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Abstract 

Current models for software components have made component-
based software engineering practical. However, these models are 
limited in the sense that their support for the 
characterization/specification of design components primarily 
deals with syntactic issues. To avoid mismatch and misuse of 
components, more comprehensive specification of software 
components is required,  
In this paper, we present a contract-based approach to analyze 
and model the both aspects (functional and non-functional) 
properties of design components and their composition in order 
to detect and correct composition errors. This approach permits 
to characterize the structural, interface and behavioural aspects 
of design component.  
To enable this we present a pattern contract language that 
captures the structural and behavioral requirements associated 
with a range of patterns, as well as the system properties that are 
guaranteed as a result. In addition, we propose the use of the 
LOTOS language as an ADL for formalizing these aspects. We 
illustrate the approach by applying it to a standard design pattern. 
Keywords: Architecture Description Language, Design by 
contract, Design components,  Design patterns, LOTOS. 

1. Introduction 

Component-based approaches have been proposed to 
create and deploy software systems assembled from 
components. The use of previously developed components 
should lead to faster time for complex software 
applications. Therefore, component-based software 
development is a promising solution to some of the 
problems that designers, developers and integrators face 
when building their systems [6]. Software patterns are a 
design paradigm used to solve problems that arise when 
developing software within a particular context. Patterns 
capture the static and dynamic structure and the 
collaboration among the different components in a 
software design. Since a design pattern is a recurring piece 
of software design, it can be seen as a component, called a 
design component in [15], and used to reify good design 
practice from conceptual design building blocks into a 
composable form. Design components focus on 

component-based problem solving instead of component-
based implementation. 
 
The benefits of design patterns are that they serve as 
guidance to the novice designer, and they provide an 
extended vocabulary for documenting software design. 
Unfortunately, the descriptive format popularized by these 
catalogs is inherently imprecise. As a consequence, it is 
unclear when a pattern has been applied correctly, or what 
can be concluded about a system implemented using a 
particular pattern.  
 
In order to address the ambiguity issues associated with 
design pattern descriptions, we introduce the concept of a 
design pattern contract as a formalism for precisely 
specifying design patterns. The responsibility of a pattern 
contract precisely characterizes the requirements that must 
be satisfied by the designer when applying a particular 
pattern.  
 
Formal specification and verification techniques are useful 
for design analysis in that the sense  are more precise, 
expressive, and unambiguous than the informal ones, such 
as graphical and textual notations. We argue that in order 
to achieve effective reuse it is important to specify both 
functional and architectural properties of a component in 
terms of formal specifications. Formal specifications are 
amenable to automation in analyzing component 
properties and thus facilitate the determination of reuse.  
 
The formal description technique LOTOS (Language of 
Temporal Ordering Specifications) [4] was originally 
designed to specify the interactions among communicating 
processes, thus making it suitable for capturing the 
architectural (interaction) properties of components.  
 
A contribution of this paper is to provide a rigorous 
description of component functionality. This description 
can be achieved by means of contracts [18], using pre- and 
post-conditions for describing the semantics of 
component’s services. Another contribution of this paper 
is a proposition of a novel Architecture Description 
Language (LOTOS-ADL) that has been designed to 
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address specification of structural and dynamic 
architectures. 
 
The rest of this paper is organised as follows. Section 2 
introduces design patterns, and presents the concepts and 
notation of the LOTOS and contract. We present a short 
overview of our approach in section 3, before the main 
section –sect4- of this paper, we focus on the abstract 
specification of a component. Section 5 presents the 
concepts of LOTOS-ADL. Section 6 illustrate a case study 
and gives an overview of our environment of validation. 
Section 7 discuses the related work. Finally the last section 
concludes the paper and gives directions for future work. 

2. Background 

In this section, we introduce some basic concepts and 
terminology about design patterns, components, LOTOS 
and design by contract. 

2.1 Design Patterns 

Design patterns are a design paradigm used to solve 
problems that arise when developing software within a 
particular context [10]. Patterns capture the static and 
dynamic structure and collaboration among the 
components in a software design. To build software 
systems, a designer needs to solve many problems. 
Applying known design patterns to address these problems 
allows the designer to take advantage of expert design 
experience documented in each pattern.  Although design 
patterns are not formal in nature, design components that 
have been inspired by design patterns are amenable for 
formal modeling and analysis. The focus on design 
components is important because one of the goals of our 
work is to detect errors as early as possible in the 
development process by reasoning about the properties at 
the design level and reducing the cost of finding and 
correcting these errors in concrete software components. 

2.2 LOTOS 

LOTOS is a formal description technique based on a 
combination of CCS [19] and CSP [14]. In LOTOS, a 
system is seen as a process, possibly consisting of several 
sub-processes.  Likewise a sub-process is a process in 
itself, and a LOTOS specification describes a system via a 
hierarchy of process definitions.  A process is an entity 
capable of performing internal, unobservable actions, and 
of interacting with other processes which form its 
environment. In that sense, LOTOS implements a black 

box paradigm used to develop high level, concise and 
abstract specifications of complex systems. At some 
abstraction level, it is possible to express the interactions 
of a process with its environment without having to 
describe the internal structure (or implementation) of that 
process. Process definitions are expressed by the 
specification of behaviour expressions that are constructed 
by means of a restricted set of powerful operators making 
it possible to express behaviours as complex as desired.  
Basic LOTOS is a subset of LOTOS. The processes 
interact with each other by pure synchronization without 
exchanging any value. Fig.1 provides an intuitive 
illustration of the main Basic LOTOS operators. 
 

 
 

Fig.2. Basic LOTOS operators [3] 

2.3 Design by contract 

Design by contract is a design approach developed by 
Meyer [18]. It is used here to provide precise 
specifications for the functionality of components and to 
enhance their reliability. According to Meyer, a contract is 
a collection of assertions that describe precisely what each 
feature of the component does and does not do. The key 
assertions in the design by contract technique are of three 
types: invariants, pre-conditions, and post-conditions. An 
invariant is a constraint attached to type that must be held 
true for all instances of the type whenever an operation is 
not being performed on the instance. 
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Pre-conditions and post-conditions are assertions attached 
to an operation of a type. A pre-condition expresses 
requirements that any call of the operation must satisfy if 
it is to be correct. A post-condition expresses properties 
that are ensured in return by the execution of the call. 

3. Overview of the Approach 

In [27] we have presented a systematic approach for a 
software designer to model and analyze component 
integration during the design phase, the early planning 
stage of the software lifecycle. This approach includes a 
process of representing, specifying, instantiating and 
integrating design components and analyzing their 
compositions, which are captured as contracts. The 
process is illustrated in Fig.2. 
 
This approach allows design components to be reused by 
making the components description available in a 
component library. With this approach, the designer can 
not only model the design component precisely, 
unambiguously and expressively, but also detect the 
interactions between components and correct design 
errors before implementation [26].  As shown in figure 2, 
our approach begins by four steps: (Analysis, selection, 
abstract specification and the instantiation steps).  
 
In this article we focus on the abstract specification of the 
component and the ADL for describing architecture of 
component-based software, which provide explicit 
support for specifying components. ADLs are important 
since they can document component-based architecture 
early, reason about their properties, and automate their 
analysis and system generation [12].  
 

    
Fig.2. Overview of our approach [27] 

4. Abstract specification of a component 

The abstract specification is inspired from the work of 
Dong and al. [7]) and contains a formal model of design 
component, called design component contract. A design 
component contract includes structural contract (SC), 
behavioural contract (BC) and interface contract (IC).  

The structural properties describe the relations of the 
constructs of each design component. The behavioural 
properties are constraints such as event ordering, and 
action sequence of each design component. The interface 
contract describes the finite set of input or output ports 
attached to a design component and the set of messages 
sent to or received by a component. We define an abstract 
specification contract (ASC) as:: 

       ASC::=<Component-Name>Where<assertion>and 

                 <SC>and<IC>and <BC> End 
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4.1 A motivating example 

 To motivate this paper we consider the structure (class 
and interaction diagram) of the Observer pattern shown in 
fig. 3 [10]: (The Observer pattern (also called Publisher-
Subscriber) regulates how a change in one object can be 
reflected in an unspecified number of dependant objects). 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 

Fig. 3  Observer pattern (class diagram ,interaction diagram) 

4.2 Structural contracts 

In [27] we have formalized the structural aspect of a 
design component contract by using a subset of First Order 
Logic (FOL), because the relations between pattern 
participants can be easily expressed as predicates.  The 
subset of FOL used to describe the structural aspect of a 
design component comprises variable symbols, 
connectives (‘ ’), quantifiers (‘∃’), element (є) and 
predicate symbols acting upon variable symbols. The 
variable symbols represent class, objects, while the 
predicate symbols represent permanent relation [24]. 
 We define two groups of predicates, entities (Table 1) and 
relationships (Table 2). 
- Entity predicates define whether a design component has 
a specific class (abstract or concrete), what a method (or 
attribute) is defined in a class….  
- Relationship predicates define the relations between 
classes, attributes, and operations and the actions that a 
role can perform in a component. 

The  Abstract specification of a component presented in 
this paper is an extension of the model existing domain in 
[27] by introducing the concepts related to the Aspect-
Oriented Approach .  
For the concepts related to the Aspect-Oriented approach, 
we will define new predicates. (Table 1) (Table 2) 
An Aspect-Class Diagram contains the classes, the aspects 
and the interfaces, linked with relations, which include 
associations, generalization, and realization between 
classifiers and calls between operations. 

 

Table1:  Entity predicates 

Predicate Description 

Abstract-class ( C )  C plays the role as an abstract-class in  the 
component 

Abstract-
Aspect(A) 

 C plays the role as an abstract-aspect in  the 
component 

Class  ( C ) C plays the role as concrete class in  the 
component 

Aspect(A) A plays the role as concrete aspect in  the 
component 

x є X X is an element of set X 

 

Table2: .Relationship predicates 

Predicate Description 

Inherit (A,B) B is a subclass of A 

Associate (A,B) A,B are connected  with  association  
relation 

Aggregate (A,B) A contain a reference to B 

Invoke 
(A,m1,B,m2) 

A method  m1 defined in class A calls a 
method m2 defined in class B  

New(A,m,O) The method  m of class A create a new 
object  of  type A 

Return (A,m,O) The method  m of class A returns an 
object O of  type A 

DeclareParent 
(A,B,C) 

B is a sub class of A. This  relation is 
declared in aspect C 

call (A,cp,B) The Pointcut CP of aspect A designates 
a set of join points of the class B   

advice(A,cp 
,action) 

Advice codes implement the behavior of 
an aspect A.  Several types of action 
exist: before, around, after returning, 
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4.3 Interface contracts 

We define the interface aspect of a design component 
contract as follow:  
 Let  a tuple IC = (P, IP,OP, IM,OM, IMI ), where P is a 
finite set of process names, IP is a finite set of input ports 
attached to a process, OP is a finite set of output ports 
attached to a process, IM is a finite set of input messages 
sent to a process and OM is a finite set of output messages 
sent from a process, IMI is the finite set of input messages 
sent from outside the design component to a process.   
   The abstract specification of the interface contract of 
Observer is done by: 
 
     (0) Component-name is Observer where: 
    (1)       (aConcreteSubject,  aConcreteObserver,        
                  anotherConcreteObserver)  є C 
    (2)   ∧    (  inOS, inSO,self, input) IP  
     (3)   ∧  (outOS, outSO, output ) OP  
     (4)   ∧    (attach, detach, getstate, setstate,update, 
notify,  change )  IM 
     (5)   ∧  ∃  (attach, detach, getstate, setstate, update, 
notify) є OM        
     (6)  ∧  ∃  (change) є IMI 
 
    In order to be able to support dynamic reconfiguration 
of the service and to provide precise specification about 
the relationships of operations calls to each other, we 
include the constraints on component interfaces.       
  This allows assertions about the gates (set of input or 
output ports attached to a process) to appear in pre-
conditions, and post-conditions. 
 
    Let IC1 = (IC, Constraint) we denote: 
    p  IP(p) =  {i є IP \ gate_Ini = p}  ∧  
    p OP(p) = {i є OP \ gate_Outi = p}  ∧  
    m  IM(p) = {i є IP, m є IM \ gate_Ini ?m}  ∧  
    m  OM(p) = {i  OP, m  OM \ gate_Outi !m} ∧  
    a ll-gateIN= {  all IP(p)/  p є  Component } ∧  

    all-gateout={  all OP(p)/  p  Component } ∧   
 
       Where Constraint /*constraints on gates*/: 
 
   gate_Ini gate_Inj   ∧   

 gate_Outi gate_Outj ∧
gate_Inj ?mi є gate_Outi !m i ∧  

      gate_Outj?mi є gate_Ini !m 
 

. 

4.4 Behavioural contracts  

In contrast to the structural aspect of a design component 
contract, the behavioural contract describes the dynamic 
information, such as the collaboration among the objects 
participating in the component and the creation of new 
objects. 

We have chosen a basic LOTOS for defining a formal 
semantic model of behavioural contracts because it 
represents a powerful approach for modeling behaviour 
and concurrency. The choice of LOTOS is motivated by 
its powerful ability for describing behaviour and the 
availability of tools enabling formal verification and 
automatic generation of distributed programs. Our 
proposal focuses on formally describing architectures 
encompassing both the structural and behavioural 
viewpoints. The LOTOS specification of the observer 
follows: 
 
Specification Observer [input,output] : noexit:= 
             /*…. Signature……*/ 
behaviour 
     aConcreteSubject [input, output] 
                |[input, output]|  
      aConcreteObserver [input, output] 
                          [ ]    
       anotherConcreteObserver [input, output] 
   where 
 Process  aConcreteSubject [inCS, outCS]:= noexit        
                ?setstate; !notify; !update ;?getsate; 
                 aConcreteSubject [inCS, outCS] 
Endprocess 
Process aConcreteObserver [inaCO, outaCO] := noexit 
              I; !setstate; ?update; !getstate 
               aConcreteObserver [inaCO, outaCO]  
Endprocess   
Process anotherConcreteObserver[inbCO,outbCO] := 
noexit 
              I; !setstate; ?update; !getstate 
              anotherConcreteObserver [inbCO, outbCO]  
Endprocess 

Endspec 

5. Proposal Architecture Description 
Language 

A key aspect of the design of any software system is its 
architecture. From a runtime perspective, an architecture 
description should provide a formal specification of the 
architecture in terms of components and connectors and 
how they are composed together.  Enabling specification 
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of dynamic architectures is a large challenge for an 
Architecture Description Language (ADL). This section 
describes LOTOS-ADL, our proposal ADL that has been 
designed to address specification of structural and 
dynamic architectures. While most ADLs focus on 
defining software architectures from a structural 
viewpoint, our proposal LOTOS-ADL focuses on formally 
describing architectures encompassing both the structural 
and behavioural viewpoints.  
  
From a runtime perspective, two viewpoints are frequently 
used in software architecture: the structural viewpoint and 
the behavioural one. 
The structural viewpoint may be specified in terms of: 
components, connectors, and configurations of 
components and connectors. 
 
      <LOTOS-ADL>:= < structural viewpoint, 
behavioural viewpoint>; 
     < structural viewpoint> := <component, connector,  
configuration>/  
        component := <cp1, cp2, ….., cpn>  n ≥ 2 and 
        connector := <ct1, ct2, ….., ctm>      m ≥ 1 
       with constraints: 
  cp1, cp2 component / name.cp1 ≠name.cp2 
   ct1, ct2  connector / name.ct1 ≠name.ct2 
       configuration: = < /* LOTOS operators construct*/> 
    <behavioural viewpoint>:=  < LOTOS behavior 
expression > 
 
Thereby, from a structural viewpoint, an architecture 
description should provide a formal specification of the 
architecture in terms of components and connectors and 
how they are composed together. Further, in the case of a 
dynamic architecture, it must provide a specification of 
how its components and connectors can change at runtime. 
The behavioural viewpoint may be specified in terms of: 
actions a system executes or participates in, relations 
among actions to specify behaviours, and behaviours of 
components and connectors, and how they interact. A 
LOTOS specification describes a system through a 
hierarchy of active components, or processes.  A process 
is an entity able to realize non-observable internal actions, 
and also interact with others processes through externally 
observable actions.  
 We model a component as a black-box with a set of input 
and output gates (or channels), where visible events occur. 
Instead of describing the static functionalities that a 
component provides, we specify the set of (dynamic) 

behaviors that a component may exhibit in constituting a 
system. All gates, together with constraints that may be 
imposed upon the ports, constitute the interface of a 
component. The interface of a component specifies the 
constraints on the way the component is to be used. A 
component may have overall constraints imposed upon the 
gate. The set of concepts that are manipulated are 
presented within our ADL meta-model (Fig. 4).     
In our meta-model, we are mainly interested in 
representing static and dynamic behaviour contract using 
static and dynamic contract. A major benefit of separate 
static part from the dynamic part is that reasoning 
independently from any particular situations. The static 
contract of a component is a part that does not evolve. The 
evolution of a dynamic contract may have different 
purposes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig.4. The LOTOS-ADL Meta-model 
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6. Case study: Client/server 

Let us, consider the simple client-server system shown in 
Figure5. It consists of one client and one server interacting 
via link connector. Such a system is easy to describe in 
LOTOS-ADL. A LOTOS-ADL specification describes a 
system through a hierarchy of components (process). A 
process is an entity able to realise non-observable actions, 
and also interact with others process through externally 
observable actions. 

 
The LOTOS specification at the top-level is a parallel 
composition of the process Client (component client), the 
process Server (component server) and the process 
connector (connector) (Fig.5).  In order to specify this 
system,   we adopt the following guiding [22]: 
 - The basic architecture elements, namely components 
and connectors, are modelled through the basic LOTOS 
abstraction, namely process. 
- Any two LOTOS processes that model components must 
be in parallel composition with a LOTOS process defined 
as a connector 
- The service specification consists of the temporal 
ordering of events executed at the service interface. 
- We call to invocation (inv) those actions to activate the 
service and termination (ter) to the action of return a 
result. 
 
6.1. Point to point connector 

 The LOTOS specification at the top-level is a parallel 
composition of the process Client (component client), the 
process Server (component server) and the process 
connector (connector) (Fig.5).  
 
   specification Client-Server [invClt,terClt,invSrv,terSrv] 
: noexit:= 
       library RESULT, SERVICES endlib 
        behaviour 
         Client [invClt, terClt] 
              |[invClt, terClt]|  
         connector [invClt, terClt, invSrv, terSrv] 
             |[invSrv, terSrv]|  
        Server [invSrv, terSrv] 
      where 
         ……… 
         ……… 
     Endprocess 
 
 

 
 
 
 
 
 
 

 
                    port (interface)                       process (component)   
           
                                   output           input  

 

Fig. 5.  Illustration of the Client-Server specification 

   
  The connector behaviour is defined through the temporal 
ordering of invocation operations in the connector 
interface. The connector interface is made up of four ports: 
invCtl to invocations from client, terCtl to returns to client, 
invSrv to invocations from server and terSrv to return to 
server  
 
process Connector[invClt,terClt,invSrv,terSrv] : noexit: = 
     invClt ? s : SERVICE ? op: OPER     /* the client passes the 
request to connector* /  
     invSrv ! s ! op; /  * the connector passes the request to the        
server*/ 
     terSrv ! s ? r : RESULT;    /*the server passes the reply to the 
connector*/ 
     terClt ! s ! r;   /*the connector passes the reply to the client*/    
             Connector [invClt, terClt, invSrv,terSrv] 
  Endproc 
  
 In this case, the connector receives an invocation 
from the server that contains both the name of the 
requested service and the operation being requested 
on the server (invClt?s: SERVICE? Op: OPER). The 
connector passes both of them to the server and waits 
for the reply. Finally, the connector passes the reply 
containing the result to the client. 
 
6.1. Multicast connector 

    The connector abstract software architecture is defined 
as a collection of services. In order to specify the 
connector abstract software architecture, we assume that is 
composed by three components (Fig. 6) (service1, 
service2, service3) and a single connector (communication 
Service). The LOTOS specification of this software 
architecture is done by a parallel composition of the set of 
basic services and the process Communication Service.  
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Fig. 6.  Illustration of the abstract software architecture 

   
ProcessConnector_Abstract[invClt, terClt, invSrv, terSrv] : 
noexit : = 
    hide inv, ter in 
    ((Service1 [inv, ter ] ||| 
      Service2 [inv, ter ] ||| Service3 [inv, ter ])           
                                 || 
     ServiceOrdering [inv, ter ]) 
                 |[inv,ter]| 
CommunicationService[inv,ter,invClt,terClt,invSrv,terSrv] 
   Where 
    ……  
    …… 
  Endproc 

 According to the constraints imposed by ServiceOrdering, after 
the request gets in the connector, it is passed to Service1 
followed by Service2 and Service3. The LOTOS specification of 
the ServiceOrdering is done by: 

  Process ServiceOrdering [inv,ter] : noexit : = 
    inv ! Service1 ? op: OPER 
    ter ! Service1 ? r : RESULT  
    inv ! Service2 ? op: OPER 
    ter ! Service2 ? r : RESULT  
    inv ! Service3 ? op: OPER 
    ter ! Service3 ? r : RESULT  
      ServiceOrdering [invClt, terClt, invSrv,terSrv] 

  Endproc 

6. Verification 

For the verification of our approach, we use our 
environment of verification, named FOCOVE (Formal 
Concurrency Verification Environment) [27] (available in 
www.focove.new.fr)  (Fig. 7). Focove is an integrated 
environment designed to edit Basic LOTOS  behavior 
expressions which describe reactive systems and to 
generate and analyze Maximality based Labelled 
Transitions Systems structures (MLTS).  concerns the 
state of the art of ADLs.  
 

 
 

Fig 7. The environment of verification 

 
The FOCOVE environment is dedicated to the design and 
verification for component based software development. 
FOCOVE translates a LOTOS program into a Labelled 
Transition System (LTS for short) describing its 
exhaustive behaviour. This LTS can be represented either 
explicitly as a set of states and transitions or implicitly as a 
library of C functions allowing us to execute the program 
behaviour in a controlled way.  By verification, we mean 
comparison of a complex system against a set of properties 
characterizing the intended functioning of the system (for 
instance, deadlock freedom, mutual exclusion, etc.).  

7. Related works 

 We have chosen three dimensions to compare our 
approach with other existing work. The first dimension 
concerns the use the design pattern in designing 
applications. The second dimension concern of application 
of the contract notion and the approach to software 
component specification. The third dimension concerns 
the state of the art of ADLs. 
    
 -Several successful experiences have reported on the 
advantages of using patterns in designing applications 
[11], [23]. These experiences do not follow a systematic 
method to develop applications using patterns. Systematic 
development using patterns utilizes a composition 
mechanism to glue patterns together at the design level. 
Generally, we categorize composition mechanisms as 
behavioural and structural compositions. Behavioural 
composition approaches are concerned with objects as 

Hidden gate   connector
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elements that play several roles in various patterns. 
Reenskaug [20] developed the Object Oriented Role 
Analysis and Software Synthesis method. The method 
uses a role model that abstracts the traditional object 
model. Riehle [21] uses role diagrams for pattern 
composition. The approach by Jan Bosch [4] uses design 
patterns and frameworks as architectural fragments. Each 
fragment is composed of roles and components that are 
merged with other roles to produce application designs.  
 
   -The notion of contracts in software development is 
attributed to Meyer [18]. Another contribution, the object-
oriented contracts of Helm et al. [13] focused on 
specifying the behaviour and interactions between objects 
in a system. Helm et al. noticed that the behaviour of an 
object could not be inferred from its interface, leading to 
design and reuse problems. Contracts formalize the 
behavioural relationship between objects and define a set 
of participants and their obligations.  In this paper, we 
defined a formal model of design component based on 
contracts and a rigorous analysis approach to software 
design composition. 
 
 Keller and Schauer [15] described a methodical approach 
to design composition which was illustrated as a process 
within a four-dimensional design space. They 
characterized a special kind of component, called a design 
component, and discussed a development process to 
compose these components at the design level and 
generate source-code frames or executable code. Although 
our approach is also in the area of software composition, it 
focuses on the formal, declarative, and property-based 
aspects of design composition.  
  
- The majority of the ADLs support only a structural view 
of the system. Even if offering any techniques for 
describing behaviour of the system, they only model its 
possible behaviour and thus can check its consistency only 
statically (e.g. correctness of proposed configuration, type 
checking, pre- or post-conditions, protocol). A few of 
them support dynamic configurations. C2 [25] specifies 
only pre- and post-conditions, Darwin [17] expresses 
component semantics in terms of π-calculus. Weaves [12] 
defines partial ordering of data-flow over input and output 
objects, but only Rapide [16] and Wright [2] specify 
dynamic component behaviour. Wright focuses on 
specifying communication protocols among components 
and uses a variant of CSP [14] to describe architectural 
behaviour. It treats both components and connectors as 

processes, which synchronise over suitably renamed 
alphabets. But, it implies a component interface extension 
in case of permitted reconfiguration and checks only if a 
connector protocol is deadlock-free as a consistency check 
[1]. Moreover, none of these ADLs have component have 
first class in order to cope with description of dynamic and 
mobile architecture.  

4. Conclusions 

In this paper, we have introduced a proposition of formal 
model of design component based on contract and a 
rigorous analysis approach to software design composition 
based on automated verification techniques. Our approach 
allows us to find errors in the design composition early in 
the development process. This paper has illustrated how to 
adopt LOTOS as ADL to describe the behaviour of 
software architecture.  
     
This language is mathematically well-defined and 
expressive: it allows the description of concurrency, non-
determinism, synchronous and asynchronous 
communications. It supports various levels of abstraction 
and provides several specification styles. These positive 
features encouraged us to adopt LOTOS as an ADL for 
describing both component and connector enables us to 
check behaviours properties. Finally, LOTOS 
specifications can also be used to express and verify 
concurrency models and real-time properties of systems. 
    The presented LOTOS specifications serve as a basis 
for very interesting future work. We are currently 
interested in the refinement of specifications in which the 
refinement process follows the rules of the software 
architecture refinement.  
   Also, we are investigating to proposing a rules-based 
transformation enabling the mapping from LOTOS 
specification to JAVA pseudo code. 
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