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Abstract 
The task assignment problem with non uniform communication 
costs (TAP) consists in finding an assignment of the tasks to the 
processors such that the total execution and communication costs 
is minimized. This problem is naturally formulated as 0-1 
quadratic programming subject to linear constraints (QP). In this 
paper, we propose a new approach to solve the task assignment 
problem with non uniform communication costs using the 
continuous Hopfield network (CHN). This approach is based on 
some energy or Lyapunov function, which diminishes as the 
system develops until a local minimum value is obtained. We 
show that this approach is able to determine a good solution for 
this problem. Finally, some computational experiments solving 
the task assignment problem with non-uniform communication 
costs are shown. 

Keywords: Combinatorial optimization, Continuous Hopfield 
network, Multiprocessor systems, Quadratic 0-1 programming, 
Task assignment problem. 

1. Introduction 

The task assignment problem play a vital role in a 
computation system with a number of distributed 
processors, where a set of tasks must be assigned to a set 
of processors minimizing the sum of execution costs and 
communication costs between tasks. This problem has 
been proved to be an NP-hard problem [26]. Several 
variants of the task allocation problem have been 
considered, with different architecture of distributed 
system or in structure of costs [1]- [2]-[3]-[13]-[21]. They 
are basically divided into three categories: 

   • The graph theoretical minimizes the total 
interprocessor communication cost by performing a 
partitioning algorithm on the graph such that, each 
partition includes a set of tasks, which are assigned to 
specified single processor [22].  

 

   • Integer programming using column generation or 
branch-and-bound techniques can be used to solve the 
problem more efficiently [5]-[6].  

   • Meta-heuristic involving genetic algorithm [18]-[25] 
and simulated annealing [19]-[15] have been used to 
derive approximate solutions with reasonable time [14] 
they are applicable to larger dimensional problems.  
The task assignment problem with non-uniform 
communication costs can be modeled as 0-1 quadratic 
programming which consists in minimizing a quadratic 
function subject to linear constraints (QP). To solve the 
QP problem, many different methods are tried and tested 
such as interior point, semi definite relaxations and 
lagrangian relaxations [8]-[9]. In this paper, we introduce a 
new approach using the continuous Hopfield network for 
solving the QP problem.  
 
Hopfield neural network was introduced by Hopfield and 
Tank [16]-[18]. It was first applied to solve combinatorial 
optimization problems. It has been extensively studied, 
developed and has found many applications in many areas, 
such as pattern recognition, model identification, and 
optimization. It has also demonstrated capability of finding 
solutions to difficult optimization problems [12]. The 
interesting steps for this method are to define the 
generalized energy function for solving any combinatorial 
problem and to determine the parameters setting of CHN 
[24]-[11]. 

  
In this paper, our main objective is to propose a new 
method to solve the TAP using the continuous Hopfield 
network. This paper is organized as follows. In section 2, 
we provide a formulation of Task Assignment Problem 
with non uniform communication cost as a 0-1 quadratic 
programming (QP). In section 3, we describe the most 
interesting steps for solving the QP problem using the 
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continuous Hopfield network. The experimental results are 
presented in section 4. 

2. Problem Formulation 

The task assignment problem with non uniform 
communication costs consists in finding an assignment of 
N  tasks to M  processors such that the total execution 
and communication costs is minimized. This problem is 
stated as a two sets and two parameters where: 
  •  NTTT ,...,1

 
a set of N  tasks.  

  •  MPPP ,...,1  a set of M  processors.  

  • The execution cost ike  of task i  if is assigned to 

processor k .  
  • The communication cost ikjlc  between two different 

tasks i  and j  if they are respectively assigned to 

processors k  and l .  
 
In the following, we want to present a formulation of the 
task assignment problem as a 0-1 quadratic programming 
[7].  
For each task }{1,.., Ni , we introduce M  binary 

variables ikx ,   }{1,.., Mk  , such that: 

 






Otherwise   0
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This matrix is converted to a n -vector:  
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The linear constraints can be rewritten as : 
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The matrix N nA IR   with n N M  and the vector 
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The main objective is to minimize the total execution and 
communication costs incurred by the task assignment 
subject to resources constraint. Then, we can define the 
objective function )(xF  in the following way:  

xeCxx

xexxcxF
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Where C  is nn   matrix with the general term is denoted 
by ikjlc . 

The first and second terms in the objective function 
represent the total execution cost and communication cost, 
respectively, incurred by the assignment 

)..,,,,..,..,(= 1111 NMNM xxxxx . 

 
Finally, we obtain the following 0-1 quadratic program 
(QP) with a quadratic function subject to linear constraints 
representing the TAP  problem with n variables and N  
linear constraints: 
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Therefore, C  is nn   matrix with the general term is 

denoted by ikjlc , A  is nN   matrix and .Nb IR  

Without lost of generality, we can suppose that C  is 
symmetric and also that diagonal terms of C  are equal to 
0. If this matrix is not symmetric, it can be converted to 

the symmetric form 
2

tC C
 and the linear terms ikikik xc  

can be substituted for the diagonal terms 2
ikikik xc , because 

ikik xx =2  for {0,1}ikx .

 

Then, we obtain the following QP problem: 
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where = tQ C C  . 
Although the QP problem is NP-hard [4]-[26], some 
special instances are polynomial time solvable. Those 

instances are solvable in )( 2NMO  time in heterogeneous 
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networks [4]. 
In this work, our objective is to solve the task assignment 
problems using the continuous Hopfield networks. Then, 
in this case, the most important step consists of 
representing or mapping the TAP in the form of the energy 
function associated with the continuous Hopfield 
networks. According to the QP model, we define the 
associated energy function and the parameters setting. 
Therefore, the continuous Hopfield networks can be used 
to solve the task assignment problem. 

3. Task Assignment Problem solved by 
CHN 

Hopfield neural network was introduced by Hopfield and 
Tank [16]-[17]. It was first applied to solve combinatorial 
optimization problems. As can be noticed, after modeling 
the task assignment problem into a 0-1 quadratic 
programming with a quadratic function subject to linear 
constraints, we present a general method for solving the 
TAP problems using the continuous Hopfield networks. 

3.1 Using the continuous Hopfield network to solve 
QP problem 

The continuous Hopfield neural network is a fully 
connected neural network i.e. the n  neurons of the CHN 
are fully connected, which means that every neuron is 
connected to all other neurons. Let ijT  be the strength of 

the connection from neuron j  to neuron i . Each neuron i  

has an offset bias b
ii . The current state and the output of 

the neuron i  are respectively represented by iu  and ix
 

[23]. 
The dynamics of the CHN  are described by the 
differential equation:  

biTx
u

dt

du



=                      (1) 

Where u , x  and bi  are the vectors of neuron states, 
outputs and biases. The output function )(= ii ugx  is a 

hyperbolic tangent, which is bounded below by 0 and 
above by 1. 

 niu
u

u
ug i

i 1,...,=and0>where))(tanh(1
2

1
=)( 0

0

  

Where 0u  is a parameter used to control the gain of the 

activation function. In order to use the continuos Hopfiled 
network, for solving any combinatorial problems, we 
should be reformuled this latter into energy function 
associated to the CHN. This energy function is defined by 
the following expression [23]:  

.)(
2

1
=)( xiTxxxE tbt           (2) 

Typically, in the CHN, the energy function is made 
equivalent to the objective function which is to be 
minimized, while each of the constraints of the 
optimization problem are included in the energy function 
as penalty terms. 

3.2 Energy function and parameter-setting for the 
TAP problem 

In order to solve the task assignment problem using the 
continuous Hopfield networks, we define the generalized 
energy function for the TAP problems basing on the 
model. Recall that, the task assignment problem are 
modeled as 0-1 quadratic programming with n  variables 
and N  linear constraints. 
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The generalized energy function allows representing 
mathematical programming problems with quadratic 
objective function and linear constraints. This energy 
function includes the objective function )(xf  and it 

penalizes the linear constraints bAx =  with a quadratic 
term and a linear term. 
The generalized energy function for the QP problem is 
defined by [24]:  

Axxdiagx

AxAxxeQxxxE

tt

ttt
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           (3) 

 

With nx ]1,0[ ,  IR , NIR , nIR  and   is 

an NN   symmetric matrix. Here )(diag  denotes the 

diagonal matrix constructed from the vector  . 

To define the energy function of the (QP) problem, the 
following considerations need to be taken into account so 
that the mathematical expression of energy function (3) is 
simplified.    
  • Only the main diagonal terms of the quadratic matrix 
parameter   are considered:  
 



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
kjif

kjif
kj =

0
=


 

Where    is a positif scalar. 
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  • All linear constraints are equally weighted, where   is 

the associated parameter.  
  • The parameter penalizing the non-extreme values of 

ikx  is  .  

 
Consequently, the following generalized energy function 
of the QP problem is proposed:  
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So, the following generalized energy function in algebraic 
form of QP problem must also be defined by:   
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To determine the weights and thresholds, we use the 
assimilation between equation (2) and the algebraic form 
of the generalized energy function. Then, the weights and 
thresholds of the connections between n  neurons are: 


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Where ij  is the Kroenecker delta such that:         


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In this way, the quadratic programming has been presented 
as an energy function of continuous Hopfield network. To 
solve an instance of the QP problem, the parameter setting 
procedure is used. This procedure assigns the particular 
values for all parameters of the network, so that any 
equilibrium points are associated with a valid affectation 
of all variables when all  constraints are satisfied. 
The weights and thresholds of the quadratic program 
depend on the parameters  ,  ,   and  . The 

parameter-setting procedure is based on the partial 
derivatives of the generalized energy function:  
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Thus, there is no communication in the same task on two 
processors: 

2}{1,..,}{1,..,),,(0= MNlkicikil   

 
Then the derivative of the energy function becomes:  
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To solve the QP problem, the following sets are needed:   
• H  is a set of the Hamming hypercube :           

}[0,1]{ nxH                                                                                          

• CH  is a set of the Hamming hypercube corners :     

}1,...,={0,1},:{ nixHxH iC   

 • FH  is a set of feasible solutions : 

.}=:{ bAxHxH CF    

 
This procedure uses the hyperplane method, so that the 
Hamming hypercube H  is divided by a hyperplane 
containing all feasible solutions. Based on this hyperplane 
and the associated half-spaces [24]. The hyperplane 
method is briefly explained below. In order to guarantee 
the instability of the interior points CHHx  , some 

initial conditions are imposed on some parameters: 
 

  = 2 0ikikT        

Where }{1,..., Ni and .}{1,..., Mk   

The QP problem has only one family of linear constraints:  

     
}{1,...,1==)(

1=

Nixxd ik

M

k
i   

The partition of the set FC HH   is defined as : 

1,21,1= WWHH FC   

1,1 0  { : ( ) > 1} { ( ) }iW i d x d x N      

 Where 


N

i
i xdxd

1
0 )(=)( . 

In this case one task has been excuted by two different 
processors so that 1== ilik xx , i.e., the task i  is going to 

excute in two different processors, which is illogical. To 
avoid this, the following condition should be imposed:  
 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 209

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



  2)( mindxEik         (9) 

 
Where       minmin eCNMd 1)(=min  

with

 22 }{1,...,),(and}{1,...,),(/  = MlkNjicMinC ikjlmin   

 }{1,...,and}{1,...,/ = MkNieMine ikmin 
 

 
 1,2 0   { : ( ) < 1} { ( ) < }iW i d x d x N     

In this case one task has not been assigned to any 
processor, such that }{1,...,0= Mkxik  ,i.e., any 

processor that not reserved to excute the task i , which is 
contradictory. Therefore, the following condition should 
be imposed: 
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   }{1,...,and}{1,...,/ = MkNieMaxe ikmax    

Consequently, we can determine the parameters setting by 
resolving the following system:  
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These parameters setting are determinate by fixing  ,   

and compute the rest of parameters  ,  and  : 

    • 2/)2)((=   minmax dd  

    •   maxd=  

    •  2= . 

 
 Finally, the weights and thresholds of CHN  as the 

following:  
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Where ij  is the Kroenecker delta. 

Finally, we obtain an equilibrium point for the CHN using 
the algorithm described in [23], so compute the solution of 
task assignment problem. 

4. Computational experiments 
For evaluating and showing the practical interest of our 
approach, we have used the instances provided in [7], 
where coefficients ike and ikjlc are randomly generated in 

the interval 50,50][ . These experiments are effectuated 
in personal computer with processor Intel Core i3 2,53 
GHz, and 3 Go of RAM. The performance has been 
measured in terms of the CPU time per second. This solver 
is implemented by java language. In this experimentation, 
some instances used as [7]. The starting points are 
generated randomly.  

                           uxik
3100.99=   

Where MkNi 1,...,=,1,...,=  and u  is a random uniform 

variable in the interval 0.5,0.5][ . 

 
The value of each  parameters is determinated by solving 

the system (11) where 410=   and. N

1
= , with N  is 

the number of tasks.  
 
Table (1) summarizes the results of the executions of our 
approach on these instances. For each size of instances, we 
run the algorithm 200 times and the quality of the solution 
obtained by our approach was evaluated by the following 
performance expression: 

 

CHNbyobtainedvalueObjective

valueOptimal
  

 
Finally, the interesting results are obtained by this 
approach. The resolution times obtained by our approach 
are reasonable. From a theoretical point of view, our 
approach is very powerful. It can happen to solve a TAP of 
large size.  

5. Conclusions 

  In this paper, we have introduced a new method to find a 
solution of the task assignment problem. This problem has 
been presented as 0-1 quadratic problem subject to linear 
constraints (QP). To solve this problem, we have used the 
continuous Hopfield network. Some numerical examples 
assess the effectiveness of the theoretical results are shown 
in this paper, and also the advantages of this new approach. 
Several directions can be investigated to try to improve 
this method, such as reducing the architecture of Hopfield 
neural network [10], and methods of fixation and 
evaluation. 
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Table 1: The typical instances of TAP solved by CHN 

  Instances 

 CPLEX    CHN    

 N  M 
 Optimal 

Value  
 best objective 

value 

   Mean  
iterations  

Mean time 
(ms) minimum  mean   mode  

Tassnu_10_3_1  10  3  -719   -719  1   1,18   1,16   75,87  5,14 

Tassnu_10_3_2 10  3  -790   -773   1,02   1,32   1,17   91,89   2,70 

Tassnu_10_3_3 10  3  -624   -614   1,02   1,69   1,97   73,36   2,72 

Tassnu_10_3_4 10  3  -734   -649   1,13   1,51   1,29   90,57   2,62 

Tassnu_10_3_5 10       3  -871   -832   1,05   1,33   1,24   93,36   2,97 

Tassnu_10_3_6 10  3  -677   -609   1,11   2,31   2,25   63,68   1,92 

Tassnu_10_3_7 10  3  -613   -613   1   1,4   1,47   87,13   2,10 

Tassnu_10_3_8 10  3  -495   -479   1,03   5,11   5,56   66,99   1,57 

Tassnu_10_3_9 10  3  -750   -730   1,03   1,16   1,03   82,01   1,73 

Tassnu_10_3_10 10  3  -486   -452   1,08   2,89   4,3   85,15   2,42 

Tassnu_15_5_1 15  5  -1985   -1908   1,04   1,91   1,77   104,46   12,34 

Tassnu_15_5_2 15  5  -1568   -1379   1,14   2,31   2,15   109,1   8,38 

Tassnu_15_5_3 15  5  -1892   -1748   1,08   1,85   1,94   106,67   8,74 

Tassnu_15_5_4 15       5  -1806   -1614   1,12   2,45   2,37   106,9   10,86 

Tassnu_15_5_5  15  5  -1881   -1737   1,08   1,65   1,6   105,06   6,69 

Tassnu_15_5_6 15       5  -1950   -1807   1,08   1,88   1,75   105,27   6,67 

Tassnu_15_5_7 15       5  -1893   -1801   1,05   1,99   2,02   107,03   6,58 

Tassnu_15_5_8  15       5  -1733   -1733   1   1,91   1,68   107   6,54 

Tassnu_15_5_9 15         5    -1798            -1548          1,16       2,12         1,89      105,5          6,56 

Tassnu_15_5_10 15       5    -1763            -1560          1,13       1,92         1,91      105,89          6,43 
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