
Dynamic Clustering Of High Speed Data Streams
J. Chandrika1, Dr. K.R. Ananda Kumar2

 1 Department of CS & E, M C E ,Hassan – 573 201

 Karnataka, India

2 Department of CS & E, SJBIT , Bangalore – 560 060
Karnataka, India

Abstract
We consider the problem of clustering data streams. A
data stream can roughly be thought of as a transient,
continuously increasing sequence of time-stamped data. In
order to maintain an up-to-date clustering structure, it is
necessary to analyze the incoming data in an online
manner, tolerating but a constant time delay. The purpose
of this study is to analyze the working of popular
algorithms on clustering data streams and make a
comparative analysis.

Keywords: Data streams, Unsupervised learning,
Partitional clustering, Hierarchical clustering

1. Introduction
During the recent years, so-called data streams [1] have
attracted considerable attention in different fields of
computer science, such as e.g. databases or distributed
systems. As the notion suggests, a data stream can roughly
be thought of as an ordered sequence of data items, where
the input arrives more or less continuously as time
progresses. There are various applications in which
streams of this type are produced, such as network
monitoring, telecommunication systems, customer click
streams, stock markets, or any type of multi-sensor
system. A data stream system may constantly produce
huge amounts of data. To illustrate, imagine a multi-sensor
system with 10,000 sensors, each of which sends a
measurement every second of time. As concerned aspects
of data storage, management and processing, the
continuous arrival of data items in multiple, rapid, time-
varying and potentially unbounded streams raises new
challenges and research problems. Indeed, it is usually not
feasible to simply store the arriving data in a traditional
database management system in order to perform
operations on that data later on. Rather, stream data must
generally be processed in an online manner in order to
guarantee that results are up-to-date and that queries can
be answered with a small time delay. In this paper, we
consider the problem of clustering data streams. Our focus
is on time-series data streams, which means that individual
data items are real numbers that can be thought of as a
kind

of measurement. There are numerous applications for this
type of data analysis such as, clustering of stock rates.
Apart from its practical relevance, this problem is also
interesting from a methodological point of view.
Especially, the aspect of efficiency plays an important
role: First, data streams are complex objects making the
computation of similarity measures costly. Second,
clustering algorithms for data streams should be adaptive
in the sense that up-to-date clusters are offered at any time,
taking new data items into consideration as soon as they
arrive.
The remainder of the paper is organized as follows:
Section 2 provides some background information, both on
data streams and on clustering. Section 3 is given to the
clustering of data streams and introduces an online version
of the well-known K-means Section 4 gives the details of
cure algorithm. Finally a comparative analysis is made in
section 5.

2. Background

2.1. The Data Stream Model
The data stream model assumes that input data are not
available for random access from disk or memory, but
rather arrive in the form of one or more continuous data
streams. The stream model differs from the standard
relational model in the following ways [2]:
� The elements of a stream arrive online (the stream is

“active” in the sense that the incoming items trigger
operations on the data, rather than being send on
request).

� The order in which elements of a stream arrive are not
under the control of the system.

� Data streams are potentially of unbounded size.
� Data stream elements that have been processed are

either discarded or archived.
� They cannot be retrieved easily unless being stored in

memory, which is typically small relative to the size
of the stream.

� Due to limited resources (memory) and strict time
constraints, the processing of stream data will usually
produce approximate results.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 224

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

2.2 Clustering
Clustering can be considered the most
important unsupervised learning problem; so, as every
other problem of this kind, it deals with finding
a structure in a collection of unlabeled data. We can show
this with a simple graphical example:

Fig 1. Clustering data in Euclidean space.

Clustering refers to the process of grouping a collection of
objects into classes or “clusters” such that objects within
the same class are similar in a certain sense, and objects
from different classes are dissimilar. In addition, the goal
is sometimes to arrange the clusters into a natural
hierarchy. Also, cluster analysis can be used as a form of
descriptive statistics, showing whether or not the data
consists of a set of distinct subgroups. Clustering
algorithms proceed from given information about the
similarity between objects, e.g. in the form of a proximity
matrix. Usually, objects are described in terms of a set of
measurements from which similarity degrees between
pairs of objects are derived, using a kind of similarity or
distance measure. There are basically three types of
clustering algorithms: Mixture modeling assumes an
underlying probabilistic model, namely that the data were
generated by a probability density function, which is a
mixture of component density functions. Combinatorial
algorithms do not assume such a model. Instead, they
proceed from an objective function to be maximized and
approach the problem of clustering as one of
combinatorial optimization. So called mode-seekers are
somewhat similar to mixture models. However, they take a
non-parametric perspective and try to estimate modes of
the component density functions directly. Clusters are then
formed by looking at the closeness of the objects to these
modes which serve as cluster centers. Clustering
algorithms can be applied in many fields, for instance:
 Marketing: finding groups of customers with similar

behavior given a large database of customer data
containing their properties and past buying records;

 Biology: classification of plants and animals given their
features;

 Libraries: book ordering;

 Insurance: identifying groups of motor insurance
policy holders with a high average claim cost;
identifying frauds;

 City-planning: identifying groups of houses according
to their house type, value and geographical location;

 Earthquake studies: clustering observed earthquake
epicenters to identify dangerous zones;

3.0 Clustering data Streams

The main research area in mining data streams involves
developing the techniques that can effectively mine the
data streams. The task of mining becomes complex due
the certain characteristics of data streams, mentioned in
introduction. Clustering data streams is a sub-area of
mining data streams. Clustering algorithms arrange a data
set into several disjoint groups such that points in the same
group are similar to each other and are dissimilar to other
groups according to some similarity metrics. In order to
use clustering in data streams, the requirements are [3] [4]:
generation of overall high-quality clusters without seeing
the old data, high quality, efficient incremental clustering
algorithms and analysis in multi-dimensional space. A few
methods are proposed to summarize the data streams using
sketches and then cluster it [5]. There are basically two
types of clustering techniques: Partitional and
Hierarchical[7].

Partitional : Given a database of objects, a partitional
clustering algorithm constructs k partitions of n the data,
where each cluster optimizes a clustering criterion, such as
the minimization of the sum of squared distance from the
mean within each cluster. One of the issues with such
algorithms is their high complexity, as some of them
exhaustively enumerate all possible groupings and try to
find the global optimum. Even for a small number of
objects, the number of partitions is huge. That’s why,
common solutions start with an initial, usually random,
partition and proceed with its refinement. A better practice
would be to run the Partitional algorithm for different sets
of initial _ points (considered as representatives) and
investigate whether all solutions lead to the same final
partition. Partitional Clustering algorithms try to locally
improve a certain criterion. First, they compute the values
of the similarity or distance, they order the results, and
pick the one that optimizes the criterion. Hence, the
majority of them could be considered as greedy-like
algorithms.

Hierarchical: Hierarchical algorithms create a
hierarchical decomposition of the objects. They are either
agglomerative (bottom-up) or divisive (top-down).
Agglomerative algorithms start with each object being a

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 225

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

separate cluster itself, and successively merge groups
according to a distance measure. The clustering may stop
when all objects are in a single group or at any other point
the user wants. These methods generally follow a greedy-
like bottom-up merging.
(b) Divisive algorithms follow the opposite strategy. They
start with one group of all objects and successively split
groups into smaller ones, until each object falls in one
cluster, or as desired. Divisive approaches divide the data
objects in disjoint groups at every step, and follow the
same pattern until all objects fall into a separate cluster.
This is similar to the approach followed by divide-and-
conquer algorithms. We have presented two representative
algorithms for clustering data streams in this paper, one is
Partitional and the other is hierarchical.
K-means [6][7] is one of the most popular clustering
algorithms used. K-Means Technique uses a Partitioning
algorithm. Partitioning algorithm constructs various
partitions for the data elements and then evaluates them by
some criteria. The main reasons for using K-means
algorithms are [6] that it is simple to implement, efficient,
and the results are easy to interpret and it can work under
a variety of conditions. But the disadvantages of using K-
means include dependence on initialization, sensitivity to
outliers and converging to poor locally optimal solutions.
The input for a K-Means clustering algorithm is a data set
having n d-dimensional points and k desired number of
clusters and the output are three matrices C, R, W
containing the centroid, squared distance (variance) and
weights for each cluster. K-means is initialized from some
random or approximate solution. Every step will assign
each point to its nearest cluster and then points belonging
to the same cluster are averaged to get new cluster
centroids. Every step successively improves cluster
centroids until they are stable. This is the standard version
of K-Means technique used. It can be summarized with the
following steps:
� Clusters are built by assigning each element to the

closest cluster center;
� Each cluster center is replaced by the mean of the

elements belonging to that cluster.
K means is a prototype based Clustering. It can only be
applied to clusters that have the notion of a centre. The
algorithm has a space complexity of O (I * K * m * n),
where I is the number of iterations, K is the number of
clusters, m is the number of dimensions and n is the
number of points.
Algorithm K - Means:
 Input:
 D = {t1,t2,…tn} // set of elements
 K // Number of desired clusters
 Output:
 K // set of clusters
 K – Means algorithm:

 assign intial values for means m1,m2,…mk;
 repeat:
 assign each item ti to other cluster which has
 the closest mean;
 calculate new mean for each cluster;
 until convergence criteria is met;

4. CURE (Clustering Using Representatives)

CURE [8] is an efficient algorithm that is more robust to
outliers and identifies clusters having non-spherical shapes
and wide variances in size. Cure is a hierarchical
clustering algorithm. A hierarchical algorithm creates a
hierarchical decomposition of the objects. The clustering
algorithm starts with each input point as a separate cluster,
and at each successive step merges the closest pair of
clusters. In order to compute the distance between a pair of
clusters, for each cluster, c representative points are stored.
These are determined by first choosing c well scattered
points within the cluster, and then shrinking them toward
the mean of the cluster. The distance between two clusters
is then the distance between the closest pair of
representative points - one belonging to each of the two
clusters. Thus, only the representative points of a cluster
are used to compute its distance from other clusters. The c
representative points attempt to capture the physical shape
and geometry of the cluster. Furthermore, shrinking the
scattered points toward the mean by a factor gets rid of
surface abnormalities and mitigates the effects of outliers.
The reason for this is that outliers typically will be further
away from the cluster center, and as a result, the shrinking
would cause outliers to move more toward the center
while the remaining representative points would
experience minimal shifts. The larger movements in the
outliers would thus reduce their ability to cause the wrong
clusters to be merged.
 Input:
 D = {t1,t2,…tn } // set of elements
 K // Desired number of clusters
 Output:
 Q // Heap containing k-clusters with
one entry for each cluster
 CURE algorithm:
 T = build(D);
 Q = heapify(D); // Initially build heap
with one entry per item;
 repeat
 u = min (Q);
 delete (Q, u.close);
 w = merge(u,v);
 delete (T,u);
 delete (T,v);
 insert (T,w);
 for each x ε Q do
 x.close = find closest to x;

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 226

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

 if x is closest to w, then
 w.close = x;
 insert (Q,w);
 until number of nodes in Q is k;
We used two data structures namely the KD Tree and Min
Heap. Following are the brief description of both of them.
A KD-Tree (short for k-dimensional tree) is a space-
partitioning data structure for organizing points in a k-
dimensional space. KD-Trees are a useful data structure
for several applications, such as searches involving a
multidimensional search key In Cure, the KD Tree is
initialized during the initial phase of clustering to hold all
the points. Later on in the algorithm, we use this tree for
nearest neighbor search and finding closest clusters based
on representative points of a cluster. When a new cluster is
formed, new representative points are added to the KD
Trees. The representative points of older clusters are
deleted from the tree. KD Tree improves the search of
points in k dimensional space from O(n) to O(log n) as it
uses binary partitioning across coordinate axes.
 Min Heap - A Min Heap is a simple heap data structure
created using a binary tree. It can be seen as a binary tree
with two additional constraints:

1. The shape property: all levels of the tree, except
possibly the last one (deepest) are fully filled,
and, if the last level of the tree is not complete,
the nodes of that level are filled from left to right.

2. The heap property: each node is lesser than or
equal to each of its children.

The Min Heap stores the minimum element at the root of
the heap. In Cure, we always merge two clusters at every
step. Thus the cluster to be merged would necessary be
having the closest distance from another nearby cluster as
the heap is created using inter-cluster distance
comparisons. We used java.util.PriorityQueue which
supports all the Min Heap operations.

5.0 Benefits of CURE over Partitional
Algorithms

K-Means (& Centroid based Algorithms) are Unsuitable
for non-spherical and size differing clusters The CURE
algorithm can handle clusters of arbitrary shapes. An
important parameter in the cure algorithm was the Shrink
Factor of Representative Points. If we increased it to 1, the
algorithm results in clusters of low quality. If the
parameter is reduced to 0.1, CURE starts behaving as a
centroid based algorithm. Thus for a range of 0.3 to 0.7,
CURE identified the right clusters.
 The number of Representative Points
present in a cluster is also an important parameter. If the
cluster is too sparse, it may need more representative
points than a compact smaller cluster. We observed that if
the number of representative points is increased to 8 or 10,
sparse clusters with variable size and density were

identified properly. But with increase in representative
points, the computation time for clustering increased as for
every new cluster formed, new representative points have
to be calculated and shrunk.
One of the most important observations of our
experiments was with respect to partitioning of data sets.
As the number of partitions was increased from 2 to 6 or
10, the clustering time dropped significantly. We noticed
that if we increased the number of partitions to higher
numbers such as 50, the clustering would not give proper
results as some of the partitions would not have any data
to cluster. Hence, though the time consumed would be
lesser, the quality of cluster gets affected and CURE could
not identify all the clusters correctly. Some of them got
merged to form bigger clusters. Hence, a partitioning of 10
– 20 would result in efficient speed up of algorithm while
maintaining the quality of clusters.

Table 1. Partitioning results of CURE Algorithm

No. of Points 1572 3568 7502 10256

Time (in sec)

Partition P = 2 6.4 7.8 29.4 75.7

Partition P = 3 6.5 7.6 21.6 43.6

Partition P = 5 6.1 7.3 12.2 21.2

The data in the table above is plotted to analyze the
clustering behavior of the CURE algorithm. From the
graph, we can see that as the partitioning is increased, the
time taken to cluster increases very slowly even though
the data set size has increased by four times.

From the clusters obtained through various
algorithms and the time taken by each algorithm on the
datasets, we can say that, K – means is not the best of
clustering methods with its high space complexity. For
high dimensional data, K – means takes a lot of time and
memory. Also it cannot always converge.

Cure could identify all the clusters properly. But CURE
depends on some of the user parameters which have to be
data specific. The range of such parameters do not vary
too much many of them being from 0 – 1. Cure could
identify several clusters with high purity which K-means

0

20

40

60

80

100

120

140

160

n=1572 n=3568 n=7502 n=10256

number of dat a poi nt s

p=5

p=3

p=2

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 227

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

failed to identify. The comparison between the two
algorithms from different perspectives is as shown in the
table below:

Table 2. Comparitive Analysis

Algorithm Input

Parameter
Optimize
d for

Cluster
structure

Outlier
handling

K means Number
of clusters

Well
separated

Spherical
Cluster

No

Cure Number
of
Clusters
&
Represent
atives

Arbitrary
Shapes
of
clusters

Relativel
y
Arbitrary

Yes

6. Conclusion
In this paper we presented major research
accomplishments and techniques that have emerged in the
field of data stream mining. Data streams have gained
ground in the field of research. The research in this field is
mainly done in the areas like modeling, query processing,
and mining data streams. For instance several papers have
been written till now in the field of data stream mining
which includes the methods like classification, clustering,
and regression analysis. Traditional data stream algorithms
are challenged by the feature of data streams. So the
conventional techniques for data mining needs to be
molded according to he needs of data streams. The
properties like infinite data flow and drifting concepts
make the life of these researchers tough. To overcome
these difficulties we have presented some of the recently
developed and experimentally proved approaches for
dealing with data streams. The property of data streams
that is mainly dealt with these approaches is continuously
changing. The application of these approaches, techniques
and methods is determined by the problem domain and the
properties of problem domain.

References

[1] G Cormode, “Fundamentals of Analyzing and
Mining Data Streams”, Workshop On Data Stream
Analysis, March, 15-16, 2007

[2] B Babcock, S Babu, M Datar, R Motwani, and J

Widom. “Models and issues in data stream systems”,
Proceedings of PODS, 2002.

[3] Madjid Khalilian, Norwati Mustapha “Data Stream

clustering: Challenges and issues”, Proceedings of
the International MultiConference of Engineers and

Computer Scientists 2010 Vol I,IMECS 2010,
March 17 - 19, 2010, Hong Kong

[4] D. Barbara, "Requirements for clustering data

streams," ACM SIGKDD Explorations Newsletter,
vol. 3, pp. 23-27, 2002.

[5] Charu C. Aggarwal , “A Framework for Clustering

Massive-Domain Data Streams”, In Proc. Of IEEE
International Conference on Data Engineering DOI
10.1109/ICDE.2009.13

[6] L. O Callaghan, N. Mishra, A. Meyerson, S. Guha,

and R. Motwani, "Streaming-data algorithms for
high-quality clustering," 2002.

[7] YI-HONG LU1, YAN HUANG, “Mining Data

Streams Using Clustering”, Proceedings of the
Fourth International Conference on Machine
Learning and Cybernetics, Guangzhou, 18-21
August 2005

[8] S. Guha, R. Rastogi, and K. Shim. CURE: An

Efficient Clustering Algorithm for Large DataBases.
In Proc. of the ACM SIGMOD Intl. Conference on
Management of Data, 1998.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 228

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

