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Abstract 
We consider the problem of clustering data streams. A 
data stream can roughly be thought of as a transient, 
continuously increasing sequence of time-stamped data. In 
order to maintain an up-to-date clustering structure, it is 
necessary to analyze the incoming data in an online 
manner, tolerating but a constant time delay. The purpose 
of this study is to analyze the working of popular 
algorithms on clustering data streams and make a 
comparative analysis. 
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1. Introduction 
During the recent years, so-called data streams [1] have 
attracted considerable attention in different fields of 
computer science, such as e.g. databases or distributed 
systems. As the notion suggests, a data stream can roughly 
be thought of as an ordered sequence of data items, where 
the input arrives more or less continuously as time 
progresses. There are various applications in which 
streams of this type are produced, such as network 
monitoring, telecommunication systems, customer click 
streams, stock markets, or any type of multi-sensor 
system. A data stream system may constantly produce 
huge amounts of data. To illustrate, imagine a multi-sensor 
system with 10,000 sensors, each of which sends a 
measurement every second of time. As concerned aspects 
of data storage, management and processing, the 
continuous arrival of data items in multiple, rapid, time-
varying and potentially unbounded streams raises new 
challenges and research problems. Indeed, it is usually not 
feasible to simply store the arriving data in a traditional 
database management system in order to perform 
operations on that data later on. Rather, stream data must 
generally be processed in an online manner in order to 
guarantee that results are up-to-date and that queries can 
be answered with a small time delay. In this paper, we 
consider the problem of clustering data streams. Our focus 
is on time-series data streams, which means that individual 
data items are real numbers that can be thought of as a 
kind  

 
 
of measurement. There are numerous applications for this 
type of data analysis such as, clustering of stock rates. 
Apart from its practical relevance, this problem is also 
interesting from a methodological point of view. 
Especially, the aspect of efficiency plays an important 
role: First, data streams are complex objects making the 
computation of similarity measures costly. Second, 
clustering algorithms for data streams should be adaptive 
in the sense that up-to-date clusters are offered at any time, 
taking new data items into consideration as soon as they 
arrive. 
The remainder of the paper is organized as follows: 
Section 2 provides some background information, both on 
data streams and on clustering. Section 3 is given to the 
clustering of data streams and introduces an online version 
of the well-known K-means Section 4 gives the details of 
cure algorithm. Finally a comparative analysis is made in 
section 5. 

 
2. Background 

2.1. The Data Stream Model 
The data stream model assumes that input data are not 
available for random access from disk or memory, but 
rather arrive in the form of one or more continuous data 
streams. The stream model differs from the standard 
relational model in the following ways [2]: 
� The elements of a stream arrive online (the stream is 

“active” in the sense that the incoming items trigger 
operations on the data, rather than being send on 
request). 

� The order in which elements of a stream arrive are not 
under the control of the system. 

� Data streams are potentially of unbounded size. 
� Data stream elements that have been processed are 

either discarded or archived. 
� They cannot be retrieved easily unless being stored in 

memory, which is typically small relative to the size 
of the stream.  

�  Due to limited resources (memory) and strict time 
constraints, the processing of stream data will usually 
produce approximate results. 
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2.2 Clustering  
Clustering can be considered the most 
important unsupervised learning problem; so, as every 
other problem of this kind, it deals with finding 
a structure in a collection of unlabeled data. We can show 
this with a simple graphical example: 

 
Fig 1. Clustering data in Euclidean space. 

 
Clustering refers to the process of grouping a collection of 
objects into classes or “clusters” such that objects within 
the same class are similar in a certain sense, and objects 
from different classes are dissimilar. In addition, the goal 
is sometimes to arrange the clusters into a natural 
hierarchy. Also, cluster analysis can be used as a form of 
descriptive statistics, showing whether or not the data 
consists of a set of distinct subgroups. Clustering 
algorithms proceed from given information about the 
similarity between objects, e.g. in the form of a proximity 
matrix. Usually, objects are described in terms of a set of 
measurements from which similarity degrees between 
pairs of objects are derived, using a kind of similarity or 
distance measure. There are basically three types of 
clustering algorithms: Mixture modeling assumes an 
underlying probabilistic model, namely that the data were 
generated by a probability density function, which is a 
mixture of component density functions. Combinatorial 
algorithms do not assume such a model. Instead, they 
proceed from an objective function to be maximized and 
approach the problem of clustering as one of 
combinatorial optimization. So called mode-seekers are 
somewhat similar to mixture models. However, they take a 
non-parametric perspective and try to estimate modes of 
the component density functions directly. Clusters are then 
formed by looking at the closeness of the objects to these 
modes which serve as cluster centers. Clustering 
algorithms can be applied in many fields, for instance: 
 Marketing: finding groups of customers with similar 

behavior given a large database of customer data 
containing their properties and past buying records; 

 Biology: classification of plants and animals given their 
features; 

 Libraries: book ordering; 

 Insurance: identifying groups of motor insurance 
policy holders with a high average claim cost; 
identifying frauds; 

 City-planning: identifying groups of houses according 
to their house type, value and geographical location; 

 Earthquake studies: clustering observed earthquake 
epicenters to identify dangerous zones; 

 
3.0 Clustering data Streams 

The main research area in mining data streams involves 
developing the techniques that can effectively mine the 
data streams. The task of mining becomes complex due 
the certain characteristics of data streams, mentioned in 
introduction. Clustering data streams is a sub-area of 
mining data streams. Clustering algorithms arrange a data 
set into several disjoint groups such that points in the same 
group are similar to each other and are dissimilar to other 
groups according to some similarity metrics. In order to 
use clustering in data streams, the requirements are [3] [4]: 
generation of overall high-quality clusters without seeing 
the old data, high quality, efficient incremental clustering 
algorithms and analysis in multi-dimensional space. A few 
methods are proposed to summarize the data streams using 
sketches and then cluster it [5]. There are basically two 
types of clustering techniques: Partitional and 
Hierarchical[7]. 
 
Partitional : Given a database of objects, a partitional 
clustering algorithm constructs k partitions of n the data, 
where each cluster optimizes a clustering criterion, such as 
the minimization of the sum of squared distance from the 
mean within each cluster. One of the issues with such 
algorithms is their high complexity, as some of them 
exhaustively enumerate all possible groupings and try to 
find the global optimum. Even for a small number of 
objects, the number of partitions is huge. That’s why, 
common solutions start with an initial, usually random, 
partition and proceed with its refinement. A better practice 
would be to run the Partitional algorithm for different sets 
of initial _ points (considered as representatives) and 
investigate whether all solutions lead to the same final 
partition. Partitional Clustering algorithms try to locally 
improve a certain criterion. First, they compute the values 
of the similarity or distance, they order the results, and 
pick the one that optimizes the criterion. Hence, the 
majority of them could be considered as greedy-like 
algorithms. 
 
Hierarchical: Hierarchical algorithms create a 
hierarchical decomposition of the objects. They are either 
agglomerative (bottom-up) or divisive (top-down). 
Agglomerative algorithms start with each object being a 
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separate cluster itself, and successively merge groups 
according to a distance measure. The clustering may stop 
when all objects are in a single group or at any other point 
the user wants. These methods generally follow a greedy-
like bottom-up merging. 
(b) Divisive algorithms follow the opposite strategy. They 
start with one group of all objects and successively split 
groups into smaller ones, until each object falls in one 
cluster, or as desired. Divisive approaches divide the data 
objects in disjoint groups at every step, and follow the 
same pattern until all objects fall into a separate cluster. 
This is similar to the approach followed by divide-and-
conquer algorithms. We have presented two representative 
algorithms for clustering data streams in this paper, one is 
Partitional and the other is hierarchical. 
K-means [6][7] is one of the most popular clustering 
algorithms used. K-Means Technique uses a Partitioning 
algorithm. Partitioning algorithm constructs various 
partitions for the data elements and then evaluates them by 
some criteria. The main reasons for using K-means 
algorithms are [6] that it is simple to implement, efficient, 
and the results are easy to interpret and it can work under 
a variety of conditions. But the disadvantages of using K-
means include dependence on initialization, sensitivity to 
outliers and converging to poor locally optimal solutions. 
The input for a K-Means clustering algorithm is a data set 
having n d-dimensional points and k desired number of 
clusters and the output are three matrices C, R, W 
containing the centroid, squared distance (variance) and 
weights for each cluster. K-means is initialized from some 
random or approximate solution. Every step will assign 
each point to its nearest cluster and then points belonging 
to the same cluster are averaged to get new cluster 
centroids. Every step successively improves cluster 
centroids until they are stable. This is the standard version 
of K-Means technique used. It can be summarized with the 
following steps: 
� Clusters are built by assigning each element to the 

closest cluster center; 
� Each cluster center is replaced by the mean of the 

elements belonging to that cluster. 
K means is a prototype based Clustering. It can only be  
applied to clusters that have the notion of a centre. The 
algorithm has a space complexity of O (I * K * m * n), 
where I is the number of iterations, K is the number of 
clusters, m is the number of dimensions and n is the 
number of points. 
Algorithm K - Means: 
         Input: 
 D = {t1,t2,…tn}     // set of elements 
 K    // Number of desired clusters 
         Output: 
 K // set of clusters 
         K – Means algorithm: 

                  assign intial values for means m1,m2,…mk; 
                  repeat: 
                      assign each item ti to other cluster which has  
                      the closest mean; 
                      calculate new mean for each cluster; 
                  until convergence criteria is met; 

 
4. CURE (Clustering Using Representatives) 

CURE [8] is an efficient algorithm that is more robust to 
outliers and identifies clusters having non-spherical shapes 
and wide variances in size. Cure is a hierarchical 
clustering algorithm. A hierarchical algorithm creates a 
hierarchical decomposition of the objects. The clustering 
algorithm starts with each input point as a separate cluster, 
and at each successive step merges the closest pair of 
clusters. In order to compute the distance between a pair of 
clusters, for each cluster, c representative points are stored. 
These are determined by first choosing c well scattered 
points within the cluster, and then shrinking them toward 
the mean of the cluster. The distance between two clusters 
is then the distance between the closest pair of 
representative points - one belonging to each of the two 
clusters. Thus, only the representative points of a cluster 
are used to compute its distance from other clusters. The c 
representative points attempt to capture the physical shape 
and geometry of the cluster. Furthermore, shrinking the 
scattered points toward the mean by a factor gets rid of 
surface abnormalities and mitigates the effects of outliers. 
The reason for this is that outliers typically will be further 
away from the cluster center, and as a result, the shrinking 
would cause outliers to move more toward the center 
while the remaining representative points would 
experience minimal shifts. The larger movements in the 
outliers would thus reduce their ability to cause the wrong 
clusters to be merged. 
             Input: 
 D = {t1,t2,…tn }    // set of elements 
 K        // Desired number of clusters 
            Output: 
 Q    // Heap containing k-clusters with 
one entry for each cluster 
           CURE algorithm: 
 T =  build(D); 
 Q = heapify(D); // Initially build heap 
with one entry per item; 
    repeat 
           u = min (Q); 
  delete (Q, u.close); 
  w = merge(u,v); 
  delete (T,u); 
  delete (T,v); 
  insert (T,w); 
  for each x ε Q do 
         x.close = find closest to x; 
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         if x is closest to w, then 
    w.close = x; 
  insert (Q,w); 
 until number of nodes in Q is k; 
We used two data structures namely the KD Tree and Min 
Heap. Following are the brief description of both of them. 
A KD-Tree (short for k-dimensional tree) is a space-
partitioning data structure for organizing points in a k-
dimensional space. KD-Trees are a useful data structure 
for several applications, such as searches involving a 
multidimensional search key In Cure, the KD Tree is 
initialized during the initial phase of clustering to hold all 
the points. Later on in the algorithm, we use this tree for 
nearest neighbor search and finding closest clusters based 
on representative points of a cluster. When a new cluster is 
formed, new representative points are added to the KD 
Trees. The representative points of older clusters are 
deleted from the tree. KD Tree improves the search of 
points in k dimensional space from O(n) to O(log n) as it 
uses binary partitioning across coordinate axes.  
 Min Heap - A Min Heap is a simple heap data structure 
created using a binary tree. It can be seen as a binary tree 
with two additional constraints: 

1. The shape property: all levels of the tree, except 
possibly the last one (deepest) are fully filled, 
and, if the last level of the tree is not complete, 
the nodes of that level are filled from left to right. 

2. The heap property: each node is lesser than or 
equal to each of its children. 

The Min Heap stores the minimum element at the root of 
the heap. In Cure, we always merge two clusters at every 
step. Thus the cluster to be merged would necessary be 
having the closest distance from another nearby cluster as 
the heap is created using inter-cluster distance 
comparisons. We used java.util.PriorityQueue which 
supports all the Min Heap operations. 
 

5.0 Benefits of CURE over Partitional 
Algorithms 

K-Means (& Centroid based Algorithms) are Unsuitable 
for non-spherical and size differing clusters The CURE 
algorithm can handle clusters of arbitrary shapes. An 
important parameter in the cure algorithm was the Shrink 
Factor of Representative Points. If we increased it to 1, the 
algorithm results in clusters of low quality. If the 
parameter is reduced to 0.1, CURE starts behaving as a 
centroid based algorithm. Thus for a range of 0.3 to 0.7, 
CURE identified the right clusters. 
  The number of Representative Points 
present in a cluster is also an important parameter. If the 
cluster is too sparse, it may need more representative 
points than a compact smaller cluster. We observed that if 
the number of representative points is increased to 8 or 10, 
sparse clusters with variable size and density were 

identified properly. But with increase in representative 
points, the computation time for clustering increased as for 
every new cluster formed, new representative points have 
to be calculated and shrunk. 
One of the most important observations of our 
experiments was with respect to partitioning of data sets. 
As the number of partitions was increased from 2 to 6 or 
10, the clustering time dropped significantly. We noticed 
that if we increased the number of partitions to higher 
numbers such as 50, the clustering would not give proper 
results as some of the partitions would not have any data 
to cluster. Hence, though the time consumed would be 
lesser, the quality of cluster gets affected and CURE could 
not identify all the clusters correctly. Some of them got 
merged to form bigger clusters. Hence, a partitioning of 10 
– 20 would result in efficient speed up of algorithm while 
maintaining the quality of clusters. 

Table 1.  Partitioning results of CURE Algorithm 

No. of Points 1572 3568 7502 10256 

Time (in sec)     

Partition P = 2 6.4 7.8 29.4 75.7 

Partition P = 3 6.5 7.6 21.6 43.6 

Partition P = 5 6.1 7.3 12.2 21.2 

 
The data in the table above is plotted to analyze the 
clustering behavior of the CURE algorithm. From the 
graph, we can see that as the partitioning is increased, the 
time taken to cluster increases very slowly even though 
the data set size has increased by four times. 

From the clusters obtained through various 
algorithms and the time taken by each algorithm on the 
datasets, we can say that, K – means is not the best of 
clustering methods with its high space complexity. For 
high dimensional data, K – means takes a lot of time and 
memory. Also it cannot always converge. 
 
 
 
 
 
 
 
   
 
 
 
Cure could identify all the clusters properly. But CURE 
depends on some of the user parameters which have to be 
data specific. The range of such parameters do not vary 
too much many of them being from 0 – 1. Cure could 
identify several clusters with high purity which K-means 
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failed to identify. The comparison between the two 
algorithms from different perspectives is as shown in the 
table below: 

 
 

Table 2. Comparitive Analysis 
 
Algorithm Input 

Parameter 
Optimize
d for 

Cluster 
structure 

Outlier 
handling 

K means Number 
of clusters 

Well 
separated  

Spherical 
Cluster 

No 

Cure Number 
of 
Clusters 
& 
Represent
atives 

Arbitrary 
Shapes 
of 
clusters 

Relativel
y 
Arbitrary 

Yes 

 
 

6. Conclusion 
In this paper we presented major research 
accomplishments and techniques that have emerged in the 
field of data stream mining. Data streams have gained 
ground in the field of research. The research in this field is 
mainly done in the areas like modeling, query processing, 
and mining data streams. For instance several papers have 
been written till now in the field of data stream mining 
which includes the methods like classification, clustering, 
and regression analysis. Traditional data stream algorithms 
are challenged by the feature of data streams. So the 
conventional techniques for data mining needs to be 
molded according to he needs of data streams. The 
properties like infinite data flow and drifting concepts 
make the life of these researchers tough. To overcome 
these difficulties we have presented some of the recently 
developed and experimentally proved approaches for 
dealing with data streams. The property of data streams 
that is mainly dealt with these approaches is continuously 
changing. The application of these approaches, techniques 
and methods is determined by the problem domain and the 
properties of problem domain.  
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