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Abstract  

This paper reviews some state-of-the-art hybrid multiobjective evolutionary algorithms (MOEAs) dealing 
with multiobjective optimization problem (MOP). The mathematical formulation of a MOP and some 
basic definition for tackling MOPs, including Pareto optimality, Pareto optimal set (PS), Pareto front (PF) 
are provided in Section 1. Section 2 presents a brief introduction to hybrid MOEAs.  
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1. Introduction  

A multiobjective optimization problem 
(MOP) can be stated as follow: 1 

Minimize F(x) = (f1(x),.., fm(x))
T 

(1) 
subject to x ∈ Ω  

Where Ω is the decision variable space, x= 
(x1, x2,..,xn)

T 
is a decision variable vector 

and xi, i =1,...,n are called decision variables, 

F(x): Ω→R
m 

consist of m real valued 
objective functions and R

m 
is called the 

objective space.  
If Ω is closed and connected region in R

n 

and all the objectives are continuous of x, we 
call a problem 1 is a continuous MOP.  
Very often, the objectives of the problem (1) 
are in conflict with one another or are 
incommensurable. There doesn’t exist a 
single solution in the search space Ω that can 
minimize all the objectives functions simul-
taneously. Instead, one has to find the best 
trade-offs among the objectives. These trade-
offs can be better defined in terms of Pareto 
optimality. The Pareto optimality concept 
                                                                 

1 1The minimization problem can easily convert 
into maximization problem by multiplying each objective 
with −1 and vice versa.  

 

was 1st introduced by eminent economists 
Pareto and Edgeworth [1]. A formal 
definition of the Pareto optimality is given as 
follows [2, 3, 4, 5].  

Definition: Let u = (u1, u2,..,um)
T 

and v= 

(v1, v2,..,vm)
T 

be any two given vectors 

in R
m 

. Then u is said to dominate v, 
denoted as u ≺ v, if and only if the 
following two conditions are satisfied.  

1. ui ≤ vi for every i ∈{1, 2,..., m}  

2. uj < vj for at least one index  j ∈{1, 2,..., 
m}.  

 
Remarks: For any two given vectors, u 
and v, there are two possibilities:  

1. Either u dominates v or v dominates u  
2. Neither u dominates v nor does v 

dominate u.  
Definition: A solution x ∈ Ω is said to be a 
Pareto optimal to the problem (1) if there is 
no other solution x ∈ Ω such that F(x) 
dominates F(x*). F(x*) is then called Pareto 
optimal (objective) vector.  

Remarks: Any improvement in a Pareto 
optimal point in one objective must lead 
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to deterioration in at least one other 
objective.  

Definition: The set of all the Pareto opti-
mal solutions is called Pareto set (PS): 
PS = {x ∈ Ω|y∄ ∈ Ω, F(y) ≺ F(x)}  

Definition: The image of the Pareto 
optimal set (PS) in the objective space is 
called Pareto front (PF), PF = {F(x) |x   
∈PS}.  

Recent years have witnessed significant 
development in MOEAs for dealing MOPs. 
In last two decades, a variety of MOEAs 
have been proposed. The success of most 
MOEAs depends on the careful balance of 
two conflicting goals, exploration (i.e., 
searching new Pareto-optimal solution) and 
exploitation (i.e., refining the obtained PS). 
To achieve these two goals, hybridization is 
good strategy [6]. The following section 
introduces hybrid algorithms.  

2. Hybrid Multiobjective Evolutionary 
Algorithms  

Hybrid MOEAS or combination of 
MOEAs with efficient techniques have been 
investigated for more than one decade [7]. 
Hybridization uses desirable properties of 
different techniques for better algorithmic 
improvements. Hybridization can be done in 
several ways, 1) to use one algorithm to 
generate a population and then apply another 
technique to improve it, 2) to use multiple 
operators in an evolutionary algorithm, and 
3) to apply local search to improve the 
solutions obtained by MOEAs [8].  

Multiobjective memetic algorithms 
(MOMAs) are a special type of hybrid 
MOEAs. MOMAs are population-based 
algorithms inspired by the Darwinian 
principles of natural evolution and Dawkins 

notion of a meme (i.e., defined as a unit of 
cultural evolution which is capable of local 
refinements). They are well-known 
algorithms for their fast convergence speed 
and for finding more accurate solutions to 
different search and optimization problems. 
In the following subsections, we present 
some state-of-the-art MOMAS.  

3.  1. Local Search Based Multiobjective  
Evolutionary Algorithms  

Ishibuchi and Murata 1st proposed multi-
objective genetic local search algorithm 
(MOGLS) for solving combinatorial 
multiobjective optimization problems [9, 10]. 
MOGLS applied a local search method after 
classical variation operators. In MOGLS, a 
scalar fitness function is used to select a pair 
of parent solutions to generate new solutions 
with crossover and mutation operator.  

An improved version of MOGLS [9, 10] is 
proposed in [11]. It applies hill climbing 
local search optimizer on some best 
individuals in its current population. Its 
performance was tested on combinatorial 
multiobjective optimization in comparison 
with MOGLS [9, 10], strength Pareto 
evolutionary algorithm (SPEA) [12, 13], 
NSGA-II [14] and Hybrid NSGA-II [14].  

Another version of MOGLS was proposed 
by Jaskiewicz in [15]. The basic idea of his 
MOGLS is to reformulate a MOP as 
simultaneous optimization of all the 
aggregation constructed by weight sum 
approach or Tchebycheff approach. At each 
generation, it optimizes a randomly 
generated aggregation objective.  
Pareto memtic algorithm (PMA) is suggested 
in [16]. It uses unbounded” current set of 
solutions” and from it selects a 
small”temporary population (TP)” that com-
promises the best solutions with respect to 
scalarizing functions. Then TP is used to 
generate offspring by crossover operators. 
Jaskiwicz suggests that scalar functions are 
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very good to promote diversity than dom-
inance ranking methods [17].  
In [18], a biased neighborhood structure 
based local search is proposed. The 
algorithm assigns large probabilities to the 
neighbors of the current solution located in 
the promising region of the search space. The 
proposed algorithm perform very well on 
both multiobjective 0/1 knapsack and 
flowshop scheduling problems.  
Memetic Pareto archive evolution strategy 
(M-PAES) is developed in [19]. It utilizes 
Pareto ranking based selection and grid-type 
partition of the objective space instead of 
scalarizing functions. This modified selection 
scheme is much faster than the scalarizing 
functions which are used in Ishibush’s 
MOGLS [9] and Jaszkeiwicz’s MOGLS [20, 
21]. Furthermore, M-PAES maintains two 
archives, one stores global nondominated 
solutions and the other is used as the 
comparison set for the local search phase. M-
PAES is tested against the local search 
optimizer, (1+1)-PAES [22] and SPEA [12, 
13] on the multiobjective 0/1 knapsack 
problems. M-PAES has shown better 
experimental results than its competitors.  
In [23], a memetic algorithm is suggested for 
dynamic muliobjective optimization. This 
algorithm has incorporated two adaptive hill 
climbing local search methods, greedy 
crossover-based hill climbing local search 
method and steepest mutation-based hill 
climbing local search method.  
In [24], two fitness function schemes, the 
weighted sum fitness function and the 
NSGA-II fitness evaluation, are used 
probabilistically. The authors used the 
probability to specify how often the 
scalarizing function is used for parent 
selection. When the probability becomes 
very low, then the proposed algorithm is al-
most the same as NSGA-II.  
[25] Proposed a local search method which 
uses quadratic approximations. The solutions 

produced in the evolutionary process of the 
multiobjective genetic algorithm (MOGA) 
[26, 27] are utilized to fit these quadratic 
approximations around the point selected for 
local search. The proposed algorithm has 
shown more accurate experimental results 
than pure MOGA [26, 27]. The same local 
search is also used in [28, 29, 30]. A novel 
agent-based memetic algorithm (AMA) al-
gorithm based on multi-agent concepts is 
suggested in [31]. AMA used different life 
span learning processes (LSLPs) based on 
several local and directed search procedures 
strategies such as totally random, random 
restricted, search directions based. In AMA, 
an agent chooses a LSLP as a search operator 
adaptively and improves its algorithmic 
performance. Same ideas are used in [31, 32, 
33, 34].  

In [35], a novel iterative search procedure, 
called the hill climber with sidestep (HCS) is 
designed. HCS is capable of moving toward 
and along the local Pareto set depending on 
the distance of the current iterate toward this 
set. HCS utilizes the geometry of the 
directional cones and works with or without 
gradient information. HCS used as a typical 
mutation operator in SPEA2  
[36] and developed a MOMA denoted by 
SPEA2HCS. SPEA 2HCS is more effective 
and efficient in dealing with continuous 
MOPs.  

Two Local search methods, Hooke and 
Jeeves method [37, 38, 39] and steepest 
descent method [40, 41], are combined with 
S-Metric Selection Evolutionary 
Multiobjective Algorithm (SMS-EMOA) 
[42] and its two hybrid versions, Relay SMS-
EMOA hybrid and Concurrent SMS-EMOA 
hybrid are developed in [43]. Steepest 
descent method used in Relay SMS-EMOA 
hybrid and Hooke and Jeeves method used in 
Concurrent SMS-EMOA hybrid. 
Experimental analysis on academic test 
functions [44] show increased convergence 
speed as well as improved accuracy of the 
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solution set of these new hybridizations.  
A novel searching algorithm called the 

multiple trajectory search (MTS) is 
developed in [45]. The MTS uses multiple 
agents to search the solution space con-
currently. Each agent does an iterated local 
search using one of four candidate local 
search methods. By choosing a local search 
method that best fits the landscape of a 
solution’s neighborhood, an agent may find 
its way to a local optimum or the global 
optimum. MTS is tested on multiobjective 
optimization test problems designed for 
CEC’09 special session and competition on 
performance assessment of multiobjective 
optimization algorithms [46]. In [47], MTS is 
tested on CEC’09 test instances [48]. In [49], 
a novel Lamarckian learning strategy is 
designed and hybrid version of nondom-
inated neighbor immune algorithm [50] 
called multi-objective lamarckian immune 
algorithm (MLIA) is proposed. The 
Lamarckian learning performs a greedy 
search which proceeds towards the goal 
along the direction obtained by Tchebycheff 
approach and generates the improved 
progenies or improved decision vectors, so 
single individual will be optimized locally 
and the newcomers yield an enhanced 
exploitation around the nondominated 
individuals in less-crowded regions of the 
current trade-off front. Simulation results 
based on twelve benchmark problems show 
that MLIA outperforms the original immune 
algorithm and NSGA-II in approximating 
Pareto-optimal front in most of the test 
problems. When compared with the state of 
the art algorithm MOEA/D, MLIA shows 
better performance in terms of the coverage 
of two sets metric, although it is laggard in 
the hyper volume metric.  
A new hybrid line search approach called the 
Line search generator of Pareto frontier 
(LGP) is developed in [51]. The framework 
of the LGP consist of two phases, 
Convergence phase and spreading phase. It 

has been tested on OKA1 and OKA2 test 
problems [52], DTLZa and DTLZb test 
problems [53] and VLMOP2 and VLMP3 
test problems [54].  

2.2. Hybrid MOEAs Based on Pareto 
Dominance  

In [55], two well-known Pareto dominance 
based algorithms, SPEA2 [36] and NSGA-II 
[14], combined with probabilistic local 
search and developed its hybrid versions for 
dealing combinatorial multiobjective opti-
mization. In both hybrid algorithms, the use 
of the Local search is terminated when no 
better solution to current solution is found in 
its k neighbors. One potential advantage of 
proposed hybrid algorithms over its pure 
versions is the decrease in the CPU time.  
T. Murata et al. generalized the replacement 
rules based on dominance relation for 
multiobjective objective optimization in [56]. 
Ordinary two-replacement rules based on 
dominance are usually employed in the local 
search for multiobjective optimization. One 
rule replaces a current solution with a 
solution which dominated it. The other rule 
replaces the solution with a solution which is 
not dominated by it. The movable area with 
1st rule is very small when the number of ob-
jectives is large. On the other hand, it is too 
huge to move efficiently with second rule. 
The authors generalized these extreme rules 
by counting the number of improved 
objective values. Proposed local search based 
on generalized replacement rules is 
incorporated in SPEA [12, 13] and developed 
its hybrid SPEA.  
In [57], two hybrid MOEAs, hybrid NSGA-
II and hybrid SPEA2 are developed. In both 
proposed hybrid algorithms, a convergence 
acceleration operator (CAO) is used as an 
additional operator for improving the search 
capability and convergence speed. CAO is 
applied in the objective space for improved 
solutions. The improved objective vectors 
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are then mapped back to the decision space 
to predict their corresponding decision 
variables. In [58], three local search 
methods: simulating annealing (SA), tabu 
search (TS), and hill climbing local search 
method, are combined with multi-objective 
genetic algorithm [26, 27]. MOGA with hill 
climbing local search method has found 
much better approximated set of solutions on 
ZDT test problems [44] than pure MOGA 
[26, 27] and others hybrid versions of 
MOGA.  

A sequential quadratic programming 
(SQP) coupled with NSGA-II [14] in [59, 
60] for solving continuous MOPs [46]. The 
same idea is used in [61]. In [62], hybrid 
version of NSGA-II is suggested which 
combines a local search method with NSGA-
II [14] for estimating the nadir point.  

In [63], SQP as a local search method 
based on augmented achievement scalarizing 
function (ASF) [64] is used in the framework 
of NSGA-II [14] for solving ZDT 
benchmarks [44, 53]. SQP is also used as 
local search method with NSGA-II [14] as 
global search method in [65] and solved the 
CEC’9 test instances [48] in effective ways.  

Hybrid constrained optimization 
evolutionary algorithm (HCOEA) is 
proposed for constrained optimization in 
[66]. HCOEA used niching genetic algorithm 
(NGA) based on tournament selection as a 
global search method and the best infeasible 
individual replacement scheme as local 
search operator. NGA effectively promotes 
the diversity in its population and local 
search model remarkably accelerates the 
convergence speed of the HCMOEA.  

In [67], a fuzzy simplex genetic algorithm 
(FSGA) is developed. The proposed method 
uses fuzzy dominance concept and simplex-
based local search method  
[68] for solving continuous MOPs. The 
performance of the FSGA is more effective 
than NSGA-II [14] and SPEA2 [36] on ZDT 
test problems.  

A Pareto Following Variation Operator 
(PFVO) is used in NSGA-II [14] an 
additional operator and designed hybrid 
NSGA-II in [69]. PFVO takes the available 
objectives values in the current 
nondominated front as inputs and generates 
approximated design variables for the next 
front as the output. The Proposed algorithm 
has obtained much better set of optimal 
solutions to ZDT test problems [44]. PFVO 
is also used in SPEA2  
[36] and in regularity model-based 
multiobjective estimation of distribution 
algorithm (RM-MEDA) [70] and suggested 
its hybrid algorithms in [71]. Experimental 
analysis raveled that both hybrid algorithms 
PFVO has enhanced the convergence ability 
of SPEA2 [36] and RM-MEDA [70] on ZDT 
test problems [44, 53].  

Recently, hybrid version of Archive-based 
Micro Genetic Algorithm (AMGA) [72] is 
developed in [73]. In this algorithm, SQP is 
used as a mutation operator genetic mutation. 
The inclusion of SQP speeds-up the search 
process of the proposed hybrid AMGA. 
Hybrid AMGA has found global Pareto-
optimal front and the extreme solutions on 
most CEC’09 test instances [48]. In [74], the 
functional-specialization multi-objective 
real-coded genetic algorithm (FS-MOGA) is 
proposed. FS-MOGA adaptively switched 
two search strategies specialized for global 
and local search. This algorithm chooses an 
individual from the current population at 
random. If the chosen individual is a non-
dominated solution, then it executes the local 
search procedure. Otherwise, it performs the 
global search procedure.  
In [75], a hybrid NSGA-II is developed to 
deal with engineering shape design problems 
with two conflicting objectives: weight of the 
structure and maximum deflection of the 
structure. This algorithm used hill climbing 
local search method.  
In [76, 77], hybrid strategy based on two-
stage search process is developed for solving 
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many-objective optimization. The first stage 
of the search is directed by a scalarization 
function and the second stage by Pareto 
selection enhanced with adaptive ǫ-Ranking.  
In [78, 79], a hybrid version of NSGA-II [14] 
called NSS-GA is proposed for solving ZDT 
test problems  
[44] and DTLZ [53] test problems. NSS-GA 
used two direct search methods, Nelder and 
Mead’s method [68] and golden section 
algorithm, for improving.  
A new hybrid MOEA, the niched Pareto tabu 
search combined with genetic algorithm 
(NPTSGA) is presented dealing with multi-
objective optimization problems [80]. The 
NPTSGA is developed on the thoughts of 
integrating genetic algorithm (GA) with the 
improved tabu search (TS) based MOEA, 
niched Pareto tabu search (NPTS). The 
proposed NPTSGA is then tested through a 
simple test example and compared with other 
two techniques, NPTS and niched Pareto 
genetic algorithm (NPGA). Computational 
results indicate that the proposed NPTSGA is 
an efficient and effective method for solving 
multi-objective problems.  
A hybrid algorithm with on-line landscapes 
approximation for expensive MOPs, called, 
ParEGO is developed in [81, 82]. ParEGO is 
an extension of the single-objective efficient 
global optimization (EGO) [83]. It uses a 
design-of-experiment inspired initialization 
procedure and learn a Gaussian processes 
model of the search landscape, which is 
updated after every function evaluation. 
ParEGO generally outperformed NSGA-II 
[14] on the used test problems. 
 
2.3. Enhanced Versions of MOEA/D  

Recently, an efficient framework known as 
MOEA/D: multiobjective evolutionary 
algorithm based on decomposition, is 
developed in [84]. This generic algorithm 
bridges decomposition techniques and 
evolutionary algorithms. MOEA/D 

decomposes a MOP into many different 
single-objective sub problems (SOPs) and 
defines neighborhood relations among these 
sub problems. The objective of each sub 
problem is a weighted aggregation of the 
original objective functions. Each SOP is 
optimized by using information, mainly from 
its neighborhood sub problems. The SOPs in 
one neighborhood are assumed to have 
similar fitness landscapes and their respective 
optimal solutions are most probable be close 
to each others. This section provides some 
latest versions of MOEA/D [84].  

In [85], 2-opt local search method is 
combined with MOEA/D [84] and tested on 
multiobjective traveling salesman problems 
(m-TSPs).  

Two neighbourhoods are used and a new 
solution is allowed to replace a very small 
number of old solutions in [86]. The 
proposed algorithm denoted by MOEA/D-
DE and tested on continuous test MOPs with 
complicated PS shapes [86]. MOEA/D-DE 
has shown much better algorithmic 
improvement than NSGA-II [14].  

Recently, another important version of 
MOEA/D [84], called massively multi-
topology sizing of analog integrated circuits 
is developed in [87]. In this version, each sub 
problem records more than one solution to 
maintain diversity.  

In [88], an idea of simultaneously using 
different types of scalarizing functions in 
MOEA/D is proposed aimed to overcome the 
difficulty in choosing an appropriate 
scalarizing function for particular 
multiobjective problem. Weighted sum and 
the weighted Tchebycheff are used as 
scalarizing functions. Two implementation 
schemes of the proposed idea are examined 
in this paper. One is to use multiple grids of 
weight vectors where each grid is used by a 
single scalarizing function. The other is to 
use different scalarizing functions in a single 
grid of weight vectors where a different 
scalarizing function is alternately assigned to 
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each weight vector. The effectiveness of 
these implementation schemes was examined 
through experiments on multiobjective 0/1 
knapsack problems with two, four and six 
objectives. Experimental results showed that 
the simultaneous use of the weighted sum 
and the weighted Tchebycheff outperformed 
their individual use in MOEA/D.  

Another important extension of MOEA/D 
called MOEA/D-EGO, the Gaussian 
stochastic process model for expensive 
multiobjective optimization is proposed in 
[89]. At each iteration, in MOEA/D-EGO, a 
Gaussian stochastic process model for each 
subproblem is built based on data obtained 
from the previous search, and the expected 
improvements of these subproblems are opti-
mized simultaneously by using MOEA/D for 
generating a set of candidate test points. 
Further, MOEA/D assisted by metamodel-
Gaussian random field metamodel  (GRFM) 
was proposed in [90].  
Competition and adaptation of search 
directions are incorporated in MOEA/D and 
its effective hybrid version called EMOSA is 
developed in [91]. In EMOSA, the current 
solution of each sub problem is improved by 
simulated annealing with different 
temperature levels. After certain low 
temperature levels, to approximate various 
parts of the PF, a new method to tune the 
weight vectors of these aggregation functions 
is suggested. Contrary to the original 
MOEA/D, no crossover is performed in this 
hybrid approach. Instead, diversity is 
promoted by allowing uphill moves 
following the simulated annealing rationale.  
In [92], MOEA/D with NBI-style 
Tchebycheff approach is developed. The new 
style Tchebycheff approach replaces the 
already used weighted sum approach and 
Tchebycheff approach. The proposed algo-
rithm deals with disparately scaled objectives 
of constrained portfolio optimization 
problems effectively.  
In [93], an enhance version of MOEA/D [84] 

is established. In this algorithm, 1) DE 
operator replaced with a guided mutation 
operator for reproduction, 2) a new update 
mechanism with a priority order is proposed. 
The update mechanism can improve 
MOEA/D’s performance when the SOPs 
obtained by decomposition are not uniformly 
distributed on the Pareto font. Finally, the set 
of test instances for the CEC’09 competition 
is used for evaluating the performance of the 
various combinations of these mechanisms in 
developed approach.  
A novel multiobjective particle swarm 
optimization based on decomposition 
algorithm developed in [94]. In algorithm, 
PSO coupled with MOEA/D [84] for solving 
continuous problems.  
An adaptive mating selection mechanism 
(AMS) is introduced in MOEA/D and the 
resultant version is called MOEA/D-AMS. 
AMS consist of controlled subproblems 
selection scheme (CSS) and matting pool ad-
justment (MPA). The CSS assigns the 
computational efforts to different 
subproblems. The MPA mates individuals 
with those who are close on the decision 
space so that small change of gene values can 
be achieved, which are required at the late 
stage of evolutionary process.  

A new improved version of MOEA/D [84] 
called, TMOEA/D is developed. TMOEA/D 
utilizes a monotonic increasing function to 
transform each individual objective function 
into the one so that the curve shape of the 
non-dominant solutions of the transformed 
multi-objective problem get close to the 
hyper-plane whose intercept of coordinate 
axes is equal to one in the original objective 
function space. In [95], two mechanisms are 
introduced. Firstly, a new replacement 
mechanism to maintain a balance between 
the diversity of the population and the 
employment of good information from 
neighbors; secondly, a randomized scaling 
factor of DE is adopted in order to enhance 
the search ability of MOEA/D-DE [86] on 
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real-world problem, the sizing of a folded-
cascade amplifier with four performance 
objectives.  

In [96], a new version of MOEA/D [84], 
called (MOEA/DFD) is developed. The 
proposed algorithm introduced a fuzzy 
dominance concept for comparing two 
solutions and used scalar decomposition 
method when one of the solutions fails to 
dominate the other in terms of a fuzzy 
dominance level. MOEA/DFD outperforms 
other MOEAs.  

In [97], an interactive version of the 
decomposition based multiobjective 
evolutionary algorithm (IMOEA/D) is 
proposed for interaction between the decision 
maker (DM) and the algorithm. During the 
stage of interaction, IMOEA/D presents 
preferred sub problems to DM to choose 
their most favorite one, and then guided the 
search to the neighborhood of selected sub 
problems. IMOEA/D used the utility 
function which is modeled in [98]. The used 
utility function simulates the responses of the 
DM in IMOEA/D implementation. 
IMOEA/D has been handled the preference 
informations very well and successfully 
converged to the expected preferred regions.  

Very recently, the behavior of MOEA/D is 
examined on multiobjective problems with 
highly correlated objectives in [99]. The 
performance of MOEA/D is severely 
degraded while SPEA 2 [36] and NSGA-II 
[14] had offered good behaviors on highly 
correlated objectives.  

In [100], a novel method called Pareto-
adaptive weight vectors (paλ) is proposed. 
This method automatically adjusts the weight 
vectors in MOEA/D [86] which are 
associated with each subproblem. The algo-
rithm, called, multiobjective optimization by 
decomposition with (paλ) is tested on 
continuous test problems [44, 53] in 
comparison with simple MOEA/D [84] and 
NSGA-II [14] on each test problem.  

The paper in [101], studies the effects of 
the use of two crossover operators in 
multiobjective evolutionary algorithm based 
on decomposition with dynamical resource 
allocation (MOEA/D-DRA) [102] for multi-
objective optimization. The two crossover 
operators used are, simplex crossover 
operator (SPX) and center of mass crossover 
operator (CMX). The use probability of each 
operator is updated dynamically based on its 
corresponding successful reward. The 
experimental results showed that the use of 
two crossover operators in MOEA/D-DRA 
[102] can improve its performance on most 
of the CEC’09 test instances [48].  
A combination of MOEA/D and NSGA-II 
for dealing with multiobjective CARP (MO-
CARP) is proposed in [103]. The MO-CARP 
is a challenging combinatorial optimization 
problem with many real-world applications, 
e.g., salting route optimization and fleet 
management. The proposed memetic 
algorithm (MA) called decomposition-based 
MA with extended neighborhood search (D-
MAENS) has shown better performances 
than NSGA-II [84] and and the state-of-the-
art multiobjective algorithm for MO-CARP 
(LMOGA) [104].  
In [105], a hybrid evolutionary 
metaheuristics (HEMH) is presented. It 
combines different metaheuristics integrated 
with each other to enhance the search ca-
pabilities. In the proposed HEMH, the search 
process is divided into two phases. In the first 
one, the hybridization of greedy randomized 
adaptive search procedure (GRASP) with 
data mining (DM-GRASP) [106, 107] is 
applied to obtain an initial set of high quality 
solutions dispersed along the Pareto front 
within the framework of MOEA/D [84]. 
Then, the search efforts are intensified on the 
promising regions around these solutions 
through the second phase. The greedy 
randomized pathrelinking with local search 
or reproduction operators are applied to 
improve the quality and to guide the search 
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to explore the non discovered regions in the 
search space. The two phases are combined 
with a suitable evolutionary framework 
supporting the integration and cooperation. 
Moreover, the efficient solutions explored 
over the search are collected in an external 
archive. The HEMH is verified and tested 
against some of the state of the art MOEAs 
[84, 36, 14, 108] using a set of MOKSP 
instances used in [88] and in [84]. The 
experimental results indicated that the 
HEMH is highly competitive and can be 
considered as a viable alternative.  
A new evolutionary clustering approach 
called k-mean algorithm based on multi-
objective evolutionary algorithm based on 
decomposition (MOEA/D) [84] is developed 
in [109]. It optimizes two conflicting func-
tions of data mining in its recent literature. 
One is snapshot quality function and the 
other is the history cost function. The 
experimental results demonstrated signif-
icantly better results than evolutionary k-
mean (EKM) method.  

In [110], a framework for continuous 
many-objective test problems with arbitrarily 
prescribed PS shapes is presented. Then the 
behavior of two popular MOEAs namely 
NSGA-II [14] and MOEA/D [84] are studied 
on the designed continuous test problems. 
The authors are hoped that it will promote an 
integrated investigation of MOEAs for their 
scalability with objectives and their ability to 
handle complicated PS shapes with varying 
nature of the PF.  

2.4. Multimethod Search Approaches  

A multialgorithm genetically adaptive for 
single objective optimization (AMALGAM-
SO) is developed in [145]. This algorithm 
simultaneously combines the strengths of the 
covariance matrix adaptation (CMA) 
evolution strategy [146], genetic algorithm 
(GA) and particle swarm optimizer (PSO). It 
implements a self-adaptive learning strategy 

and automatically tune the number of 
offspring allowed to be produced by each in-
dividual algorithm based on their 
reproductive success at each generation. 
AMALGAM-SO has been tested on CEC’05 
test bed of single objective optimization 
problems [147].  

In [148], an improved version of the 
AMALGAMSO is developed for dealing 
multiobjective optimization called 
AMALGAM-MO. It blends the attributes of 
the best available individual search 
algorithms, NSGAII [14], PSO [111], DE 
[128], adaptation Metropolis search (AMS) 
[149]. AMALGAM tested on 2objectives 
ZDT test problems [44].  

A novel multi-objective memetic 
algorithm, called multi-strategy ensemble 
multi-objective algorithm (MS-MOEA) is 
proposed in [150]. In MS-MOEA, the 
convergence speed is accelerated by new 
offspring creating operator called adaptive 
genetic and differential mechanism (GDM). 
A Gaussian mutation operator is employed to 
cope with premature convergence. A 
memory strategy is proposed for achieving 
better starting population when a change 
taken place in dynamic environment. MS-
MOEA has been tested on dynamic 
multiobjective optimization problems.  

To deal with dynamic multiobjective 
optimization, a new co-evolutionary 
algorithm (COEA) is proposed in [151]. It 
hybridizes competitive and cooperative 
mechanisms observed in universe to track the 
Pareto front in a dynamic environment. The 
main idea of the competitive-cooperative co-
evolution is to allow the decomposition 
process of the optimization problem to adapt 
and emerge rather than being hand-designed 
and fixed at the start of the evolutionary 
optimization process. COEA is tested in 
comparison with CCEA [152], NSGA-II 
[14], and SPEA2 [36] on real valued test 
problems.  

A multi-objective hybrid optimizer 
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denoted by MOHO is presented in [153]. 
MOHO combines three MOEAS, SPEA 2 
[36], a multi-objective particle swarm 
(MOPSO) [154], and NSGA-II [14] for 
dealing MOPs. MOHO favors automatically 
the individual search algorithm that quickly 
improves the Pareto approximation of the 
MOP. MOHO grades each algorithm based 
on five suggested improvements criteria 
during its course of evolution.  
 
In [155], the feasibility study for integration 
of two methods: MOEA/D [7] and NSGA-II 
[4] in the proposed multimethod search 
approach (MMTD) is performed. MMTD 
allocated population dynamically to both its 
constituent algorithms, MOEA/D [84] and 
NSGA-II [14], based on their individual 
performance during its evolutionary process. 
MMTD is tested on two different test suites 
problems, the ZDT test problems [44] and 
the CEC’09 test instances [48]. The final best 
approximated results illustrates the 
usefulness of MMTD dealing with 
multiobjective optimization (MO). 
  
In [156], the author combined two different 
types MOEAs and developed a hybrid 
method, called MMTD. In MMTD, the 
whole search is divided into a number of 
phases. At each phase, MOEA/D and NSGA-
II are run simultaneously with different 
computational resources based on their 
respective performances at the current phase 
of MMTD and the computational resources 
of the next phase are allocated to MOEA/D 
and NSGA-II.  The effectiveness of MMTD 
is tested on two test suites of continuous 
multi-objective optimization test problems.  

3. Summary  

Firstly, this paper provided a general 
mathematical formulation to MOP and some 
important basic definition.  

Secondly, this paper presented the literature 
review of some state-of-the-art hybrid 
evolutionary algorithms. Our literature 
review is organized as follows: Subsection 
2.1 local search based MOEAs; Subsection 
2.2 provides some hybrid versions of well-
known MOEAs Based on Pareto Dominance; 
Subsection 2.3 includes the enhanced 
Versions of MOEA/D paradigm; Subsection 
2.4 multi-method search approaches. 
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