

An adaptive Parameters Binary-Real Coded Genetic Algorithm

for Real Parameter Optimization:
Performance Analysis and Estimation of Optimal Control Parameters

Omar Abdul-Rahman1, Masaharu Munetomo2 and Kiyoshi Akama3

 1 Graduate School of Information Science & Technology, Hokkaido University

Sapporo, Hokkaido, Japan

2 Information Initiative Center, Hokkaido University

Sapporo, Hokkaido, Japan

3 Information Initiative Center, Hokkaido University

Sapporo, Hokkaido, Japan

Abstract
Genetic algorithms (GAs) are vital members within the family

biologically inspired algorithms. It has been proven that the

performance of GAs is largely affected by the type of encoding

schemes used to encode optimization problems. Binary and real

encoding schemes are the most popular ones. However, it is still

controversial to decide the superiority of one of them for GAs

performance. Therefore, we have recently proposed binary-real

coded GA (BRGA) that has the ability to use both encoding

schemes at the same time. BRGA relies on a parameterized

hybrid scheme to share the computational power and coordinate

the cooperation between binary coded GA (BGA) and real coded

GA (RGA). In this article, we use CEC’2005 benchmark suite of

25 functions to analyze quality and time performance of BRGA

and in comparison with original binary and real coded

component GAs. To demonstrate the performance of BRGA, we

compare it with the performance of some other EAs from the

literature. In addition, we implement a robust parameter tuning

procedure that relies on techniques from statistical testing, design

of experiments and Response Surface Methodology (RSM) to

estimate the optimal values for control parameters that can secure

a good performance for BRGA against specific problems at hand.

Keywords: Binary coded GA(BGA), Real coded GA(RGA),

Hybrid Scheme, Design of Experiments.

1. Introduction

Genetic algorithms (GAs) are efficient search
metaheuristics that mimic natural evolution and play an
increasingly important role in a variety of fields and
applications like bioinformatics, computational science,
engineering, economics, chemistry, manufacturing and
other fields. In order to employ GAs effectively, the
optimization problem should be encoded by an appropriate
encoding scheme. A variety of encoding schemes are
available within the literature; however, binary and real (or

floating point) encoding schemes are still the most popular
among researchers and widely employed in a variety of
applications.
Theoretical and empirical investigations confirmed that
that the performance of GAs is greatly affected by the type
of the encoding scheme. However, the superiority of either
binary or real encoding schemes for the performance of
GAs is that kind of open question that for many years has
and still divides the GA community. For theoreticians,
BGA is the answer. The theoretical finding of schemata
theory supports that enhanced schemata processing is
obtained by using the alphabet of low cardinality. BGAs
are efficient and the latest developments in the field of
GAs research add much to the robustness, speed and
accuracy of such algorithms. However, it is possible to
argue that BGAs suffer from several disadvantages when
applied to real-world problems involving a large number of
real design variables. The direct relationship between the
desired precision and the increased binary string length,
and the discrepancy between the binary representation
space and the actual problem space are good examples of
such disadvantages.
On other hand, RGAs are preferred by many practitioners.
They are increasing in usage since the floating point
representation is conceptually closest to the real design
space, and moreover, the string length is reduced to the
number of design variables. RGAs are robust, accurate,
and efficient. However, it is possible to argue that RGAs
are still susceptible to premature convergence especially
for complex real world problems with a large number of
design variables. It is also possible to say that the theory of
RGAs is still far from providing plausible understanding of
internal RGAs mechanisms, which is a true hindrance to
further development of advanced techniques in this field.
In order to tackle this problem effectively, we have
recently proposed a hybrid binary-real coded genetic

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 37

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

algorithm (BRGA) [1] [2]. The main idea in BRGA is to
give the algorithm the ability to process the optimization
problems in both encoding schemes, binary and real, at the
same time. By combing the usage of both encoding
schemes, we aim to maximize the advantages and minimize
the disadvantages resulted from employing each encoding
scheme separately. BRGA employs a hybrid scheme that
organizes the interactions and divides the computation
power between the two cooperatives versions of GAs
(BGA and RGA). The evolutionary search is primarily
guided by BGA part, which is used to identify promising
regions in the search space. While, the real coded GA part
is used to increase the quality of the obtained solutions by
conducting an extensive search through these regions. The
interaction between the two versions of BRGA is regulated
by adaptive parameters which have small values at the
beginning of the search to allow the exploration of the
search space by the BGA part, while, their values increase
gradually as the search progresses to allow the exploitation
of the search space by RGA part.
The remaining part of this paper is organized as follows.
The related literature is briefly reviewed in Section 2. The
algorithmic details of BRGA are described in Section 3.
The implemented numerical evaluation is explained and
the obtained results are discussed and analyzed in Section
4. On the other hand, the implemented parameter tuning
procedure is described and the obtained optimal
configurations are discussed in Section 5. Finally, in
Section 6, we conclude the paper and highlight possible
directions of future research.

2. Literature Review

From a conceptual standpoint, the design issue in BRGA
adopts an idea that is closely related to dynamic coding,
which is a sophisticated approach to altering the coarseness
of search spaces. An example of such an approach is the
stochastic genetic algorithm presented by Krishnakumar et
al [3]. In stochastic GAs, the region represented by each
point of a BGA is adapted during the optimization process
using evolutionary strategies (ES). In contrast to stochastic
GAs, BRGA employs an RGA instead of ES to adapt the
regions represented by the BGA. In addition, stochastic
GA treats each parameter within the chromosome as a
separate entity, while in BRGA the sampling happens from
the region bounded by the promising regions collectively.
This can approach can be more efficient in terms of
computational power. Moreover, BRGA relies on sources
other than random sampling (like best members from the
old population) in guiding the optimization process.
Another example of dynamic coding is the adaptive range
genetic algorithm (ARGA) as presented by Arakawa and
Hagiwara [4]. In ARGA, the mapping rules from binary to
real strings are updated during the optimization process
according to the population statistics in order to adapt the
population toward promising design regions. However,
BRGA works differently when it employs an RGA that
takes random samples from the promising regions found by

the BGA in order to adapt the population toward promising
regions in the search space.
Recently, the authors in [5] proposed an adaptive
resolution micro-GA with Tabu search to solve a group of
extremely difficult non-convex mix integer non-linear
programming (MINLP) benchmark functions. The problem
domain is divided by into discrete part to be handled by
Binary GA operators and real part to be handled by Real
coded GA operators. The algorithm employs an adaptive
resolution which is a recursive approach that divides the
search space into sub-solution spaces. The size of theses
sub-solutions are controlled by information entropy. Under
such scheme, the areas under the better solution have a
greater chance to find even better solutions. The algorithm
utilizes local search operator to increase the efficiency of
the algorithm and a Tabu search like operator to eliminate
redundancy in revisiting already visited local minima. So,
in contrast to BRGA, the hybrid scheme in [5] used real
coded algorithms to change the coarseness of the search.
By using a combination of different encoding schemes,
BRGA is in a better position to reap the best from the
combinations.
From hybrid scheme standpoint, BRGA employs a scheme
that can be described as sequential hybrid scheme [6].
Since, the cooperating algorithms in BRGA are
exchanging output several times, operating in a time-
interleaving manner. However, hybrid binary-real coded
GAs in the literature generally follows a parallel
hybridization scheme by separating problem domain into a
binary part to be handled by BGA and a real part to be
handled by RGA. An example is the hybrid binary real
coded GA proposed by Barrios et al. [7]. to be used for
designing and training feed-forward artificial neural
networks. Their algorithm employs two interconnected
GAs that work in parallel to design and train better neural
networks to solve the problem at hand. In addition, the
authors in [8] used RBLGA, which is a combination of real
coded and binary like coded genetic algorithm to
automatically generate Fuzz Knowledge Bases (FKBs)
from a set of numerically data. The generated FKBs
satisfied a contradictory paradigm in terms of KFBs high
precision and simplicity. The manual construction of such
FKBs is a long and tedious process, while the successful
generation of such FKBs is a prerequisite for successful
operation of Fuzzy Decision Support System (FDSS). In
RBLGA, the problem domain is divided into real part,
which is the fuzzy set repartition, and binary part, which is
the fuzzy rule base. By adopting sequential hybridization
scheme for BRGA, we believe that synergetic effects can
be more productive in guiding optimization toward better
performance.

3. The BRGA algorithm

A schematic diagram that clarifies the operation of BRGA
is shown in Fig. 1. BRGA employs a hybrid scheme that
organizes the interactions and divides the computational
power among two cooperatives version of GAs, namely

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 38

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Binary coded GA part (BGA part) and Real coded GA part
(RGA part). The evolutionary search is primarily guided
by BGA part, which is used to identify promising regions
within search space. According to the schema theory [9],
using of low cardinality alphabet is behind the success of
the BGAs in finding good solutions. So, under our
proposed hybrid scheme, the BGA part plays a vital role in
scanning the search space effectively and partitioning it
potentially into smaller promising parts that can be
exploited later by the RGA part. Whenever the BGA part
completes its shares of genetic search, the computational
power switches from the BGA part to the RGA part by a
process that can be best described as population handover.
During population handover, the BGA part injects some of
its best population’s members into the RGA part’s
population of solutions. Another sample of injected
members is randomly generated from the region bounded
by those best members. So, population handover is an
opportunity for the RGA part to focus its search by
receiving valuable feedback from the BGA part about the
promising regions within the search space. The RGA part,
which has the ability to process problem variables directly,
can effectively compensate the poor ability of BGA in
finding accurate solutions resulted from the limitations of
mapping from the real problem space into the binary
representation space and vice versa. Starting from a
population doped by promising members, the RGA part
extensively exploits this region and adapts population
members toward it in order to identify solutions of higher
quality. Whenever the RGA part completes its share of
genetic search, the computational power switches back to
the BGA part by a reverse process of population handover.

Here, the RGA part injects a portion of its best population
members into the BGA part population of solutions. So,
the handover process is an opportunity for BGA part to
correct its behavior in scanning and partitioning search
space by receiving valuable feedback from the RGA part
about the optimality of regions that suggested as promising
in the previous cycle. So, the evolutionary search continues
in the same manner up to satisfaction of the termination
criteria. In order to regulate the share of each part from the
total computational power, the frequency of handover
process, amount and type of information exchange, BRGA
employs a hybrid scheme which relies on selection criteria
and a group of static, dynamic and adaptive parameters. In
this section, we aim to describe the implementation details
and discuss the operation of BRGA. The main components
of BRGA can be described as follows.

3.1 Chromosome representation

Both binary and floating point encoding schemes are used
to represent chromosomes of two equivalent populations of
candidate solutions. These populations are frequently
updated by mapping from one version to another during
the evolutionary cycle.
In BRGA, the initial population is usually generated as real
numbers and quantization method is used to map the
chromosomes from the floating point format to the binary
format and vice versa. Quantization begins by sampling a
function (i.e. an optimization problem at hand) and placing
the samples into equal quantization levels, which are
nonoverlapping subranges. Then, the samples will be
assigned unique discrete values equal to the mid values of
the quantization levels. The difference between actual
value and quantized value is known as quantization error.
It also possible to assign the samples values equal to the
highest and lowest values of the quantization level.
However, using the mid value of the quantization level is
better in terms of generated quantization errors. [10]
Supposing that we have a population of initial solutions,
where P is the Pth chromosome from that population and Pn
is the nth variable (or gene) within P. Then, the
mathematical formulas for binary encoding and decoding
of Pn can be described as the following:

For encoding;

 (1)

 (2)

For decoding ;

 (3)

 (4)
In each case, Pnorm is the normalized variable, 0 ≤ Pnorm ≤ 1.
Plo is the minimum value within the variable Pn range. Phi,
is the maximum value within the variable Pn range.
gene[m], is the binary version of Pn. round{.} is round to
the nearest integer equal to or greater than argument. M is

BGA

Optimization

RGA

Optimization

Population

Handover

Optimization Optimization

Binary encoded

population member

Real encoded

population member

Best member

Member generated

by random

sampling

Replacement

Random Sampling

111000101010 (X1, X2, …….,Xn)

Fig. 1 Typical optimization cycle in BRGA.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 39

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

the number of assigned bits to represent the variable Pn.
Pquant is the quantized version of Pnorm. Finally, qn is the
quantized version of Pn.
It is clear from Eq. (3) that increasing the number of bits
will decrease quantization error. Actually, such direct
relationship between quantization error and number of bits
is one of the obstacles that limit the performance of BGAs
whenever applied to real parameters optimization problems.

3.2 Binary coded GA (BGA)

In this study, we use a standard BGA as described by
Haupt and Haupt [10] to implement the BGA part. A
simple implementation adopted for the BGA to keep the
complexity of BRGA as minimum as possible. The main
components of the BGA are the mating operators (single
point crossover operator and one point mutation operator)
and the rank weighting selection scheme with elitism.
Selection is survival-of-the-fittest mechanism used by the
GAs to allocate more offspring to the better individuals,
and the rest thrown away from the evolutionary process.
There are a variety of schemes that simulate this
mechanism; however, roulette wheel selection is the most
common among them. With this approach the probability
of selection is proportional to an individual’s fitness.
Individuals with better fitness have greatest probabilities to
be selected to the next generations, while those with
weakest fitness have a very low probability of propagation
to the next generations. In BGA part, a version of this
mechanism, known as roulette wheel weighting, was
implemented. This version is problem independent and
finds a probability from the rank, r, of the individual as
follows.

 (5)

 (6)
Where, n is the individual rank according to its fitness, S is
a user define parameters that takes a value from the range 0
< S < 1, round{.} is round to the nearest integer equal to
or less than argument and Npop is a user defined parameters
refers to the population size. Therefore, each individual
receives a cumulative probability according to its rank
defined as the following.

 (7)
So, the selection scheme proceeds by firstly generates a
random number between zero and one. Then, by starting
from the top of the list, the first chromosome with a
cumulative probability that is greater than or equal to the
random number is selected for the mating pool. This
process is repeated several times until Nkeep is satisfied.
And the population members within the mating pool are
arranged in pairs to be processed later one by the mating
operators.
On the other hand, The BGA part employs a single point
crossover and one point mutation as mating operators.
BGAs usually use crossover operator as a method for

exploration of new parts of the search space by combining
information from different solutions. In the single point
crossover, pairs of individuals are selected from mating
pool to produce offspring. The single point crossover
proceeds by cutting the pair of selected strings at a
randomly selected locus, or crossover point, and swapping
the tails to create child strings. The probability of applying
crossover operator can be estimated from the following:

 (8)
On the other hand, mutation is another operator used by
BGAs to explore fitness landscape. It acts as a method to
maintain diversity by introducing new traits in the original
population and keeps the GA from converging too fast
before sampling the entire cost surface. A single point
mutation simply changes a 1 to a 0, and vice versa.
Mutation points are randomly selected from the total
number of bits in the population matrix. The total number
of these points can be deduced from the following formula.

 (9)
Where Pm is mutation probability and Nbits is number of
bits per gene (or variable). It is clear from Eq. (9) that the
best chromosome is excluded from mutation process due to
the elitism. Actually, Keeping the best, or the elite,
individual between generations is another technique used
by the BGA part to avoid converging too fast to and
trapping to the local minima.

3.3 Real-coded GA (RGA):

RGAs do not suffer from the problem of quantization
limitation that faces the BGAs. Therefore, RGAs have a
better ability to find solutions of better precision ability.
Due to the importance of this part, we use Unimodal
Normal Distribution (UNDX) as an advanced real
crossover operator [11] with the minimal generation gap
(MGG) [12] as a generation alteration model to implement
the RGA part. For RGAs, It has been accepted by the
researchers that mutation operators are the most important
operators and they can act as main search operators, while
crossover operators can perform only assistant roles.
However, UNDX along with BLX-α[13], Fuzzy
recombination (FR) [14], and Simulated Binary crossover
(SBX) [15] are a group of advanced crossover operators
that have been developed for RGAs which show relatively
good performance and ability to operate independently
from mutation operators. When compared with other
RGAs` crossover operators, UNDX generates new
population lie on some ponds or along some valleys in
order to focus the search on promising areas from a
viewpoint of search efficiency. So, UNDX can efficiently
optimize functions especially those have epistasis among
parameters. Moreover, one dimensional UNDX with
MGG has shown good performance on several benchmark
problems [11].
UNDX procedure can be briefly explained as follows.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 40

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

(1). Select 3 individuals as parents’ gp1, gp2 and gp3 from
the population of solutions. Where gp1, gp2 are the main
parents and gp3 is a subparent.
(2). Define the middle point of the main parents gm, where

(3). Let the direction from gp1 to gp2 be primary search

line d, where

(4). Define D as the distance from gp3 to primary search
line direction (d). Where

(5). Define ei be the orthogonal basis vectors spanning the
subspace perpendicular to the primary search direction (d).

 (6). Two children gc1 and gc2 are now generated as
follows;

 (10)

(11)

 (12)
Where n is the dimension of search space, N (a,v)
represents a normal distribution whose average is a and
whose variance is v, and are constant parameters that

are recommended to be set as (1/2) and (0.35/

) respectively.
It has been found that minimal generation gap, or MGG, is
appropriate for keeping the diversity of the population.
The MGG model consists of the following five steps.
(1). Generate an initial population.
(2). Select a pair of individuals randomly from the

population as parents.
(3). Generate 2Ncross offspring by carrying out Ncross

time’s crossover. Where Ncross is a user defined
parameter.

(4). Select two individuals from the family containing the
two main parents and their 2Ncross offspring. The first
individual is the best one within the family, while the
second individual is one selected by the roulette
wheel selection (similar to that in BRGA). Replace
the two main parents in step (2) with the two
individuals.

(5). Repeat the procedure from step (2) to step (4) until a
stopping condition is satisfied.

3.4. Population handover:

The main contribution of our work is in the population
handover mechanism, which is the core of the hybrid
scheme of the BRGA. Due to the using of low alphabet
cardinality, BGA has a better possibility to identify
promising regions within search space. So, by receiving
feedback from BGA through population handover, RGA
can approach optimal solution regions rapidly by
exploiting these promising regions. On the other hand,
RGA has a better ability to obtain better quality solutions.

So, BGA can adapt it behavior in scanning the search
space based on feedback received from RGA part through
population handover. So, during a typical optimization
cycle, the populations of real and binary solutions are kept
updated by frequently mapping from one version to
another and vice versa. Population handover is the
responsible on controlling the mapping process in itself
and the frequency of its occurrence. The pseudocode of
handover procedure is shown in Fig. 2.
As it is clear from Line 0 in Fig. 2, the handover process
happens at moments controlled by the by Κ. Κ is user
defined dynamic parameter that takes an initial value of

and an incremental step size of as shown in the equation

of Line 43.Whenever handover process starts, the
computational power switches from BGA part to RGA part
and BRGA starts by updating handover process counter, T,
and stores the final population which generated by BGA,

, to be used in the subsequent handover steps.

BRGA uses two user defined parameters, which are to

evaluate the quality of improvement achieved in in

comparison with and to control the influx of

information exchange between the BGA and RGA parts. It
should be noted that is the final population

generated by RGA part from the last handover cycle. In
case of initial handover cycle it equals the initial randomly
generated solutions. Both and are sorted

according to their penalized fitness values. Taking into
consideration that the framework in Fig. 2 has been
developed for the minimization problems, BRGA starts a
binary-to-real population handover considering the
following selection criteria:
(1). The mean performance of BGA part is better than the
mean performance of RGA part, i.e. logic in Line 3 and
Line 4 are true. This scenario can be especially true at the
initial stages of the evolutionary search where BRGA
usually moves within regions far away from the optimality
region. Here, the BGA part has a good opportunity in
frequently identifying new promising search regions and
adapts population towards them. If this happens, then
BRGA wants from the RGA part to extensively exploit
these regions so it increases the influx of data migration
between the two parts by setting the value of to its

maximum (Lines 6 and 11) and directs RGA part to
replace the solution members of by new members

from POP1 and POP2 (Lines 7-9, 12-14) where POP1 is a
fraction of best members, while POP2 is the

random samples taken by BRGA from the region defined
by POP1. By taking samples from this region, BRGA
hopes that RGA part can locate rapidly higher quality
solutions. Finally, the logic in Line 5 is introduced to
protect the elite member within , if existed, from

being destructed by the above mentioned replacement
process.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 41

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

(2). The mean performance of BGA part is slightly better
than the mean performance of RGA part, i.e. the logic in
Line 3 is true while the logic in Line 4 is false. As the
evolutionary search progresses, the probability of
identifying new promising regions decreases. So, the BGA
part gradually losses its ability in significantly pushing the
mean performance of the population of member solutions.
However, since the BGA part still exhibits signs of
improvement, BRGA still hopes that RGA can find higher

quality solutions by accepting new best members of POP1

(Line 18) and POP2 or the random samples generated from
the region defined by POP1 (Line 19). However here,
BRGA decreases the influx of data migration from BGA
part to RGA part (Line 17) and it directs RGA part to
replace only the worst half of its population members
() by POP1 and POP2 (Line 20).

0. IF = iga THEN

1.

2.

3. IF Mean()) < Mean()) THEN

4. IF Mean()) - Mean()) >= THEN

5. IF Min)) < Min)) THEN

6. =

7. ;

8.);

9.

10. ELSE

11. =

12. ;

13.);

14.

15. END;

16. ELSE

17. =

18. ;

19.);

20.

21. ELSE

22. IF Mean()) - Mean()) <= THEN

23. =

24. ;

25. ;

26. END;

27. END;

28. FOR i = 1:

29. Apply RGA(;

30. END;

31. ;

32. IF Mean()) <= Mean()) THEN

33. =

34. ;

35.

36. ELSE

37. IF (Mean()) - Mean())) <= THEN

38. =

39. ;

40. ;

41. END;

42. END;

43. ;

44. ;

45. END;

Fig. 2 Population handover pseudocode.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 42

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

(3). The mean performance of BGA part is slightly lags
behind the mean performance of RGA part, i.e. the logic in
Line 3 is false while the logic in Line 22 is true. This
situation indicates that the performance of both parts of
BRGA becomes comparable to each other and the RGA
starts gradually to dominate the performance of BRGA.
Here, BRGA becomes less interested in accepting new
members from BGA part. So, it keeps the low influx of
data migration from the BGA part toward the RGA part
(Line 23) and it directs the RGA part to replace only the
worst quarter of its population member (Line 25) by POP1

(Line 24). By increasing the percentage of good members
within , BRGA hopes to fasten the convergence

profile towards optimality region.
(4). The mean performance of BGA part is lags behind
the mean performance of RGA part, i.e. the logic in Lines
3 and 22 are false. This scenario can be true especially at
final stages of the evolutionary search, where the BRGA
comes within the vicinity of the optimality region. Here,
there is a very low probability for the BGA part to find
even better promising regions by visiting new parts of the
search space. Whenever this scenario happens, BRGA
stops data migration and it directs the RGA part to use its
un-updated in the subsequent search process.

On the other hand, the pseudocode in Fig. 3 describes the
random sampling process. The random sampling process
takes POP1 and as an input from the handover process

(Lines 8, 13 and 19, Fig. 3). The process starts by creating
Xlo and Xhi vectors which contain the minimum and
maximum population members for each search dimension
within POP1 respectively. These vectors draw the boundary
of the regions from which random samples to be taken by
BRGA. The random samples are generated according to
the equation in Line 7. Where, N is pseudorandom value
drawn from the standard normal distribution. The elements
within Xlo and Xhi should be distinct from each for
sampling process to be implemented effectively. However,
as the evolutionary search progresses the diversity within
the population members decreases gradually. Actually, it is
highly possible that populations of best members become
replicas of the same solution at some moments during the
evolutionary search. To guard against such situation, logic
in Line 3 is introduced. It shifts an Xlo element by an
amount determined by Ω from a correspondent element
within Xlo. Ω is a real valued user defined parameter that
takes values greater than zero.
So, whenever the process of binary-to- real handover
process completes, the RGA part starts from a fresh

search with iteration budget controls by . is a dynamic

user defined parameter that takes an initial value of and

an incremental step size of as shown in the equation in

Line 44. As discussed above, gives the RGA part small

fractions from total computational budget of BRGA at the
initial stages of the evolutionary search to allow an
extensive exploration of the search space by the BGA part.

On the other hand, it increases gradually to allow the RGA
part to concentrate more on the exploitation of the
promising search space regions by the final stages of the
evolutionary search. Therefore, Κ and are the deceive

factors in dividing the total computational budget available
to BRGA between the BGA and the RGA parts.
So, when the RGA part completes its iteration budget,
BRGA stores the final population generated by RGA as

(Line 31). It starts the reverse population handover

process, or real-to-binary handover, since the
computational power switches back to the BGA part. By
comparing to , the handover framework has

been developed to process the following selection criteria:
(1). The mean performance of RGA part is better than or
equal to the mean performance of BGA part, i.e. logic in
Line 32 is true. This scenario can be true when true when
the RGA was successful in identifying an even better
quality solutions from the regions suggested as
“promising” by the BRGA part. So, the BRGA wants
from the BGA to continue the search towards these
regions. If this scenario happens, BRGA maximize the
influx of reverse migration of data from the RGA part
toward the BGA part (Line 33) and it directs the BGA
part to replace all of its member solution in (Line

35) by POP1 from the RGA part (Line 34).
(2). The mean performance of RGA part is slightly lags
behind the mean performance of BGA part, i.e. the logic
in Line 32 is false while the logic in Line 37 is true. This
scenario can be true when the BRGA approaches the
optimality regions. Here, the performance of both parts
becomes comparable from each others. However, here, the
RGA parts still fails in finding significantly better
solutions from the regions suggested as “promising” by
the BGA part and it shows signs of lagging. So, the
BRGA wants from the BGA parts to retain some of its old
population members and continue the exploration of the
search space. If this scenario happens, BRGA decreases
the influx of reverse migration from RGA part to the BGA
part (Line 38) and directs the BGA part to replace only
the worst quarter of its member’s solutions (Line 40) by
POP1 from the RGA part (Line 39). By increasing the
percentage of good members within , BRGA hopes

that can enhance the ability of the BGA part to find even
better promising regions within the search space.
(3). The mean performance of RGA part is lags behind

0. = Min();

1. = Max();

2. FOR i = 1: n

3. IF THEN

4. = - ;

5. END;

6. FOR j = 1:

7. (j,i) = N(-) + ;

8. END;

9. END;

Fig. 3 Random sampling pseudocode.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 43

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

the mean performance of BGA part, i.e. the logic in Lines
32 and 37 are false. This scenario can be frequently
happened at the initial stages of the evolutionary search.
Since, the BRGA is far from the optimality region there is
a very low chance for RGA part to find good solutions
within the regions suggested as “promising” by the BGA
part. So, BRGA becomes less interested in initiating data
exchange between the two parts since this process can
degrade the quality of solutions within . If this

situation happens, the BRGA stops the reveres migration
from the RGA part toward the BGA part. By starting from
the same un-updated , BRGA hopes to preserve the

quality of solutions within from the influx of low

quality members within .

4. Numerical Evaluation

In order to systematically evaluate the performance of
BRGA, we have followed an experimental procedure that
can be explained as follows.

4.1 Experimentation setup

The experimentation in EC suffers from the lacking of
standardized benchmark problems. The available ones
within the literature are usually based on small subset of
standard test problems. The empirical results are generally
confusing and limited such that the same algorithm
working well for a set of functions may not working well
for some other set of functions. Therefore, algorithms
should be evaluated more systematically by determining a
common termination criterion, size of problems,
initialization scheme and running time. So, the special
session on real-parameter optimization in CEC’2005
proposed a test suite of 25 benchmark functions, which
represent a step toward achieving this objective [16].
These functions and the proposed guidelines were
employed in our experiments. In addition, All the
experiments were programmed in MATLAB 7 and ran in
the same computer, Intel Celeron(R) 575 2GHZ, 3 GB
RAM, Windows Vista (SP2). On the other hand, we have
used Minitab 16 software was used for applying the
required statistical techniques.

4.2 Parameter tuning

The aim of the experiments in this phase is to pick up the
interactions between \algorithm performances against a
particular benchmark function within the suite by
identifying parameter configurations that maximize the
performance of the algorithm for that particular function.
In this study, we have adopted “experimental analysis of
search heuristics”, which is proposed by Bartz–Beielstein
[17]. It is a useful approach which utilizes design of
experiments and statistical testing techniques in
investigating how sensitive performance of an algorithm is
to parameter changes. In addition, it is more flexible and
requires fewer experimental runs when compared with
other approaches. Like Schaffer et. al. who proposed the
use of a complete factorial design experiment to study

control parameters of GA [18]. Or, Myers and Hancock
who proposed different experimental framework based on
factorial designs for the empirical modeling of GA [19]. In
section 5, we describe the details of the parameter tuning
procedure and discuss the obtained optimal parameter
configurations.

4.3 Investigating the quality

In order to judge the quality of improvement achieved by

our hybrid algorithm, comparison experiments were

conducted against the original BGA and RGA (UNDX)

over the CEC’2005 benchmark functions. The aim of the

experiments is to analyze the effectiveness and efficiency

performance of the BRGA. The conducted experiments

can be explained as follows.

4.3.1 Effectiveness experiments

To evaluate our algorithm Effectivity, or the ability of the
algorithm to achieve good performance over a wide range
of test problems, the experiments in this phase were run for
a fixed Number of Fitness Evaluation (MAX_FES = 1E+5)
or up to achieve a fixed tolerance. Table 1 shows the
descriptive statistics for the obtained errors from the
experiments. The error is computed as (Error = f(x) –f(x*)),
where f(x) is the best found solution by the algorithm,
while the f(x*) is the already known global optimum for a
particular benchmark function [16]. So, performance of the
algorithm can be analyzed from the following stand points:

a) Best solution found: It is obvious from the Table 1
that BRGA was able to locate solutions within the
specified accuracy levels defined by CEC’2005 in 7 cases
(F1-2, F4, F6-7, F12 and F15). The best found solutions
are in the vicinity of required accuracy level in 6 cases (F5,
F9-11, and F13-14). While the best found solutions for the
remaining functions are located far from the global optimal
solution.

b) Problem characteristics: The experimental results
show that the performance of BRGA interacts differently
with the underlying problem properties. Some of the
properties are greatly affect the performance. For example,
the benchmark contains functions with different condition
numbers (F1-3). The using of high condition number, as
the case of F3, greatly deteriorates algorithm performance
by increasing its convergence time to the global optimum.
The performance of the algorithm also deteriorates on the
function which uses high condition number matrix (F22)
compared with the function that uses orthogonal matrix
(F21). Moreover, BRGA performs better with continuous
function (F21) compared with non-continuous function
(F23). On the other hand, BRGA shows a little sensitivity
towards other properties. For example, the rotation of the
benchmark function has a very small affect on the
algorithm performance, since the mean performance is
comparable for functions without rotation (F9 and F15)
against functions with rotation (F10 and F16). In addition,
locating the global optimum on bounds, like the case of
F20 in comparison with F18, does not affect the

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 44

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

performance of the algorithms. The same is true for the
profile of the global optimum and initialization range.
Locating the global optimum in a narrow basin (F19)
compared with wide basin (F18) or locating the global
optimum within the initialization range (F24) compared
with locating it outside the initialization range (F25) has no
affect on the algorithm performance. Finally, the same is
true for the noise since the performance of BRGA for
functions without noise (F2 and F16) is similar to the
performance of BRGA with noisy functions (F4 and F17).

c) Comparison with BGA and RGA: To evaluate the
effectiveness of the proposed hybrid scheme in improving
the performance of its component algorithms, the original
BGA and RGA were run on the same benchmark functions
under similar experimental conditions with the
recommended parameter configurations. The obtained
results are reported in Table 1. When compared with BGA,
it is clear that BRGA outperforms BGA in obtaining better
quality solutions for all the functions. When compared
with RGA, it is obvious that BRGA found better solutions
for 19 functions (F3 and F5-F22). Both BRGA and RGA
found the same best solutions for 6 functions (F1-2, F4 and
F23-25). For these functions, both RGA and BRGA were
able to identify solutions within the required accuracy
levels for F1-2, while the performance is comparable for
F23-F25. However, RGA has a better mean performance
for F23, while BRGA has better robust performance for
F24-25. So, the results show that that both the proposed

hybrid scheme and the adopted parameter tuning procedure
were successful in improving the performance against its
component algorithms for CEC’2005 benchmark functions.

d) Comparison with other EAs: To evaluate the position
of BRGA within the literature of EAs, we compare the
performance of BRGA with some state-of-the-art EAs.
Table 2 compares the obtained results from the BRGA
experiments with some of EAs which has been testified
against CEC’2005 benchmark suite under similar
experimental conditions.
According to [20], steady-state Real parameter GA called
SPC-PNX has been successfully applied to several
nonlinear parameter estimation problems arising in Earth
Sciences. When compared with BRGA, BRGA
outperformed in 12 cases by identifying better best
solutions for F3, F6-8, F10, F12, F14-17, F21 and F25.
Both algorithms exhibit similar behavior in 10 cases when
they achieved same level of accuracy for F1-2 and F4,
while the performance is comparable in F9, F18-20 and
F22-24. SPC-PNX was able to identify better best
solutions only in 3 cases (F5, F11 and F13).
 On the other hand, Estimation of Distribution Algorithms
(EDAs) refer to a class of EAs which based on
probabilistic modeling instead of classical genetic
operators such as crossover or mutation. In [21] the
authors used EDAmvg, which employs a multivariate
Gaussian distribution and is therefore able to represent
correlation between variables in the selected individuals

Table 1: Error values achieved for problems 1-25 (10D)

F

BRGA UNDX bGA
Tolearnce

Best Mean Std Best Mean Std Best Mean Std

1 5.73E-07 8.28E-07 1.39E-07 3.32E-07 7.92E-07 1.80E-07 1.15E+04 2.19E+04 4.59E+03 1.00E-06

2 7.57E-07 9.39E-07 6.67E-08 5.91E-07 8.75E-07 1.16E-07 1.09E+04 2.99E+04 1.06E+04 1.00E-06

3 6.24E+02 2.43E+04 2.12E+04 6.35E+03 5.33E+04 5.01E+04 1.40E+08 4.41E+08 2.67E+08 1.00E-06

4 4.14E-07 8.34E-07 1.42E-07 6.62E-07 8.26E-06 2.37E-05 1.58E+04 3.90E+04 1.21E+04 1.00E-06

5 3.41E-01 1.69E+00 7.76E-01 5.88E-01 2.62E+00 2.51E+00 1.46E+04 2.04E+04 3.27E+03 1.00E-06

6 7.51E-03 3.32E+01 7.22E+01 9.87E+00 1.00E+02 1.11E+02 4.54E+08 7.88E+09 3.53E+09 0.01

7 7.62E-03 6.13E-02 4.74E-02 3.63E-01 7.34E-01 1.87E-01 4.23E+02 8.65E+02 2.93E+02 0.01

8 2.00E+01 2.01E+01 1.41E-01 2.02E+01 2.04E+01 7.72E-02 2.03E+01 2.04E+01 5.46E-02 0.01

9 9.95E-01 6.09E+00 2.79E+00 1.17E+01 2.04E+01 3.60E+00 8.89E+01 1.10E+02 1.16E+01 0.01

10 9.95E-01 3.85E+00 1.66E+00 1.54E+01 2.35E+01 3.62E+00 1.28E+02 1.78E+02 1.85E+01 0.01

11 3.86E-02 6.67E-01 5.15E-01 6.13E+00 7.54E+00 6.93E-01 8.08E+00 9.12E+00 5.61E-01 0.01

12 4.94E-03 3.28E+02 6.51E+02 7.96E+03 2.38E+04 6.70E+03 3.24E+03 1.05E+04 4.34E+03 0.01

13 3.50E-01 8.21E-01 3.45E-01 1.47E+00 2.08E+00 2.47E-01 2.28E+01 1.19E+02 9.31E+01 0.01

14 8.83E-01 2.47E+00 6.07E-01 2.81E+00 3.34E+00 1.59E-01 4.34E+00 4.74E+00 1.24E-01 0.01

15 9.53E-03 2.56E+02 1.39E+02 2.48E+02 3.40E+02 4.09E+01 3.70E+02 6.05E+02 1.26E+02 0.01

16 7.22E+01 9.52E+01 6.29E+00 1.08E+02 1.32E+02 8.80E+00 3.03E+02 3.53E+02 2.21E+01 0.01

17 4.15E+01 9.59E+01 1.42E+01 1.26E+02 1.47E+02 9.43E+00 3.45E+02 3.89E+02 2.81E+01 0.1

18 3.00E+02 4.20E+02 2.18E+02 3.03E+02 3.74E+02 1.35E+02 1.05E+03 1.07E+03 9.05E+00 0.1

19 3.00E+02 4.00E+02 2.04E+02 3.03E+02 3.95E+02 1.08E+02 1.06E+03 1.07E+03 9.47E+00 0.1

20 3.00E+02 3.60E+02 1.66E+02 3.05E+02 4.30E+02 1.66E+02 1.06E+03 1.07E+03 5.23E+00 0.1

21 2.00E+02 5.32E+02 1.57E+02 5.00E+02 5.18E+02 6.21E+01 1.47E+03 1.54E+03 2.45E+01 0.1

22 3.00E+02 6.53E+02 2.02E+02 3.03E+02 5.49E+02 2.22E+02 1.08E+03 1.13E+03 3.32E+01 0.1

23 5.59E+02 6.09E+02 1.36E+02 5.59E+02 5.61E+02 5.37E+00 1.43E+03 1.54E+03 3.45E+01 0.1

24 2.00E+02 2.00E+02 0.00E+00 2.00E+02 2.00E+02 1.45E-02 1.40E+03 1.43E+03 2.74E+01 0.1

25 2.00E+02 2.00E+02 0.00E+00 2.00E+02 2.00E+02 2.03E-02 1.29E+03 1.43E+03 4.10E+01 0.1

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 45

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

via the full covariance matrix of the model. When
compared with BRGA, BRGA outperformed in 13 cases
by identifying better best solutions for F7-11, F13-17, F21-
22 and F25. Both algorithms exhibit similar behavior in 8
cases when they achieved same level of accuracy for F1-2
and F4, while the performance is comparable in F18-20
and F23-24. However, EDAmvg was able to identify better
best solutions only in 4 cases (F3, F5-6 and F12).
Moreover, An evolutionary strategy with covariance
matrix adaptation (CMA-ES) [22] becomes popular as an
efficient tool for real parameter optimization. However, in
[22] the Mutation Step Co-evolution algorithm (coEVO)
does not use any covariance matrix, rather it co-evolves a
population of successful mutation steps used in previous
generations which substitute the probabilistic model (the
variances or the covariance matrix) used in ES. The new
population is then created by mutating the whole old
population, thus allowing the algorithm to perform the
search in several areas of the search space, and not only in
one area covered by the Gaussian cloud (as in the case of
CMA-ES). When compared with BRGA, BRGA
outperformed in 15 cases by identifying better best
solutions for F6-20 and F23. Both algorithms exhibit
similar behavior in 7 cases when they achieved same level
of accuracy for F1-2 and F4, while the performance is
comparable in F21-22 and F24-25. However, coEVO was
able to identify better best solutions only in 3 cases (F3, F5
and F23).

Finally, Memetic Algorithms (MAs) [23] refers to a class
of EAs that apply a separate Local Search (LS) process to
refine new individuals. In MAs, GAs are hybridized with
LS with aim of addressing the trade-off between the
exploration abilities of the GA, and the exploitation
abilities of the LS used. One commonly used formulation
of real coding MAs applies LS to members of the
population after recombination and mutation, with the aim
of exploiting the best search regions gathered during the
global sampling done by the RGA. In [23], the authors
used adaptive LS with a Steady-State Genetic Algorithm
(SSGA) in their Real Coded Memetic Algorithm (RCMA).
When compared with BRGA, BRGA outperformed in 13
cases by identifying better best solutions for F3, F6-8, F10,
F13, F15-18, F20-21 and F25. Both algorithms exhibit
similar behavior in 7 cases when they achieved same level
of accuracy for F1-2 and F4, while the performance is
comparable in F19 and F22-24. However, RCMA was able
to identify better best solutions only in 5 cases (F5, F9,
F11-12 and F14).

4.3.2 Efficiency experiments

The aim of the experiments in this phase is to evaluate
algorithm efficiency, or how competent our algorithm is in
using the available computational resources to come closer
to the specified solutions targets. Therefore, the
experiments in this phase were run until they reached a
predefined error tolerance or a maximum number of fitness
evaluation (1E+5). Since the fixed accuracy levels defined

Table 2: Error values achieved for problems 1-25 (10D)

F
BRGA SPC-PNX[20] EDAmvg[21] coEVO[22] RCMA [23]

Best Mean Best Mean Best Mean Best Mean Best Mean

1 5.73E-07 8.28E-07 6.49E-09 8.90E-09 0.00E+00 0.00E+00 4.60E-09 8.83E-09 9.87E-09 9.87E-09

2 7.57E-07 9.39E-07 8.74E-09 9.63E-09 0.00E+00 0.00E+00 5.00E-09 8.60E-09 9.94E-09 9.94E-09

3 6.24E+02 2.43E+04 7.75E+02 1.08E+05 0.00E+00 0.00E+00 5.67E-09 8.49E-09 7.21E+03 4.77E+04

4 4.14E-07 8.34E-07 7.69E-09 9.38E-09 0.00E+00 0.00E+00 6.13E-09 8.55E-09 8.77E-09 2.00E-08

5 3.41E-01 1.69E+00 7.94E-09 9.15E-09 1.97E-06 2.34E+02 9.17E-02 2.13E+00 2.96E-08 2.12E-02

6 7.51E-03 3.32E+01 1.86E-02 1.89E+01 0.00E+00 0.00E+00 1.27E+00 1.25E+01 4.06E-01 1.49E+00

7 7.62E-03 6.13E-02 9.86E-03 8.26E-02 3.94E-01 5.35E-01 1.02E-02 3.71E-02 2.22E-02 1.97E-01

8 2.00E+01 2.01E+01 2.08E+01 2.10E+01 2.02E+01 2.03E+01 2.01E+01 2.03E+01 2.01E+01 2.02E+01

9 9.95E-01 6.09E+00 9.95E-01 4.02E+00 2.34E+01 3.23E+01 8.99E+00 1.92E+01 8.10E-09 4.38E-01

10 9.95E-01 3.85E+00 1.99E+00 7.30E+00 2.47E+01 3.19E+01 1.50E+01 2.68E+01 3.04E+00 5.64E+00

11 3.86E-02 6.67E-01 3.00E-04 1.91E+00 3.75E+00 8.27E+00 6.78E+00 9.03E+00 1.14E-03 4.56E+00

12 4.94E-03 3.28E+02 3.91E+00 2.60E+02 0.00E+00 5.37E+01 2.66E+01 6.05E+02 1.18E-03 7.43E+01

13 3.50E-01 8.21E-01 3.49E-01 8.38E-01 1.59E+00 2.61E+00 4.69E-01 1.14E+00 3.81E-01 7.74E-01

14 8.83E-01 2.47E+00 1.39E+00 3.05E+00 2.92E+00 3.61E+00 3.26E+00 3.71E+00 6.84E-01 2.03E+00

15 9.53E-03 2.56E+02 6.32E+01 2.54E+02 3.34E+02 5.11E+02 1.37E+02 2.94E+02 5.69E+01 3.11E+02

16 7.22E+01 9.52E+01 9.11E+01 1.10E+02 1.32E+02 1.64E+02 1.23E+02 1.77E+02 8.96E+01 1.02E+02

17 4.15E+01 9.59E+01 9.89E+01 1.19E+02 1.50E+02 1.83E+02 1.45E+02 2.12E+02 1.04E+02 1.27E+02

18 3.00E+02 4.20E+02 3.00E+02 4.40E+02 3.00E+02 4.20E+02 8.00E+02 9.02E+02 8.00E+02 8.03E+02

19 3.00E+02 4.00E+02 3.00E+02 3.80E+02 3.00E+02 4.00E+02 5.00E+02 8.45E+02 3.00E+02 7.63E+02

20 3.00E+02 3.60E+02 3.00E+02 4.40E+02 3.00E+02 3.80E+02 5.00E+02 8.63E+02 8.00E+02 8.00E+02

21 2.00E+02 5.32E+02 3.00E+02 6.80E+02 5.00E+02 5.00E+02 2.00E+02 6.35E+02 5.00E+02 7.22E+02

22 3.00E+02 6.53E+02 3.00E+02 7.49E+02 7.66E+02 7.73E+02 3.00E+02 7.79E+02 3.00E+02 6.71E+02

23 5.59E+02 6.09E+02 5.59E+02 5.76E+02 5.59E+02 5.59E+02 4.25E+02 8.35E+02 5.59E+02 9.27E+02

24 2.00E+02 2.00E+02 2.00E+02 2.00E+02 2.00E+02 2.00E+02 2.00E+02 3.14E+02 2.00E+02 2.24E+02

25 2.00E+02 2.00E+02 4.06E+02 4.06E+02 3.64E+02 3.76E+02 2.00E+02 2.57E+02 2.02E+02 7.92E+00

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 46

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

by CEC’2005 are too strict, we defined a more flexible
error tolerance levels derived from the best found solutions
shown in Table 1. The fixed error tolerances in addition to
the empirical results of this phase are shown in Table 3.
The competition in this phase is limited to RGA, since it is
the only competing algorithm which showed competitive
results from the previous phase. Efficiency rates in
addition to descriptive statistics of FES to reach the fixed
tolerance are used as metrics to evaluate the efficiency of
the competing algorithms. Efficiency rate is a quality-
effort metric defined by Hillstrom [24]. It is used to
measure how efficient an algorithm is in progress from the
starting point using the available computational resources.
It can be described as follows:

 (13)

Here, and are the mean of best initial and final
solutions found by algorithm, f* is the known global

optimum and is mean time elapsed by the algorithm to
reach the final solution. Smaller efficiency rates indicate
higher efficiency in using the computational resources to
reach high quality solutions.

It is clear from Table 3 that BRGA outperforms in term of
efficiency rates in all the cases. It should be noted that
BRGA gains better efficiency rates even for cases when it
has a comparable quality performance to the UNDX, as the
cases of F1-2, F4 and F23-25. This is an indication that the
good performance for BRGA in term of efficiency rates is
resulted not only form it ability in finding a better solutions

but also from that fact that it has a better time complexity
when compared with RGA.

5. Parameter Tuning Procedure

In [17], Bartz–Beielstein proposed a general heuristic
procedure for parameter tuning that relies on techniques
from statistical testing, design of experiments and
Response Surface Methodology (RSM). The proposed
framework consists from three steps of screening,
modeling and optimization. The aim in the screening phase
is to reduce the initial list of parameters by dropping out
statistically insignificant parameters from the tuning
procedure. Screening experiments were implemented using
2-levels Plackett-Burman design (P-B design) experiments
[25], which are efficient in estimating the main effects of
all factors at the same precision. Regression analysis in
addition to graphical methods like Normal probability plot
and the Pareto plot of the standardized effects were used to
separate out the significant factors which needs further
investigation in the subsequent steps. Then, a suitable local
model (first-order or second-order) is usually built to
approximate the shape of the response surface within the
region of interest in the modeling step. This model is
essential in guiding the search for optimal parameter
values in the subsequent optimization step. In the case of
first-order model, the direction of improvement was
determined by implementing line search in the direction of
the “path of the steepest descent”, i.e. it is a minimization
problem. If no further improvement along the path of the
steepest descent was possible, we explored the area by

Table 3: The number of fitness evaluations to achieve the requested accuracy levels

F
relaxed

tolerance

BRGA UNDX

Min Mean Std Eff. Rate Min Mean Std Eff. Rate

1 1.00E-02 4692 5958.48 724.08017 11.653693 16178 17547.92 819.13867 4.2658297

2 1.00E-02 8100 11491.28 1822.9161 4.8413387 32090 43700.24 3968.0541 1.6133544

3 6.24E+02 80013 99216.68 4000.7667 0.6080307 100010 100010 0 0.3828527

4 1.00E-02 29056 41490.88 6759.214 2.2796215 40202 53703.44 7536.5416 1.2605565

5 4.00E-01 85013 99415.88 3000.6 0.6693871 100010 100010 0 0.3736455

6 1.00E-02 75222 96508.44 7483.2521 1.1341429 100020 100020 0 0.783671

7 1.00E-02 69589 98830.6 6092 0.5052535 100020 100020 0 0.3562993

8 20 100002 100003.44 0.8205689 0.0034568 100020 100020 0 0.001073

9 1 87026 99510.8 2601 0.2111119 100020 100020 0 0.1061642

10 1 99556 100032.16 99.2 0.2098578 100020 100020 0 0.1101683

11 0.05 92286 99678.36 1548.8857 0.0667475 100020 100020 0 0.015342

12 0.01 56070 96523.68 11415.636 0.2988972 100020 100020 0 0.0781164

13 0.5 35452 93427.2 17126.969 0.2773496 100020 100020 0 0.1580582

14 1 90053 99654.28 2000.2676 0.0368567 100020 100020 0 0.0135691

15 0.02 95022 99823.92 1000.4 0.0147541 100020 100020 0 0.0041089

16 73 94013 99773.96 1200.2 0.0119735 100020 100020 0 0.006876

17 41.51 97009 99889.96 600.2 0.0204165 100020 100020 0 0.0068924

18 300.01 52553 78340.92 21319.181 0.0123079 100020 100020 0 0.0060959

19 300.01 38400 74839.36 27042.861 0.0139932 100020 100020 0 0.0053907

20 300.01 56432 75880.08 15268.06 0.0144898 100020 100020 0 0.0042801

21 200.01 90030 99633.84 2000.8 0.0080166 100020 100020 0 0.0038307

22 300.01 68194 95077.2 10537.892 0.0069542 100020 100020 0 0.001187

23 559.01 93050 99773.84 1400.8 0.0052568 97019 99899.96 600.2 0.0040857

24 200.01 22516 26127.04 2788.9475 0.0762959 94140 99391.2 1459.3204 0.0069285

25 200.01 22958 26773.68 1477.9093 0.0732316 97524 99920.16 499.2 0.0107656

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 47

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

fitting another local first-order model and obtain a new
direction for the steepest descent. This step was repeated
until the expected optimum area is found (if the response
surface is unimodal). Here, the linear model is inadequate
and shows significant lack-of-fit. Therefore, 2- levels
central composite designs experiments were conducted to
fit second-order regression models [26]. From this model,
the optimal values for the parameters were deduced using
graphical methods like response surface plots and contour
plots. On the other hand, it is possible for the tuning
procedure to be terminated by the first-order model when
the rate of improvement becomes small or insignificant.
Finally, it should be noted that the underlying assumptions
of the obtained regression models in the above mentioned
stages were verified using the appropriate graphical and
formal statistical approaches. On the other hand, we have
used Box-Cox power transformation to correct the
obtained dataset for normality assumption [26].
We have identified an initial list of 12 parameters as shown
in Table 4. We assume that these can influence the
performance of BRGA. These parameters can be explained
as follows.

1) BGA part parameters; BGA part has three parameters
that can influence the performance of BRGA, which are
selection pressure (S), mutation probability (Pm) and
number of assigned bits per gene or variable (Nbits).
Selection pressure (S) is inversely affects crossover rate
(Pcross) as shown in Eq. (8). The crossover operator is
considered by many researchers to be at least very
important for GA. Different values have been found to be
optimal parameter settings for Pcross as shown in Table 4.
On the other hand, it has been suggested by many
researchers [27] that a good performance for GA can be
guaranteed by using mutation operator with low mutation
probability. Table 4 shows different values recommended
for mutation probability. Finally, the value of Nbits can be
adjusted according to the problem domain of the specific
problem at hand. However, identifying an optimal
parameter value is important since it affects the quality-
effort balance of the algorithm. By increasing Nbits, we can
enhance the ability of the BGA part to find better
resolution solutions (according to the Eq. (3)), however

such process can also increase time overhead of the
algorithm itself.

2) RGA part parameters; from the RGA part parameters,
we selected and Ncross to be included in the parameter

tuning procedure. According to [11] plays a role in

preserving the statistical characteristics of the population
distribution. The authors showed though theoretical
analysis and numerical experiments that the optimal value
for this parameter is 0.5 for UNDX algorithm. However,
we would like to investigate how this value can be
influenced by the synergetic effects between the RGA and
BGA parts within BRGA. On the other hand, Ncross is that
kind of parameters that affects both quality and time
complexity of the algorithm. Increasing Ncross can enhance
the ability of UNDX in finding better solution; however it
also increases the time overhead of the algorithm. Different
values have been used for Ncross within the literature as
shown in Table 4.
3) Population size: it is one of the most important
parameters that can affect the performance and time
complexity of the GAs in general. According to analytical
and experimental investigation done by Goldberg [28],
selecting the suitable population sizing is essential to
guarantee the success of genetic search in BGAs. However,
different population size has been proposed as good
settings for BGA as shown in Table 4. For UNDX, on the
other hand, the author in [11] used different population
sizing of 50 for unimodal functions and 300 for
multimodal functions.
4) Hybrid scheme parameters: the hybrid scheme has 6
parameters that can affect the ability of the hybrid scheme
in regulating the synergetic effects between the cooperative
algorithms. Since these parameters are novel ones, it is
necessary to include them into parameter tuning procedure
to gain some insight about optimal parameters range and
the significance of these parameters to BRGA performance.
In the experiments of parameter tuning, we usually located
the initial range for these parameters around the values
shown in the Table 4.

Table 4: Initial list of the parameters

Parameter Abbreviation Type Recommended values

BGA part parameters

S Real 0.5 [10], (Pcross = 0.95) [27]

Pm Real 0.15[10], 0.01[27]

Nbits Integer Depends on specific problems at hand.

RGA part parameters
Sigma () real 0.5 [11]

Ncross Integer 5 [11]

Population size POPsize Discrete (300,50) [11], 30[10]

Hybrid scheme parameter

Lamda_i (Γi) Integer initial range located around 50

Lamda_s (Γs) Integer initial range located around

Κi Integer initial range located around

Κs Integer initial range located around

Omega (Φ) Real initial range located around 0.05

Phi (Ω) Real initial range located around 0.3

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 48

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

So, Table 5 reports the obtained optimal parameter
configurations by the tuning procedure for the benchmark
functions. On the other hand, Table 6 summarizes the main
outcomes the tuning procedure. It reports the cost of tuning
in terms of FES and the shape of the response surface at
the termination of tuning procedure. The most significant
parameters refer to those which persist up to the
termination of the tuning procedure. In case of termination
at first-order model, only two of the most influential and
statistically significant parameters were reported. Finally,
the shape of response surface at optimal configurations in
case of second order model is illustrated in Fig. 4 (A&B).
So, it is possible to argue that the performance of the
BRGA is affected by the underlying problem
characteristics. However, the parameter tuning procedure
plays a vital role in picking up the interaction between the
performances of BRGA against the specific problems at
hand. By identifying the optimal values for control
parameter, it was possible to secure a good performance
for BRGA against a large spectrum of problems within the
benchmark suite.
Moreover, the parameter tuning procedure gives us
valuable insights into the behaviour of the BRGA. Taken
Tables 5 and 6 into consideration, it can be briefly
summarized as the following.
1) It is well known that conventional GAs performs
poorly with small population sizes due to insufficient
information processing. However, the results of parameter
tuning procedure indicate that better performance for
BRGA can be obtained at smaller population size. So,
BRGA behavior from this point is similar to that of Micro-

genetic algorithm.
2) Due to the synergetic affects, the RGA parts exhibits
different behavior when with normal UNDX algorithm. In
UNDX, the value of σε plays a vital role in preserving the
statistical characteristics of the new generations. So, it has
been set to 0.5 [11]. However, the tuning procedure reveals
that the RGA part acts as a population widening for some
functions (the value of σε greater than 0.5).
3) The results of the parameter tuning procedure confirm
that the mutation-crossover scheme with relatively small
mutation rate and moderate crossover rate is beneficial for
the BGA part. However, there exceptions. The value of
mutation rate is extremely small for F12, while the value of
crossover rate is relatively large (or relatively small S
values) for F1-2. On the other hand, the effect of resolution
(or Nbits) was critical for the performance of BRGA
especially for F3,F5-7,F9-11, F13-15 and F17 as it is clear
from Table 6.
4) The results of the parameter tuning procedure are
important in clarifying the region of interest for the hybrid
scheme parameters, which are newly proposed ones. It is
oblivious from Table 6 that the parameters which
responsible on regulating the frequency of population
handover (Ki and Ks) has been critical for the performance
of BRGA in many cases. On the other hand, the effects of
parameters which regulate the budget of RGA part (Гi and
Гs) have been evident especially for F2-3, F7. In addition,
the relatively high value for Φ associated with low value of
Ω suggests that the RGA part is less stringent to receive
members from the BGA part at initial stages of the search,
while it becomes more stringent at the final stages of the

Table 5: Optimal parameters configurations

F
Hybrid Scheme Parameters

POPsize
BGA parameters RGA Parameters

Γi Γs Κi Κs Φ Ω Pm S Nbits Ncross σξ

1 40 44 46 30 0.06924 0.3 8 0.15 0.388394 13 15 0.9

2 50 44 43 49 0.05 0.3 4 0.15 0.308664 16 9 1.5

3 45 47 85 48 0.13869 0.195744 4 0.145472 0.432845 17 16 1.05

4 30 30 30 30 0.05 0.3 20 0.15 0.5 10 30 0.5

5 30 32 34 30 0.05 0.3 20 0.15 0.5 10 33 0.6

6 30 37 43 35 0.068227 0.222166 20 0.15 0.5 16 12 0.866162

7 30 22 61 74 0.05 0.137252 20 0.31498 0.5 19 30 0.689394

8 30 30 36 38 0.05 0.3 4 0.126245 0.443884 10 23 0.5

9 30 30 40 59 0.000347 0.3 20 0.15 0.5 5 30 0.5

10 30 30 30 16 0.05 0.3 44 0.15 0.404154 4 29 0.491662

11 30 30 12 30 0.05 0.3 36 0.15 0.5 4 22 0.5

12 27 30 30 84 0.043126 0.3 4 0.023659 0.426096 10 30 0.932241

13 30 30 84 30 0.05 0.3 20 0.15 0.5 12 30 0.430303

14 30 51 50 13 0.082524 0.3 16 0.15 0.5 14 30 0.5

15 30 35 30 34 0.05 0.3 52 0.130237 0.5 9 30 0.5

16 30 30 26 30 0.05 0.3 44 0.15 0.5 3 18 0.5

17 30 30 22 30 0.5 0.3 32 0.15 0.5 5 33 0.468097

18 30 30 55 30 0.05 0.3 40 0.07401 0.5 8 30 1

19 30 30 60 16 0.05 0.3 24 0.15 0.5 6 44 1

20 30 30 30 30 0.05 0.3 36 0.15 0.5 6 32 1.15985

21 30 30 30 26 0.05 0.3 52 0.15 0.5 6 18 0.774659

22 30 58 70 30 0.05 0.3 52 0.15 0.5 8 30 0.723715

23 30 30 30 30 0.105266 0.3 56 0.15 0.5 6 30 0.790051

24 33 30 34 30 0.05 0.3 32 0.15 0.5 6 30 0.54146

25 30 32 34 32 0.05 0.3 32 0.15 0.5 6 30 0.571519

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 49

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

evolutionary search. This relation has been critical for the
performance of BRGA especially for F3, F6 and F9.
Finally, it is evident that the parameter tuning procedure is
computationally an expensive one. However, the payoff of
this cost is the optimal control values and the insight into
the behavior of the algorithm. BRGA is a stochastic
approach and hybrid in nature. So, it is extremely difficult
to use the formal methods to analyze the behavior of the
BRGA or to predict the optimal values for the control
parameters. Taking the limitation of the formal methods
into consideration, it is even more difficult to predict the
changes in the behavior of algorithm in response to the
changes in the underlying problem characteristics.

6. Conclusion and Future Work

BRGA is a recent hybrid approach that relies on a
parameterized hybrid scheme to share the computational
power and control the interactions between two
cooperative versions of GAs (BGA and RGA). In this
article, we conducted experimental investigation to
evaluate the performance of BRGA using CEC’2005
benchmark function. The experimental results showed that
BRGA succeeded in locating the global optimum or
approaching the vicinity of it for 13 problems. The most
challenging problems for performance of BRGA are those
which uses high condition number, high condition number
matrix and non-continues problems. On the other hand,
BRGA shows a little sensitivity toward characteristics like
noise, rotation, locating global optimum on bounds or

outside initialization regions or locating it in challenging
profiles. When compared with BGA, BRGA outperforms
in all the cases. When compared with RGA, BRGA
showed better quality and time performance for majority of
the cases. The results are an indication that the adopted
hybrid scheme was successful improving the performance
of BGA and RGA components against the benchmark
functions. Moreover, the experimental results showed that
BRGA has a superior performance when compared with
other state-of-the-art EAs that had been testified on the
same benchmark suite under similar experimental
conditions. In addition, the outcomes of parameter tuning
procedure confirmed that BRGA is efficient in using
memory since it uses small population sizes. Finally, the
implemented parameter tuning procedure was
computationally expensive. However, it was effective in
identifying optimal parameter settings which secures a
good performance for BRGA over a broad spectrum of the
benchmark functions. Most importantly, it sheds some
lights on the behavior and the internal mechanisms of
BRGA.
Important points within or current research agenda
includes extending the algorithm to the constrained
optimization problems by incorporating appropriate
constraints handling techniques and applying it to complex
real-world problems like the resource allocation problem
in cloud platforms, which is a part of our research agenda
[29].Another possible directions for future work includes
investigating the effectiveness of the hybrid scheme when
the BGA part is implemented by more advanced BGAs
versions and reducing the number of hybrid scheme
parameters by fixing some of them or by introducing more
innovative adaptive schemes.

Acknowledgments

We would like to express my sincere gratitude to the
anonymous reviewers for their efforts and comments,
which help considerably in improving the quality of this
paper. Moreover, this work is supported by KAKENHI
(No.22500196), Japan Society for the Promotion of
Science.

References
[1] O. Abdul-Rahman, M. Munetomo and K. Akama, “An

Adaptive Resolution Hybrid Binary-Real Coded Genetic

Algorithm”, Proc.of the 16th International Symposium on

Artificial Life and Robotics (AROB 16th ’ 11), Jan.

2011,pp. 359-362.Japan.
[2] O. Abdul-Rahman, M. Munetomo and K. Akama, “An

adaptive resolution hybrid binary-real coded genetic
algorithm”, Journal of Artificial Life and Robotics, Springer,
Vol. 16(1), 2011, pp. 121-124.

[3] K. Krishnakumar, R. Swaminathan, S. Garg and S.
Narayanaswamy, “Solving large parameter optimization on
problems using genetic algorithms”, Proc. of the Guidance,
Navigation, and Control Conference, 1995, pp.449-460.

[4] M. Arakawa and I. Hagiwara, “Development of adaptive real
range (ARRange) genetic algorithms”, JSME Intl. J., Series
C, Vol. 41(4), 1998, pp. 969-977.

Table 6: Outcomes of parameter tuning procedure

F
Most significant

parameters

Response

surface at

Termination

Cost (FES)

1 Nbits, σξ first-order 4.00E+06

2 σξ , Ncross, Γi,Ki second-order 1.27E+07

3 σξ , Ncross, Γs,Φ, Nbits second-order 1.27E+07

4 Pm, POPsize, σξ, Ki second-order 6.98E+06

5
σξ , Ncross, POPsize,

Nbits,Ki
second-order 7.10E+06

6 σξ ,Ω, Ncross, Nbits second-order 6.05E+06

7 σξ ,Nbits, Pm, Γs, Ks second-order 2.00E+07

8 POPsize, Ks first-order 4.10E+06

9 Nbits, Ks, Ki, Φ second-order 1.43E+07

10 POPsize, Nbits, Ks second-order 2.55E+07

11 POPsize, Ncross, Nbits, Ki second-order 1.43E+07

12 σξ , Pm, Ks second-order 1.11E+07

13 σξ , Nbits, Ki second-order 1.20E+07

14 POPsize, Nbits, Γs first-order 1.26E+07

15 POPsize, Nbits first-order 2.25E+07

16 POPsize, Ncross, Ki second-order 1.46E+07

17 σξ , POPsize, Ncross, Nbits second-order 1.74E+07

18 σξ ,Ki first-order 1.48E+07

19 σξ ,Ncross second-order 1.39E+07

20 σξ ,Ncross, POPsize second-order 1.60E+07

21 σξ ,POPsize second-order 4.23E+08

22 σξ ,POPsize second-order 1.29E+07

23 σξ ,POPsize first-order 1.03E+07

24 σξ ,POPsize first-order 1.18E+07

25 σξ ,POPsize first-order 1.18E+07

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 50

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

[5] A. Munawar, M.Wahib, M. Munetomo and K. Akama,

2.00.9

1.5

1.0

1.1

1.2

5.0 1.0
7.5

10.0
12.5

Y1= Y^(5/100)

SG

NX

Lamda_i 50

Ki 43

Nbits 16

Hold Values

Surface Plot of Y1 vs Sigma, Ncross

F2

25

20

12

13

15

14

0.5

15

10
1.0

1.5

Y1 = ln(Y)

Ncross

Sigma

Lamda_s 47

Omega 0.1387

Nbits 17

Hold Values

Surface Plot of Y1 vs Ncross, Sigma

F3

0.20

1.3 0.15

1.4

1.5

0
10 0.10

20
30

Y1 = Y^(6/100)

Pm

POPsize

Ki 30

Sigma 0.5

Hold Values

Surface Plot of Y1 vs Pm, POPsize

F4

50

40
0.2

0.4

30

0.6

0.8

0.4 20
0.6

0.8

Y1 = Y^-(1/4)

Ncross

Sigma

Ki 34

POPsize 20

Nbits 10

Hold Values

Surface Plot of Y1 vs Ncross, Sigma

F5

1.0

0.8
0.3

0.4

0.6

0.5

0.1

0.6

0.2 0.4
0.3

0.4

Y1 = Y^(-1/4)

Sigma

Omega

Nbits 11

Ncross 25

Hold Values

Surface Plot of Y1 vs Sigma,Omega

F6

25

200.85

0.90

15

0.95

0.5 10
1.0

1.5

Y1 = Y^(2/5)

Nbits

Sigma

Lamda_s 45

Ks 52

Pm 0.2100

Hold Values

Surface Plot of Y1 vs Nbits, Sigma

F7

15

1.95

10

2.00

2.05

2.10

40
60 5

80

Y1 = Y^(1/2)

Nbits

Ks

Ki 40

Phi 0.0003468

Hold Values

Surface Plot of Y1 vs Nbits, Ks

F9

60

50
2.0

2.5

40

3.0

3.5

2 30
4

6

Y1 = Y^(1/2)

POPsize

Nbits

Ks 16

Hold Values

Surface Plot of Y1 vs POPsize, Nbits

F10

Fig. 4-A Second-order performance empirical models at optimal parameters configurations.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 51

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

“Solving extremely difficult MINLP problems using

30
0.8

0.9

20

1.0

20

1.1

30
40 10

50

Y1 = Y^(1/4)

Ncross

POPsize

Ki 12

Nbits 4

Hold Values

Surface Plot of Y1 vs Ncross, POPsize

F11

0.05

0.040.0

2.5

0.03

5.0

7.5

0.50
0.75 0.02

1.00
1.25

Y1 = ln(Y)

Pm

Sigma

Ks 84

Hold Values

Surface Plot of Y1 vs Pm, Sigma

F12

12

9
1.0

1.2

6

1.4

1.6

0.5 3
1.0

1.5

Y1 = Y^(1/2)

Nbits

Sigma

Ki 84

Hold Values

Surface Plot of Y1 vs Nbits, Sigma

F13

50

4090

100

30
20

110

30 2040
50

Y1 = Y

POPsize

Ncross

Ki 26

Hold Values

Surface Plot of Y1 vs POPsize, Ncross

F16

0.6

0.00002

0.00004

0.00006

0.4

0.00008

20
40 0.2

60

Y1 = Y^(-2)

Sigma

POPsize

Nbits 5

Ncross 33

Hold Values

Surface Plot of Y1 vs Sigma, POPsize

F17

1.5

0.000004

0.000006

1.0

0.000008

0.000010

20
40 0.5

60

Y1 = Y^(-2)

Sigma

Ncross

Surface Plot of Y1 vs Sigma, Ncross

F19

1.5

300
1.0

400

500

600

40
60 0.5

80
100

Y1 = Y

Sigma

Ncross

POPsize 36

Hold Values

Surface Plot of Y1 vs Sigma, Ncross

F20

1.0

0.80.035

0.040

0.6

0.045

20
30 0.4

40
50

Y1 = Y^(-1/2)

Sigma

POPsize

Ncross 35

Hold Values

Surface Plot of Y1 vs Sigma, POPsize

F21

1.0

0.8

2.4000E+11

2.7000E+11

3.0000E+11

0.6
20

3.3000E+11

40 0.4
60

80

Y1 = Y^(4)

Sigma

POPsize

Surface Plot of Y1 vs Sigma, POPsize

F22

Fig. 4-B Second-order performance empirical models at optimal parameters configurations.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 52

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

[5] Munawar, M.Wahib, M. Munetomo and K. Akama, “Solving
extremely difficult MINLP problems using Adaptive
Resolution micro-GA with Tabu Search”, Proc. of the
Learning and Intelligent Optimization (LION5), Lecture
Notes in Computer Science 6683, Springer (2011).

[6] P Preux and E G Talbi, “Towards hybrid evolutionary
algorithms”, International Transactions in Operational
Research, Vol. 6(6), 1999, pp. 557-570.

[7] D. Barrios, A. Carrascal, D. Manrique, J. Ríos, “Cooperative
binary real coded genetic algorithms for generating and
adapting artificial neural networks”, Neural Computing and
Applications, Vol. 12, 2003, pp. 49-60.

[8] S. Achiche, L. Baron and M. Balazinski, Real/binary-like
coded genetic algorithm to automatically generate fuzzy
knowledge bases, Proc. of 4th International Conference on
Control and Automation, ICCA '03, 2003, pp. 799 – 803.

[9] D. E. Goldberg, The Design of Innovation: Lessons from and
for Competent Genetic Algorithm, Springer: Kluwer
Academic Publishers, 2002.

[10] R. Haupt, and S. Haupt, Practical Genetic Algorithms,
NewYork; Wiley-Interscience, 1998.

[11] I. Ono and S. Kobayashi, “A real-coded genetic algorithm
for function optimization using unimodal normal distribution
crossover”, Proc. of the 7th ICGA, 1997, pp 246–253.

[12] H. Satoh, M. Yamamura, and S. Kobayashi, “Minimal
generation gap model for gas considering both exploration
and exploitation”, Proc. of the IIZUKA: Methodologies for
the Conception, Design and Application of Intelligent
Systems, 1996, pp. 494–497.

[13] L.J. Eshelman and J.D. Schaffer, “Real-Coded Genetic
Algorithms and Interval-Schemata, Foundations of Genetic
Algorithms 2”, 1993, pp. 187-202.

[14] F. Herrera, F. Herrera and E. Herrera-viedma, E. Herrera-
viedma, M. Lozano, M. Lozano, J. L. Verdegay and J. L.
Verdega, “Fuzzy tools to improve genetic algorithms”, Proc.
of the Second European Congress on Intelligent Techniques
and Soft Computing, 1994, pp. 1532- 1539.

[15] K. Deb and R. B. Agrawal, “Simulated binary crossover for
continuous search space”, Complex Systems, Vol. 9, 1995,
pp. 115–148.

[16] P. N. Suganthan1, N. Hansen, J. J. Liang, K. Deb, Y. P.
Chen, A. Auger et. al., “Problem Definitions and Evaluation
Criteria for the CEC 2005 Special Session on Real-Parameter
Optimization”, Technical Report, Nanyang Technological
University, Singapore, May 2005 and KanGAL Report
#2005005, IIT Kanpur, India,
http://www.ntu.edu.sg/home/EPNSugan/,Last access on
2011.08.21.

[17] T. Bartz-Beielstein, “Experimental Research in Evolutionary
Computation: The New Experimentalism”, Natural
Computing Series, Springer, 2006.

[18] J. D. Schaffer, R. A. Caruana, L. Eshelman, and R. Das. “A
Study of Control Parameters Affecting Online Performance
of Genetic Algorithms for Function Optimization”, In J. D.
Schaffer, editor, Proceedings of the Third International
Conference on Genetic Algorithms, San Mateo, CA, 1989.
Morgan Kaufman.

[19] R. Myers and E.R. Hancock, “Empirical Modelling of
Genetic Algorithms”. Evolutionary Computation, Vol. 9(4),
2001, pp.461–493.

[20] P.J. Ballester, J. Stephenson, J.N. Carter and K. Gallagher,
“Real-Parameter Optimization Performance Study on the
CEC-2005 benchmark with SPC-PNX”, Proc. of IEEE

Congress on Evolutionary Computation (CEC’2005), Sept.
2005, pp. 498 – 505, Vol.1, Edinburgh, Scotland.

[21] B. Yuan, and M. Gallagher, “Experimental Results for the
Special Session on Real-Parameter Optimization at CEC
2005: A Simple, Continuous EDA”, Proc. of IEEE Congress
on Evolutionary Computation (CEC’2005), Sept. 2005, pp.
1792 - 1799, Vol.2, Edinburgh, Scotland.

[22] P. Posik, “Real Parameter Optimization Using Mutation
Step Co-evolution”, Proc. of IEEE Congress on Evolutionary
Computation (CEC’2005), Sept. 2005, pp. 872 – 879, Vol.1,
Edinburgh, Scotland.

 [23] D. Molina, F. Herrera, and M. Lozano, “Adaptive Local
Search Parameters for Real-Coded Memetic Algorithms”,
Proc. of IEEE Congress on Evolutionary Computation
(CEC’2005), Sept. 2005, pp. 888 - 895, Vol.1, Edinburgh,
Scotland.

[24] K. E. Hillstrom, “A Simulation Test Approach to The
Evaluation of Nonlinearoptimization Algorithms”, ACM
Transactions on Mathematical Software, Vol. 3(4), 1977,pp.
305– 315.

[25] J. Antony, Design of Experiments for Engineers and
Scientists, Butterworth-Heinemann:Elsevier Science &
Technology Books, October 2003.

[26] D. C. Montgomery, Design and Analysis of Experiments,
USA: Wiley, 7th ed., 2008.

[27] R. Salomon, “Reevaluating genetic algorithm performance
under coordinate rotation of benchmark functions - a survey
of some theoretical and practical aspects of genetic
algorithms”, Journal of BioSystems,Vol. 39, 1995, pp. 263-
278.

[28] D. E. Goldberg, Genetic Algorithms in Search,
Optimization, and Machine Learning, Addison-Wesley
Professional, January 1989.

[29] O. Abdul-Rahman, M. Munetomo and K. Akama, “Multi-
level autonomic architecture for the management of
virtualized application environments in cloud platforms”,
Proc. of 2011 IEEE International Conference on Cloud
Computing, CLOUD 2011, Washington, USA, 2011, pp.
754-755.

Omar Abdul-Rahman received the B.Sc. and the M.Sc. from the
Department of Electrical & Electronic Engineering, University of
Technology, Baghdad, Iraq in 2004 and 2006 respectively.
Currently, he is pursuing PhD degree in Information Technology,
Hokkaido University under Japanese government scholarship
(MEXT). His current research interests include genetic algorithms,
evolutionary computation, multiobjective optimization and cloud
computing. .

Masaharu Munetomo received the PhD in information
engineering from graduate school of engineering, Hokkaido
University in 1996. From 1998 to 1999, he joined Illinois Genetic
Algorithms Laboratory (IlliGAL), university of Illinois at Urbana-
Champaign as a visiting scholar. Since 1999, he works for
Hokkaido University as an associate professor. He also engaged
in designing Hokkaido university academic cloud at information
initiative center of the university.

Kiyoshi Akama received the PhD in control engineering from
Tokyo Institute of Technology in 1989. Now he works as a
professor at Information Systems Design Laboratory, Division of
Large Scale Computing Systems, Information Initiative Center,
Hokkaido University, Japan. His research interests include
automatic program construction, logical problem solving,
equivalent transformation computation model, and artificial
intelligence.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 53

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

