
A Parallel Processing Algorithms for Solving Factorization
and Knapsack Problems

 G. Aloy Anuja Mary 1 , J.Naresh2 and C.Chellapan3
1,2Research Scholar,Department of Computer Science & Engineering, College of Engineering, Guindy

Anna University, Chennai-600025

3 Professor,Department of Computer Science & Engineering, College of Engineering, Guindy
Anna University, Chennai-600025

Abstract

Quantum and Evolutionary computation are new forms of computing
by their unique paradigm for designing algorithms.The Shor’s
algorithm is based on quantum concepts such as Qubits,
superposition and interference which is used to solve factoring
problem that has a great impact on cryptography once the quantum
computers becomes a reality. The Genetic algorithm is a
computational paradigm based on natural evolution including
survival of the fittest, reproduction, and mutation is used to solve
NP_hard knapsack problem. These two algorithms are unique in
achieving speedup in computation by their adaptation of parallelism
in processing.
Keywords: Quantum computing, Qubits, superposition, mutation,
parallesim.

1. Introduction

In 1965, computer chip pioneer Gordon E.Moore noticed that
transistor density in chips had doubled every year in the early
1960s, and he predicted that this trend would continue. This
prediction moderated to a doubling every 18 month’s and
extended to computer speed is known as Moore’s law. It has
held remarkably well for 40 years. Moore’s law will stop
doubling the speed of our computers within a decade, when
chips hit atomic scale. Then the progress depends on
algorithmic ingenuity or on novel ideas such as quantum and
evolutionary computing [3].

Quantum computing is the attracting one since its superiority
was demonstrated by a few quantum algorithms such as
Shor’s quantum factoring algorithm and Grover’s database
search algorithm. Shor’s algorithm finds the prime factors of
an n-digit number in polynomial time while best known
classical algorithm require exponential time. Multiplying two
prime numbers together is a very simple process. Factorizing
the result back into its two primes, however, is currently still a
very time consuming process on classical computers. This
result is the basis of the well known cryptographic algorithm
RSA. It has been suggested that quantum computers, if ever
built, will have the power to reverse this result and to be able
to factorize numbers in a shorter time than it would take to
multiply them together in the first place, hence making RSA
obsolete. In a classical computer, a bit is simply the basic
measure of information. It can hold either a 1 or a 0. Similarly

the basic measure of information in a quantum computer is a
qubit which have the two possible values 1 and 0, but also
with the superposition of the two basis states [4].Equation (1)
represents the qubit state ψ as a linear combination of
the |0 > and |1 > states.

 | ψ > = α |0 > + β |1 > (1)

Where α and β are the complex numbers that specify the
probability amplitudes of the corresponding states. Therefore
the paper adopts MATLAB for simulation of the Shor’s
quantum algorithm to solve factoring problem.

Secondly, Genetic algorithm is a kind of computational model
in evolutionary computing and new global optimization search
algorithm that simulates the biology evolving process [5]. The
Knapsack is a combinatorial optimization problem. Given a
set of item Xi, each with a value Vi, and weight Wi, the
objective is to maximize value of the backpack subject to a
weight limit. The mathematical formulation of the problem is
as follows

 n
 Maximize ∑Vi Xi
 i=1 (2)
 n
 S.T. ∑ Wi Xi
 i=1

 Xi = 0 or 1, j=1,2,…, n.

This paper adopts java language to program the Genetic
algorithm to solve NP_Complete Knapsack problem.

This paper is organized as follows. Section 2 describes
complexity classes of factoring and Knapsack problem.
Section 3 and 4 describes Shor’s and Genetic algorithm
respectively. Section 5 and 6 simulates the experiment Shor’s
algorithm for factoring and Genetic algorithm for Knapsack
problem respectively. Concluding remarks follow in section 7.

2. Complexity Classes

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 246

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Computer Scientists categorize problem according to how
many computational steps it would take to solve a large
example of the problem using the best algorithm known. The
problems are grouped into broad overlapping classes based on
their difficulty. Three of the most important classes are as
follows.

 P PROBLEMS: Ones computers can solve
efficiently in polynomial time.

 NP PROBLEMS: Ones whose solution are easy to
verify.

 NP_COMPLETE PROBLEMS: An efficient
solution to one would provide an efficient solution to all NP
challenges.

A fourth class of problems that quantum computers would
solve efficiently (BQP) is related to these fundamental classes
of computational problems as shown in fig.

The BQP (the letter stand for bounded _error, quantum
polynomial time) includes all the P problems and also a few
other NP problems. Finally PSPACE problems are those that a
conventional computers can solve using only a polynomial
amount of memory but possibly requiring an exponential
number of steps[3]. After knowing about complexity classes,
the Knapsack problem is mapped to NP_Complete and
Factoring problem is mapped to BQP as shown in fig 1.

Fig 1 Complexity Classes

3. SHOR’S Algorithm

Given a number N, constructed from the multiplication of two
distinct but unknown prime numbers, the goal is to find what
the two prime factors were. Shor showed how to turn
factorization into the problem of order finding, using a
quantum subroutine, the order of a function in polynomial
time.

Shor took advantage of a fundamental result from number
theory. Given two numbers x and N which are co-prime to

each other, the function F (k) = xk (MOD N) is periodic with
some period r such that

 F(k)=xk(MODN)=xk+r(MODN) (3)

Hence, this implies that

 xr ≡1 (MOD N) (4)

 If r is an even integer, then the following algebraic
manipulation produces

 (xr/2)2 ≡ 1 (MOD N) (5)
 (xr/2)2 -1 ≡ 0 (MOD N) (6)
 (xr/2 -1) (xr/2 +1) ≡ 0 (MOD N) (7)

This means that (xr/2 -1) (xr/2 +1) is an integer multiple of N
and so long as xr/2 ≠ ±1 then at least one of (xr/2 -1) and (xr/2 +1)
must have a nontrivial factor in common with N.

Hence, by computing the gcd (xr/2 -1, N) and gcd (xr/2 +1, N)
the factor of N can be obtained.

Shor’s algorithm can thus be broken up into three
distinct sections.

A. Classical pre-processing: pick a number x,
co-prime to N

B. Quantum computation: Find the order r, such
that xr ≡ 1(M OD N)

C. Classical post-processing: If r is even, calculate
the two possible factors of N.

The trick Shor used in order to achieve the parallelism offered
by quantum mechanics was to notice that it is possible to
perform both the modular exponentiation of a quantum
register followed by finding the corresponding period of the
function, in single quantumly parallel operations.

A. Classical Pre-Processing

Step 1 Check whether N is of the form N= (prime)α or N=
2 (prime)α where α € {0,1,2, …}, if true then there
are efficient classical algorithms which can be used,
else go to step 2.

 Step 2 Choose a random number x such that 1<X<N-1 and

which is relatively prime to N.

Step 3 Find an integer q which is a power of 2 and satisfies

the condition n2 <=q<=2 n2 where n= 2[log N].

B. Quantum Computation

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 247

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Step1 Initialization of the quantum registers

Initialize two quantum registers |Reg1, Reg2> such that

Reg1 has n qubits and Reg2 has ⌈log N ⌉ qubits. Reg1 will
hold the possible k’s and Reg2 will hold the respective F (k)
values. Once the qubit registers space are assigned, both
are initialized to the 0 state |0, 0>

Step 2 Place Reg1 into a superposition of all possible states

Once the two register quantum state is set up, the Reg1 is
placed into an equally weighted superposition of all the
integers from 0 to q − 1. This would then leave the quantum
memory registers in the state

 (8)

A calculation performed on a quantum register is actually a
calculation performed on every possible value that register can
represent all at the same time. This is what allows the
improvements in speed compared to classical algorithms.

Step 3 Place xReg1 (MOD N) in Reg2
Next apply the function F (k) = xk (M OD N) to Reg1, storing
the result in Reg2. Due to quantum parallelism this will only
take one step. The state of the registers after this step will be

 (9)

Now measure the second register. The value stored there will
collapse to give us only a single value, K. This measurement
also has the effect of collapsing register 1 in such a way that if
measuring register 1 next, one would observe all possible
corresponding i’s with equal probability and any i such that xi
(M OD N) ≠ K would have zero probability of being seen. If
A denotes the set of values from Reg1 which satisfy this new
condition, and ||A|| is the number of states it contains, the state
of our registers would then be

 (10)

Where r is the period of F, j is the index over A and s < r is the
initial random offset such that xs (M OD N) = K. As this
collapse of the state takes place in one instantaneous step, it
shows the power which quantum superposition is able to
employ.

Unfortunately, directly extracting r or a multiple of it from the
above state due to the random offset s is not possible. Hence,
to get around this problem the Discrete Fourier Transform

(DFT) of Reg1 is taken. This is due to the fact that the
probability spectrum of the transformed state is invariant to
the offset [4].

Step 4 Calculation of the period r

The DFT of a state φ results in the following register
state

 (11)

This transform can actually be performed in a single step on a
quantum computer using quantum parallelism. Therefore by
taking the DFT of Reg1, results in the state of our system then
being

 (12)

Measuring the state of Reg1 will now collapse the register to a
single value which is called m. It is not possible to extract any
other information from the register, such as the number of
states which have peak probability, as once it has been
measured it collapses to a single value thereafter. The
measured value has a very high probability of being an integer
multiple, λ, of q/r where r is our desired period.

The final step of calculating r is to convert our calculated
value of m/q from a decimal floating point value to a rational
number. We ensure that both the numerator and denominator
are kept to values less than q. There is an efficient classical
algorithm for solving this problem using continued fractions
but this analysis has been omitted because MATLAB has an
inbuilt function for performing the task when implementing
the algorithm.

A final note to make here is that our approximation
numerator/denominator≈ λ/r is only valid when gcd(λ, r) = 1,
since the rational form is not unique. This again is
incorporated into the MATLAB function, which finds the
rational approximation in its simplest form.

C. Classical Post-Processing

At this stage of the algorithm, the period r of random number
x is found. If r is odd, then unfortunately this is of no help, so
discard it and go back to the beginning and choose a new
random number to use as our x.

Assuming that eventually do find an r which in even, we
calculate

gcd (xr/2 – 1) and gcd (xr/2 +1)

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 248

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Then use these values to test whether they are our chosen
factors by multiplying them together. If they turn out to be
nontrivial numbers which when multiplied together equals N,
factoring is done. Otherwise, we need to re-run the algorithm
choosing a new value of x to use.

There is a very high probability that after only O (log N) runs
of the algorithm, the two unique factors which produce our
number N will be found.

4. Description of Genetic Algorithm

Genetic algorithms are a part of evolutionary computing,
which inspired by Darwin’s theory about evolution. The
solution to a problem a problem solved by Genetic algorithm
is evolved from large search space. GA uses operators
inspired by evolutionary biology such as mutation, selection
and crossover. And have two basic parameters crossover
probability and mutation probability beside the population
size. The structure of simple GA is shown in Fig 2.

Fig 2 Structure of Genetic Algorithm

The design of GA that solves knapsack problem is as follows

Step 1 Choose binary coding to represent items, a selection

operator, a crossover operator, and a mutation operator.
Choose population size n, crossover probability pc and
mutation probability pm. Initialize a random population of
string l. Choose a maximum allowable generation number t max.
Set t=0.

Step 2 Evaluate each string in the population.
Step 3 If t>t max or 90% of evaluated strings have same

fitness value, Terminate.
Step 4 Perform reproduction on the population.
Step 5 Perform crossover on random pairs of strings.

Step 6 Perform mutation on every string.
Step 7 Evaluate strings in the new population. Set t=t+1and

go to step 3.

5. Simulate Factorization Problem

Factoring of N=15, provides evidence that implementation
works and is able to find the required two prime factors of N =
15. Calculating n and q for this particular N gives us 8 and
256, respectively. Next choose x = 13 randomly, populate
Reg1 with 0...q-1, calculate Reg2 = xReg1 (MOD N) and finally
determine the probability of seeing each value of Reg1 when
the quantum register Reg2 is measured. The state of A is
given below, together with the probability of seeing Reg1
once Reg2 has been measured and found to be K = 13.

Table 1 the values held in Reg1 and Reg2 when trying to factorize the

Number N =15 using the random number x = 13 [2]

Reg1 Reg2
Prob

before
Prob
after

DFT

0 1 0.0625 0 8

1 13 0.0625 0.125 0

2 4 0.0625 0 0

3 7 0.0625 0 0

4 1 0.0625 0 0

5 13 0.0625 0.125 0

6 4 0.0625 0 0

7 7 0.0625 0 0

8 1 0.0625 0 0

9 13 0.0625 0.125 0

.

. . . .

.

.

.

.

.

253 13 0.0625 0.125 0

254 4 0.0625 0 0

255 7 0.0625 0 0

The most likely observable states of Reg1 performing the
DFT are found to be m = 64, 128 and 192. From this, calculate
the possible values of C which correspond to the approximate
numerical values of λ/r, where λ is some integer.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 249

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Calculating C by dividing the m values by q gives us 0.25, 0.5
and 0.75 as possible values.

Next the rat MATLAB function is used to turn these values of
C into rational approximations. The denominator and hence
possible values of r are found to be 4, 2 and 4 with
corresponding numerators 1, 1 and 3. Finding the greatest
common divisors of these xr/2 ± 1 with respect to N ends up
producing the correct two factors 5 and 3 which when
multiplied together form N = 15.

Fig 3 is a plot showing the DFT values of Reg1 for this
particular example.

0 50 100 150 200 250
0

1

2

3

4

5

6

7

8
Probabilities of observing values of c between 0 and 4000

Values of c

D
F

T

Figure 3 Plot of DFT graph for N =15 and X = 13

6. Simulate Knapsack Problem

Assumed n of the goods number is 50 the weight of the goods
is {wi} the value of the goods is {vi} and capacity of the
Knapsack is c=1000.

{wi}={80,82,85,70,72,70,66,50,55,25,50,55,40,48,50,32,22,6
0,30,32,40,38,35,32,25,28,30,22,25,30,45,30,60,50,20,65,20,2
5,30,10,20,25,15,10,10,10,4,4,2,1};

{vi}={220,208,198,192,180,180,165,162,160,158,155,130,12
5,122,120,118,115,110,105,101,10,100,98,96,95,90,88,82,80,
77,75,73,72,70,69,66,65,63,60,58,56,50,30,20,15,10,8,5,3,1};

Population size is 10 and maximal evolution generation is 500
in the experiment. Fig 4 shows the evolution process graph of
the total value of the selected goods. The x-axis shows the
evolution generation and y axis shows the total value of the
selected goods. The optimal result of the genetic algorithm
corresponds to the value of the Knapsack that is 3063.

Fig 4 Evolution Process Graph

Table 2 Export experiment result, when the evolution process of the

Genetic algorithm is over

7. Conclusion

This paper provides a mathematical description of Shor’s
quantum algorithm for factorizing numbers that have been
constructed from two primes into their two composite primes.
Then Shor’s fast algorithm for factoring based on Fourier
transform is simulated on classical computer running
MATLAB. The example provided proves that the simulated
algorithm indeed is able to factorize numbers. This paper also
provides a description of genetic algorithm for solving
NP_hard Knapsack problem a kind of combinatorial
optimization problem. Then the algorithm is simulated for the
example provided running Java language proves that
simulated algorithm is able to find global optimization
solution. Therefore algorithms based on unique computational
paradigms such as quantum and evolutionary computing is
stressed for speedup in computation to enable technological
development, even when Moore’s law stop’s working in a
decade when chips hit atomic scale.

References

[1] Soltanaghaei, M.R., Z.A. Zukarnain,A.Mamat and

H.Zainuddin,2009. A hybrid algorithm for finding shortest
path in network routing., J.Theor.Applied
Inform.Technol.,5:360-364.

[2] Yun-Peng Zhou and zheng- Yiti, “Application of Genetic
Algorithm in Combination Optimization”, Journal of Liaoning
Technical University, Vol.24,No4,2005,pp.283-285.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 250

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

[3] Michael A. Nielsen and L. Chuang, Quantum Computation and
Quantum information. Cambridge university press, Cambridge,
2000.

[4] P. W. Shor, Polynomial _ time algorithms for prime
factorization and discrete logarithms on a quantum computer,
SIAM J. Computing 26, pp. 1484-1509, 1997.

[5] Rui Liu, Jin-bo Zhang, Rui-jie Liu, and Ji-xian Li, “On the
algorithm of solving the 0_1 knapsack problem based on the
Genetic algorithm”, Journal of yunnan nationalities
University(Natural Sciences Edition).Vol. 17, No.4, 2008, pp.
377-379

G.Aloy Anuja Mary is a PhD student in the Department of Computer
Science and Engineering at Anna University, Chennai, India. She
received her B.E Electronics and communication Engineering from
Sivanthi Aditanar College of Engineering College under Manonmaniam
Sundaranar University in 2003 and M.E Communication Systems from
National College of engineering under Anna University in 2005,
Chennai, India. Her current research is on Quantum Cryptography and
Communication.

J.Naresh is a M.E student in the Department of Computer Science and
Engineering at Anna University,Chennai, India. He received his
M.Sc(physics) from Sacred Heart College,Tirupathur underMadras
University in 2003 and B.Sc(Physics) fromSankara
College,Kanchipuram under Madras University in 2000, Chennai,
India. His current research is on Quantum computing.

C. Chellappan is a Professor in the Department of Computer Science
and Engineering at Anna University,Chennai, India. He received his
B.Sc. in Applied Sciences and M.Sc in Applied Science–Applied
Mathematics fromPSG college Technology, Coimbatore under
University of Madras in 1972 and 1977. He received his M.E and Ph.D
in Computer Science and Engineering from Anna University in 1982
and 1987 respectively. He was the Director of Ramanujan Computing
Centre (RCC) for three years at Anna University (2002–2005). He has
published more than 80 papers in reputed International Journals and
Conferences. His research areas are Computer Networks,
Distributed/Mobile Computing, Soft Computing, Software Agent,
Quantum Computing, Object Oriented Design and Network Security.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 251

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

