
ijx gets decreased, too. Thus, as the search

approaches the optimum solution in the search space, the
step length is adaptively reduced.

If a parameter value produced by this operation exceeds its
predetermined limit, the parameter can be set to an
acceptable value. In this work, the value of the parameter
exceeding its limit is set to its limit value.

The food source of which the nectar is abandoned by the
bees is replaced with a new food source by the scouts. In
BCA, this is simulated by producing a position randomly
and replacing it with the abandoned one. If a position
cannot be improved further through a predetermined
number of cycles, then that food source is assumed to be

abandoned. Assume that the abandoned source is ix and

{1, 2,....., }j D , then the scout discovers a new food

source to be replaced with ix . This operation can be

defined as in Eq. (4)

 min max min[0,1]()j j j j
ix x rand x x   (4)

After each candidate source position vi,j is produced and
then evaluated by the artificial bee, its performance is
compared with that of its old one. If the new food source
has an equal or better nectar than the old source, it is
replaced with the old one in the memory. Otherwise, the
old one is retained in the memory. In other words, a greedy
selection mechanism is employed as the selection
operation between the old and the candidate one

3.2 Ant Colony Optimization (ACO)

Ant colony optimization was formalized into a
metaheuristic for combinatorial optimization problems by
Dorigo and co-workers [27], [28]. One can find ACO
metaheuristic application to real-world applications
mentioned in the literature such as by Price et al. [29], who
have applied ACO to an industrial scheduling problem in
an aluminum casting center, and by Bautista and Pereira
[18], who successfully applied ACO to solve an assembly
line balancing problem with multiple objectives and
constraints between tasks.

In ACO algorithms a colony of artificial ants iteratively
constructs solutions for the problem under consideration
using artificial pheromone trails and heuristic information.
Its main characteristic is that, at each iteration, the
pheromone values are updated by all the m ants that have

built a solution in the iteration itself. The pheromone ij ,

associated with the edges i and j , is updated as follows:

1

(1).
m

k
ij ij ij

k

   


    (5)

where  is the evaporation rate, m is the number of

ants, k
ij is the quantity of pheromone laid on the edge

(,)i j by ant k .

k
ij

k

Q

L
  (6)

if ant k uses edge (,)i j in its tour, and 0 otherwise. In

the equation above, Q is a constant, and kL is the length

of the tour constructed by ant k .

In the construction of a solution, ants select the following
city to be visited through a stochastic mechanism. When

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 24

ant k is in city i and has so far constructed the partial

solution ps ,the probability of going to city j is given by:

()p
il

ij ijk
ij

il il
c N s

p
 

 

 
 






 (7)

if ()p
ijc N s , and 0 otherwise. In the equation above

()pN s is the set of feasible components; that is, edges

(,)i l where l is a city not yet visited by ant k . The

parameters  and  control the relative importance of

the pheromone versus the heuristic information ij , which

is given by:
1

ij
ijd

  (8)

where ijd is the distance between the cities i and j .

The pheromone trails are modified by ants during the
algorithm execution in order to store information about
‘good’ solutions. We apply the Ant Colony System (ACS)
[9,10], a particular ACO algorithm to the problem on
hand, which follows the algorithmic scheme given below:

1: Set parameters, initialize pheromone trails
2: while (termination condition not met)
3: ConstructSolutions
4: (ApplyLocalSearch)
5: UpdateTrails
6: end while

ACO are solution construction algorithms, which, in
contrast to local search algorithms, may not find a locally
optimal solution. Many of the best performing ACO
algorithms improve their solutions by applying a local
search algorithm after the solution construction phase. Our
primary goal in this work is to analyze the manufacturing
related application capabilities of ACO, hence in this first
investigation we do not use local search.

3.3 Particle Swarm Optimization (PSO)

The initial ideas on particle swarms of Kennedy and
Eberhart were essentially aimed at producing
computational intelligence by exploiting simple analogues
of social interaction, rather than purely individual
cognitive abilities [34]. The first simulations [20] were
influenced by Heppner and Grenander’s work [16] and
involved analogues of bird flocks searching for corn.
These soon developed [9][10] into a powerful optimization
method— Particle Swarm Optimization (PSO).

PSO is an optimization algorithm that is based on swarm
intelligence principle [9], which are widely used in
application domains such as function optimization, neural
network training, fuzzy system control and so on at present
[33]. It has been proved to be very effective for solving
global optimization in various engineering application
such as image and video analysis and design and
optimization of communication networks. However, most
applications in this field are using PSO to train ANN. A
direct application of PSO variant in maintenance
optimization will be shown in this paper.

3.3.1 Basic PSO Algorithm Description

The Particle Swarm Optimization (PSO) algorithm is a
heuristic approach motivated by the observation of social
behavior of composed organisms such as birds flocking
(Fig.5). A number of simple entities – the particles – are
placed in the search space of some problem or function,
and each evaluates the objective function at its current
location. Each individual in the particle swarm is
composed of D dimensional vectors, where D is the
dimensionality of the search space.

()ix t


(() ())i ip t x t
 



(())g ip x t
 



(1)ix t



(1)iv t





()iv t


Fig. 5. Bird Flocking of PSO

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 25

The current position ݔԦ௜ can be considered as a set of
coordinates describing a point in space. If the current
position is better than any that has been found so far, then
the coordinates are stored in the vector ݌Ԧ௜. The value of the
best function result so far is stored in a variable that can be
called Ԧ௚݌ . The objective, of course, is to keep finding
better positions and updating ݌Ԧ௜ and ݌Ԧ௚ . New points are
chosen by adding ݒԦ௜ coordinates to ݒԦ௜, and the algorithm
operates by adjusting ݒԦ௜, which can effectively be seen as a
step size. The steps of implementing PSO are shown as
follows:

1: Initialize a population array of particles with random
positions and velocities on D dimensions in the search
space.

2: Loop

3: For each particle, evaluate the desired optimization
fitness function in D variables.

4: Compare particle’s fitness evaluation with that of its ݌Ԧ௜.
If current value is better than that of ݌Ԧ௜, then set ݌Ԧ௜ equal
to the current coordinates.

5: Identify the particle in the neighborhood with the best
success so far, and assign it to the variable ݌Ԧ௚.

6: Change the velocity and position of the particle
according to the following equation:

ݐԦ௜ሺݒ ൅ 1ሻ ൌ ߱ · ሻݐԦ௜ሺݒ ൅ ܿଵ · Ԧ௜݌ଵ൫ݎ െ ሻ൯ݐԦ௜ሺݔ ൅ ܿଶ · Ԧ௚݌ଶሺݎ െ
 ሻሻ (9)ݐԦ௜ሺݔ

ݐԦ௜ሺݔ ൅ 1ሻ ൌ ሻݐԦ௜ሺݔ ൅ ݐԦ௜ሺݒ ൅ 1ሻ (10)

Where:  is the inertia weighting; c1 and c2 are
acceleration coefficients, positive constraint; r1 and r2 are
the random numbers deferring uniform distribution on [0,
1]; i represents ith iteration.

7: If a criterion is met (usually a sufficiently good fitness
or a maximum number of iterations), exit loop.

8: End loop

In PSO, every particle remembers its own previous best
value as well as the neighborhood best; therefore it has a
more effective memory capability than an algorithm such
as the GA. In addition, PSO is easier to implement and
there are fewer parameters to adjust compared with GA [8].

3.3.2 Discrete PSO (DPSO) Algorithm Description

The general concepts behind optimization techniques
initially developed for problems defined over real-valued
vector spaces, such as PSO, can also be applied to discrete
valued search spaces where either binary or integer
variables have to be arranged into particles [8]. When
integer solutions (not necessarily 0 or 1) are needed, the
optimal solution can be determined by rounding off the
real optimum values to the nearest integer. DPSO has been
developed specifically for solving discrete problems. The
new velocity and position for each is determined according
to the velocity and position update equations given by (8)
and (9).

ݐԦ௜ሺݒ ൅ 1ሻ ൌ ሺ߱݀݊ݑ݋ݎ · ሻݐԦ௜ሺݒ ൅ ܿଵ · Ԧ௜݌ଵ൫ݎ െ ሻ൯ݐԦ௜ሺݔ ൅ ܿଶ ·
Ԧ௚݌ଶሺݎ െ ሻሻሻ (11)ݐԦ௜ሺݔ

ݐԦ௜ሺݔ ൅ 1ሻ ൌ ሻݐԦ௜ሺݔ ൅ ݐԦ௜ሺݒ ൅ 1ሻ (12)

In equation (11), the value of velocity is binary or integer
because round () function can round off the value.

3.3.3 Improved DPSO (IDPSO) Algorithm Description

DPSO or PSO performs well in the early iterations, but
they have problems approaching a near-optimal solution.
If a particle’s current position accords with the global best
and its inertia weight multiply previous velocity is close to
zero, the particle will only fall into a specific position. If
their previous velocities are very close to zero, all the
particles will stop moving around the near-optimal
solution, which may lead to premature convergence of
algorithm. All the particles have converged to the best
position discovered so far which may be not the optimal
solution. So, an improved DPSO is proposed here.

In IDPSO, before updating the velocities and positions in
every iteration, the particles are ranked according to their
fitness values in descending order. Select the first part of
particles (suppose mutation rate is α, fist part is (1-α)) and
put them into the next iteration directly. Regenerate the
rest part of particles (α) randomly. In this project, we can
regenerate the positions and velocities according to the
following equation:

௜ௗݔ ൌ ݀݊ܽݎሺ݀݊ݑ݋ݎ · ሺܵ୫ୟ୶ሺ݆ሻ െ ܵ୫୧୬ሺ݆ሻሻ ൅ ܵ୫୧୬ሺ݆ሻሻ

 (13)

ሻݐ௜ௗሺݒ ൌ ௠௔௫ݒ െ ݀݊ݑ݋ݎ · ሺ݀݊ܽݎ ൈ ሻݐ௜ௗሺݒ ௠௔௫ሻݒ2 א
ሾെݒ௠௔௫, ௠௔௫ሿ (14)ݒ

Because of the characteristics of the flexible
manufacturing environment, PSO needs to be discretized.
The PSO was modified in order to improve the

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 26

optimization effect. Therefore, an improved discrete PSO
(IDPSO) was applied in this case.

4. Results and Comparison

4.1 Bee Colony Algorithm

There exist in literature [36] many ways to implement a
BCA algorithm. In this paper the bee colony algorithm
was implemented in Matlab. For inital tests, we defined
the number of employed bees or initial solutions as 100,
the maximum number of cycles as 300, and the scout bees
as 10% of employed bees. During the search, the
stagnation criterion was the non-improvement of the
solutions for 10% of the cycles. When stagnation occurred,
explosion was performed. All experiments were run to
evaluate the object recognition task in digital color and
grey images.

The objective of the experiment is to identify the strategies
that maximize the average fitness and the number of best
solutions that have fitness values greater than 0.95. This
value was empirically found and indicates that the object is
identified by the algorithm with almost correct
coordinates, except by a small tolerance.

The number of food sources in the program can affect to
the precision and the velocity of the program. The
variation of running time of the program with different
number of food sources is shown below to appreciate the
differences. In both runs the rule of the same number of
employed and onlooker bees have been kept.

4.1.1 With 500 Food Sources

For this experiment, the limit of iterations has been
eliminated. This is to avoid be many errors due to the fact
that with less food sources there should be more iterations.
The Y axis shows the Fitness Values in all plots. With 500
food sources the following was observed:

 The average running time is of 14.70 seconds.
 There has not been any error in the detection of

the correct coordinates, all of the templates have
reached an NCC higher than 0.52 before 500
iterations.

Fig. 6. Testing with 500 food sources

4.1.2 With 100 Food Sources

 The average running time is of 9.19 seconds.
 All of the templates reached NCC value higher

than 0.52 before 500 iterations.

Fig. 7. Testing with 100 food sources

4.1.3 With 10 Food Sources

It was observed that the average number of iterations per
template is significantly bigger (4,500) than with more
food sources.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 27

Fig. 8. Testing with 10 food sources

We also noticed that a minimum number of food sources
of 10 was the bottom limit required to obtain any
resolution with the Bee Colony Algorithm application to
the discussed problem.

4.2 Improved Discrete Particle Swarm Optimization
(IDPSO)

4.2.1 With 150 particles
To implement IDPSO, a population size of 150 particles
was chosen to provide sufficient diversity into the
population taking into account the dimensionality and
complexity of the problem. This population size ensured
that the domain was examined in full but at the expense of
an increase in execution time. The other parameters of
DPSO and IDPSO were: c1 = c2 = 2.0, ω = 1.2 - 0.8 with
linearly decreasing, total iteration = 300 and V  [-3, 3].

Fig. 9. Testing with 150 particles

The average NCC value of the templates obtained in the
experiments was .998 or greater in less than 1000
iterations.

4.2.2 With 500 particles

The average NCC value of the templates obtained in the
experiments was .998 or greater in less than 1000
iterations.

Fig. 10. Testing with 500 particles

4.3 Ant Colony Optimization (ACO)

With ACO we chose the following settings

010, 2, 0.98, 0.1m q      

and k
ij

k

Q

L
  .[27][28]

The location of the four templates/markers (Figure 11) by
the three algorithms is shown in Figure 12. It took an
average 8.86 seconds for ACO to find the four templates,
and hence the fastest of the three algorithms. Results
showed the limits of robustness of the Bee Colony
Algorithm, for different food sources. When compared
with the results obtained by a particle swarm algorithm
[36] for the same problem, they are generally equivalent.
The average time taken by ACO, was the closest match to
the robot assembly cell takt time of 9 seconds that would
be required to establish a lean workflow and reduce
machine starvation at the manufacturing facility.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 28

Fig. 11. Templates detected by ACO algorithm

Fig. 12. Coordinates of the 4 templates as solved by ACO, BCA and
modified PSO

5. Conclusion

In this paper, the BCA algorithm was tested with variants
of Particle Swarm Optimization and Ant Colony
Algorithm, and a combination of different strategies, such
as generation of scout bees, varying the number of food
sources, and explosion of stagnated population. The
performance of the Bee Colony Algorithm is good when
dealing with images without scaling factor, but this wasn’t
necessary for our particular manufacturing case study
scenario. The choice of algorithms for a manufacturing
assembly scenario could vary with the required tact times
in the assembly cell, and the production environment such
as vibration, dust etc. With real world images, the
performance degrades to certain limits, but still finds
optimal solution in more than 75% of the cases, and with
greater than 10 food sources. It is observed that the
computational cost effectiveness of the BCA varies
according to the number of food sources chosen. The

algorithm can still offer good solutions in the presence of
noise within reasonable ranges. Future work will focus on
improving the robustness of the algorithm in such
situations.

We plan to test other approaches such as comparing the
performance of modification such as conventional weight
aggregation (CWA) and dynamic weight aggregation
(DWA) in multi-objective optimization problems [35], and
also compare with other competing evolutionary
algorithms, like Genetic Algorithm.

Acknowledgments

Financial support from the AutoCast Consortium and the
Norwegian Research Council is gratefully acknowledged.

First Author Rhythm Suren Wadhwa is a PhD student at the
department of production and quality engineering, NTNU. She has
worked in the Manufacturing Automation industry for five years.
Current research interests include assembly automation,
optimization techniques, assembly simulation and industrial
robotics. She was the president of Society of Women Engineers at
the University of Michigan. She has a Masters Degree in
Mechanical Engineering and Bachelors degree in Manufacturing
Processes Automation Engineering.

Second Author Terje Kristoffer Lien is a Professor in
Manufacturing Automation and Robotics at the department of
Production and Quality Engineering, NTNU. He has been active in
the deveopment of cellular manufacturing systems. His work has
attracted international interest, in particular the use of force
feedback as a programming tool, and as an enhancment of the
control of robots used for grinding operations.
.

References

[1] B. D. Lucas and T. Kanade, "An Iterative Image Registration
Technique with an Application to Stereo Vision," presented at
International Joint Conference on Artificial Intelligence,
Vancouver, 1981.

[2] Brunelli, R.Template Matching Techniques in Computer
Vision: Theory and Practice. New York: John Wiley & Sons,
2009.

[3] Chan, T.S., Pak, H.A., Heuristic job allocation in a flexible
manufacturing system. Int J Adv Manuf Technol 1(2):69-90,
1986.

[4] Chidambaran, C. and Lopes, H. S., (2010) An Improved
Artificial Bee Colony Algorithm for the Object Recognition
Problem in Complex Digital Images Using Template Matching,
International Journal of Natural Computing Research, Vol1,
Issue2, pp.54-70.

[5] Chisman, J.A. Manufacturing cell: analytical set up times
and part sequencing. Int J Adv Manuf Technol 1(5):55-60, 1986.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 29

[6] Cole, L., Austin, D., & Cole, L., Visual object recognition
using template matching. In Proceedings of the Australasian
Conference on Robotics and Automation. 2009

[7] Curkovic, P. and Jerbic, B. (2007) Honey-Bees Optimization
Algorithm applied to path planning problem, International
Journal of Simulation Modeling, Vol 3, pp. 154-164

[8] Del Valle, Y., Venayagamoorthy G. K., Mohagheghi, S.,
Hernandez. J., and Harley, R. G., (2008) Particle swarm
optimization: basic concepts, variants and applications in power
system, IEEE Trans. Evol. Comput., Vol. 2, pp. 171–195.

[9] Eberhart, R. C., and Kennedy, J., (1995) A new optimizer
using particles swarm theory. Proceedings of Sixth International
Symposium on Micro Machine and Human Science, pp. 39-43.

[10] Eberhart, R. C., Simpson, P. K., and Dobbins, R. W., (1996)
Computational intelligence PC tools, Boston: Academic Press.

[11] Evans, H., & Zhang, M. Particle Swarm Optimization for
Object Classification. In Proceedings of the 23rd International
Conference on Image and Vision Computing (pp. 1-6),2007.

[12] Greenberg, H.H. A branch and bound solution to the general
scheduling problem. Int J Oper Res 16:353-361.

[13] Hackel, S. Dippold, P. The bee colony inspired algorithm
(BCiA): a two-stage approach for solving the vehicle routing
problem with time windows. In Proceedings of the 11th Genetic
and Evolutionary Computation Conference (pp. 25-32), 2009

[14] Hambecker, F., Lopes, H.S., & Godoy, W. Jr. Particle
Swarm Optimization for Multidimensional Knapsack Problem
(pp. 358-365),2007.

[15] Hoitomt, D.J., Luh P.B., Pattipati, K.R., A practical
approach to job shop scheduling problems. IEEE Trans Robot
Autom 9(1):1-13.

[16] Heppner, H., and Grenander, U., (1990) A stochastic non-
linear model for coordinated bird flocks, The ubiquity of chaos,
pp. 233–238. Washington: AAAS.

[17] Hii, A. J. H., Hann, C. E., Chase, J. G. and Van Houten, W.
E. W., (2006) Fast normalized cross correlation for motion
tracking using basis functions. Computer Methods andPrograms
in Biomedicine. Vol. 82, No. 2, pp. 144-156.

[18] J. Bautista and J. Pereira, “Ant algorithms for assembly line
balancing,” in Proc. ANTS2002, ser. LNCS, M. Dorigo et al.,
Eds., Springer Verlag, vol. 2463, pp. 65–75, 2002.
[19] Karaboga, D., Akay, B., A comparative study of artificial
bee colony algorithm, Applied Mathematics and Computation,
214 (1), 108-132, 2009.

[20] Kennedy, J., and Eberhart, R. C. (1995) Particle swarm
optimization. Proceedings of the IEEE international conference
on neural networks IV, pp. 1942–1948.

[21] Koren, Y.U.A., Reconfigurable manufacturing systems: Key
to future manufacturing. Journal of
Intelligent Manufacturing, 2000. 11(4).

[22] L. M. Gambardella and M. Dorigo. Solving symmetric and
asymmetric TSPs by ant colonies. In Proceedings of the 1996
IEEE International Conference on Evolutionary Computation
(ICEC’96), pages 622–627. IEEE Press, Piscataway, NJ, 1996.

[23] LaDou, J., (2006) Printed circuit board industry.
International Journal of Hygiene and Environmental Health. Vol.
209, No. 3, pp. 211-219.

[24] Lemmens, N., (2006) To bee or not to bee: A comparative
study in swarm intelligence. Master’s thesis, Maastricht
University, Faculty of Humanities and Sciences. MICCIKAT 06-
12.

[25] Lee, S.M., Jung H.J. A multi objective production planning
model in flexible manufacturing environment. Int J Prod Res 27
(11): 1981-1992

[26] Lin, Y. H. and Chen, C. H., (2008) Template matching using
the parametric template vector with translation, rotation and scale
invariance. Pattern Recognition. Vol. 41, No. 7, pp.2413-2421.

[27] M. Dorigo and L. M. Gambardella. Ant Colony System: A
cooperative learning approach to the traveling salesman problem.
IEEE Transactions on Evolutionary Computation, 1(1):53–66,
1997.

[28] M. Dorigo, V. Maniezzo, and A. Colorni. The Ant System:
Optimization by a colony of cooperating agents. IEEE
Transactions on Systems, Man, and Cybernetics – Part B,
26(1):29–41, 1996.

[29] M. Gravel, W.L. Price, and C. Gagn´e, “Scheduling
continuous casting of aluminum using a multiple objective ant
colony optimization metaheuristic,” European Journal of
OperationalResearch, vol. 143, pp. 218–229, 2002.

[30] Mishra, S.K., Performance of Differential Evolution and
Particle Swarm Methods on Some Relatively Harder Multi-
modal Benchmark Functions. Munich personal RePec (No.1743)

[31] Modegi, T. Small object recognition techniques based on
structured template matching for high-resolution satellite images.
SICE Annual Conference, 2168-2173

[32] Monkman G., Hesse S., Steinmann R., and Schunk, H.
Robot Grippers, (2007).

[33] Pan Hongxia, and Wei Xiuye, (2009) Particle Swarm
Optimization Algorithm with Adaptive Velocity and its
Application to Fault Diagnosis, 2009 IEEE Congress on
Evolutionary Computation, pp. 3075-3079.

[34] Riccardo Poli, James Kennedy, and Tim Blackwell (2007)
Particle swarm optimization, Swarm Intelligence, Vol. 1, pp. 33-
57.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 30

[35] Parsopoulous, K.E., Vrahatis, M.N. Particle Swarm
Optimization Method in Multi objective Problems, SAC 2002,
Madrid

[36] Perlin, H.A., Lopes, H.S., & Centeno, T.M. Particle Swarm
Optimization for object recognition in computer vision, 2008.

[37] Pham, D.T., Soroka, A.J.,Ghanbarzadeh, A., & Koc, E.
Optimizing neural networks for identification of wood defects
using bees algorithm. In Proceedings of the International
Conference on Industrial Informatics (pp. 1346-1351),2006.

[38] Schulz, J., Mertens P., A comparison between an expert
system, a GA and priority for production scheduling. In:
Proceedings of the 1st international conference on operations and
quantitative management, Jaipur, India, 2.506-513, 1997.

[39] Shankar K,Tzen Y.J. A loading and dispatching problem in
a random flexible manufacturing system. Int J Prod Res 23: 579-
595. 1985.

[40] Shaw, M.J., Whinston, A.B., An artificial intelligence
approach to the scheduling of flexible manufacturing systems.
IEEE Trans 21:170-182,1989.

[41] Silva, R.R., Lopes, H.S., & Lima, C.R.E. A compact genetic
algorithm with elitism and mutation applied to image recognition
(LNCS 5227, pp.1109-1116),2008.

[42] Singh, A. An artificial bee colony algorithm for leaf-
constrained spanning tree problem. Applied Soft Computing,
9(2), 625-631. 2009.

[43] Steeke, K.E., Soldberg, J.J., Loading and control policies for
a flexible manufacturing system. Int J Prod Res 19(5):481 -490,
1982.

[44] Tereshko, V. & Loengarov, A. collective decision-making in
honey bee foraging dynamics. Computing and Information
Systems, 9(3), 1-7. 2005.

[45] Toker, A., Kondacki, S., Erkip, N., Job shop scheduling
under a non-renewable resource constraint. J Oper Res Soc 45(8):
942-947, 1994.

[46] Wang, K., (2005) Applied Computational Intelligence in
Intelligent Manufacturing Systems, Advanced Knowledge
International Pty Ltd, Australia.

[47] Wang, K., (2010) Swarm Intelligence in Manufacturing
Systems: Principles, Applications and Future Trends, IWAMA
(2010)
[48] Wu, C.-H., D.-Z. Wang, et al. (2009). "A particle swarm
optimization approach for components placement inspection on
printed circuit boards." Journal of Intelligent Manufacturing
20(5): 551-551.

[49] Zhao,X., Lee, M.E., & Kim, S.H. Improved Image
Thresholding using Ant Colony Optimization Algorithm. In
Proceedings of International Conference on Advanced Language
Processing and Web Information Technology (pp. 201-215) 2008.

