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Abstract 
Genetic algorithms (GAs) are vital members within the family 

biologically inspired algorithms. It has been proven that the 

performance of GAs is largely affected by the type of encoding 

schemes used to encode optimization problems. Binary and real 

encoding schemes are the most popular ones. However, it is still 

controversial to decide the superiority of one of them for GAs 

performance. Therefore, we have recently proposed binary-real 

coded GA (BRGA) that has the ability to use both encoding 

schemes at the same time. BRGA relies on a parameterized 

hybrid scheme to share the computational power and coordinate 

the cooperation between binary coded GA (BGA) and real coded 

GA (RGA). In this article, we use CEC’2005 benchmark suite of 

25 functions to analyze quality and time performance of BRGA 

and in comparison with original binary and real coded 

component GAs. To demonstrate the performance of BRGA, we 

compare it with the performance of some other EAs from the 

literature. In addition, we implement a robust parameter tuning 

procedure that relies on techniques from statistical testing, design 

of experiments and Response Surface Methodology (RSM) to 

estimate the optimal values for control parameters that can secure 

a good performance for BRGA against specific problems at hand.  

Keywords: Binary coded GA(BGA), Real coded GA(RGA), 

Hybrid Scheme, Design of Experiments. 

1. Introduction 

Genetic algorithms (GAs) are efficient search 
metaheuristics that mimic natural evolution and play an 
increasingly important role in a variety of fields and 
applications like bioinformatics, computational science, 
engineering, economics, chemistry, manufacturing and 
other fields. In order to employ GAs effectively, the 
optimization problem should be encoded by an appropriate 
encoding scheme.  A variety of encoding schemes are 
available within the literature; however, binary and real (or 

floating point) encoding schemes are still the most popular 
among researchers and widely employed in a variety of 
applications.  
Theoretical and empirical investigations confirmed that 
that the performance of GAs is greatly affected by the type 
of the encoding scheme. However, the superiority of either 
binary or real encoding schemes for the performance of 
GAs is that kind of open question that for many years has 
and still divides the GA community.  For theoreticians, 
BGA is the answer. The theoretical finding of schemata 
theory supports that enhanced schemata processing is 
obtained by using the alphabet of low cardinality. BGAs 
are efficient and the latest developments in the field of 
GAs research add much to the robustness, speed and 
accuracy of such algorithms. However, it is possible to 
argue that BGAs suffer from several disadvantages when 
applied to real-world problems involving a large number of 
real design variables. The direct relationship between the 
desired precision and the increased binary string length, 
and the discrepancy between the binary representation 
space and the actual problem space are good examples of 
such disadvantages. 
On other hand, RGAs are preferred by many practitioners. 
They are increasing in usage since the floating point 
representation is conceptually closest to the real design 
space, and moreover, the string length is reduced to the 
number of design variables. RGAs are robust, accurate, 
and efficient. However, it is possible to argue that RGAs 
are still susceptible to premature convergence especially 
for complex real world problems with a large number of 
design variables. It is also possible to say that the theory of 
RGAs is still far from providing plausible understanding of 
internal RGAs mechanisms, which is a true hindrance to 
further development of advanced techniques in this field.  
In order to tackle this problem effectively, we have 
recently proposed a hybrid binary-real coded genetic 
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algorithm (BRGA) [1] [2]. The main idea in BRGA is to 
give the algorithm the ability to process the optimization 
problems in both encoding schemes, binary and real, at the 
same time. By combing the usage of both encoding 
schemes, we aim to maximize the advantages and minimize 
the disadvantages resulted from employing each encoding 
scheme separately.  BRGA employs a hybrid scheme that 
organizes the interactions and divides the computation 
power between the two cooperatives versions of GAs 
(BGA and RGA). The evolutionary search is primarily 
guided by BGA part, which is used to identify promising 
regions in the search space. While, the real coded GA part 
is used to increase the quality of the obtained solutions by 
conducting an extensive search through these regions. The 
interaction between the two versions of BRGA is regulated 
by adaptive parameters which have small values at the 
beginning of the search to allow the exploration of the 
search space by the BGA part, while, their values increase 
gradually as the search progresses to allow the exploitation 
of the search space by RGA part. 
The remaining part of this paper is organized as follows.  
The related literature is briefly reviewed in Section 2.  The 
algorithmic details of BRGA are described in Section 3. 
The implemented numerical evaluation is explained and 
the obtained results are discussed and analyzed in Section 
4. On the other hand, the implemented parameter tuning 
procedure is described and the obtained optimal 
configurations are discussed in Section 5. Finally, in 
Section 6, we conclude the paper and highlight possible 
directions of future research. 

2. Literature Review 

From a conceptual standpoint, the design issue in BRGA 
adopts an idea that is closely related to dynamic coding, 
which is a sophisticated approach to altering the coarseness 
of search spaces. An example of such an approach is the 
stochastic genetic algorithm presented by Krishnakumar et 
al [3]. In stochastic GAs, the region represented by each 
point of a BGA is adapted during the optimization process 
using evolutionary strategies (ES). In contrast to stochastic 
GAs, BRGA employs an RGA instead of ES to adapt the 
regions represented by the BGA. In addition, stochastic 
GA treats each parameter within the chromosome as a 
separate entity, while in BRGA the sampling happens from 
the region bounded by the promising regions collectively. 
This can approach can be more efficient in terms of 
computational power.  Moreover, BRGA relies on sources 
other than random sampling (like best members from the 
old population) in guiding the optimization process.   
Another example of dynamic coding is the adaptive range 
genetic algorithm (ARGA) as presented by Arakawa and 
Hagiwara [4]. In ARGA, the mapping rules from binary to 
real strings are updated during the optimization process 
according to the population statistics in order to adapt the 
population toward promising design regions. However, 
BRGA works differently when it employs an RGA that 
takes random samples from the promising regions found by 

the BGA in order to adapt the population toward promising 
regions in the search space. 
Recently, the authors in [5] proposed an adaptive 
resolution micro-GA with Tabu search to solve a group of 
extremely difficult non-convex mix integer non-linear 
programming (MINLP) benchmark functions. The problem 
domain is divided by into discrete part to be handled by 
Binary GA operators and real part to be handled by Real 
coded GA operators. The algorithm employs an adaptive 
resolution which is a recursive approach that divides the 
search space into sub-solution spaces. The size of theses 
sub-solutions are controlled by information entropy. Under 
such scheme, the areas under the better solution have a 
greater chance to find even better solutions. The algorithm 
utilizes local search operator to increase the efficiency of 
the algorithm and a Tabu search like operator to eliminate 
redundancy in revisiting already visited local minima.  So, 
in contrast to BRGA, the hybrid scheme in [5] used real 
coded algorithms to change the coarseness of the search. 
By using a combination of different encoding schemes, 
BRGA is in a better position to reap the best from the 
combinations.  
From hybrid scheme standpoint, BRGA employs a scheme 
that can be described as sequential hybrid scheme [6]. 
Since, the cooperating algorithms in BRGA are 
exchanging output several times, operating in a time-
interleaving manner.   However, hybrid binary-real coded 
GAs in the literature generally follows a parallel 
hybridization scheme by separating problem domain into a 
binary part to be handled by BGA and a real part to be 
handled by RGA. An example is the hybrid binary real 
coded GA proposed by Barrios et al. [7]. to be used for 
designing and training feed-forward artificial neural 
networks. Their algorithm employs two interconnected 
GAs that work in parallel to design and train better neural 
networks to solve the problem at hand. In addition, the 
authors in [8] used RBLGA, which is a combination of real 
coded and binary like coded genetic algorithm to 
automatically generate Fuzz Knowledge Bases (FKBs) 
from a set of numerically data. The generated FKBs 
satisfied a contradictory paradigm in terms of KFBs high 
precision and simplicity.   The manual construction of such 
FKBs is a long and tedious process, while the successful 
generation of such FKBs is a prerequisite for successful 
operation of Fuzzy Decision Support System (FDSS).  In 
RBLGA, the problem domain is divided into real part, 
which is the fuzzy set repartition, and binary part, which is 
the fuzzy rule base.  By adopting sequential hybridization 
scheme for BRGA, we believe that synergetic effects can 
be more productive in guiding optimization toward better 
performance.   

3. The BRGA algorithm 

A schematic diagram that clarifies the operation of BRGA 
is shown in Fig. 1. BRGA employs a hybrid scheme that 
organizes the interactions and divides the computational 
power among two cooperatives version of GAs, namely 
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Binary coded GA part (BGA part) and Real coded GA part 
(RGA part). The evolutionary search is primarily guided 
by BGA part, which is used to identify promising regions 
within search space. According to the schema theory [9], 
using of low cardinality alphabet is behind the success of 
the BGAs in finding good solutions. So, under our 
proposed hybrid scheme, the BGA part plays a vital role in 
scanning the search space effectively and partitioning it 
potentially into smaller promising parts that can be 
exploited later by the RGA part. Whenever the BGA part 
completes its shares of genetic search, the computational 
power switches from the BGA part to the RGA part by a 
process that can be best described as population handover. 
During population handover, the BGA part injects some of 
its best population’s members into the RGA part’s 
population of solutions. Another sample of injected 
members is randomly generated from the region bounded 
by those best members. So, population handover is an 
opportunity for the RGA part to focus its search by 
receiving valuable feedback from the BGA part about the 
promising regions within the search space. The RGA part, 
which has the ability to process problem variables directly, 
can effectively compensate the poor ability of BGA in 
finding accurate solutions resulted from the limitations of 
mapping from the real problem space into the binary 
representation space and vice versa. Starting from a 
population doped by promising members, the RGA part 
extensively exploits this region and adapts population 
members toward it in order to identify solutions of higher 
quality. Whenever the RGA part completes its share of 
genetic search, the computational power switches back to 
the BGA part by a reverse process of population handover.  

Here, the RGA part injects a portion of its best population 
members into the BGA part population of solutions. So, 
the handover process is an opportunity for BGA part to 
correct its behavior in scanning and partitioning search 
space by receiving valuable feedback from the RGA part 
about the optimality of regions that suggested as promising 
in the previous cycle. So, the evolutionary search continues 
in the same manner up to satisfaction of the termination 
criteria. In order to regulate the share of each part from the 
total computational power, the frequency of handover 
process, amount and type of information exchange, BRGA 
employs a hybrid scheme which relies on selection criteria 
and a group of static, dynamic and adaptive parameters. In 
this section, we aim to describe the implementation details 
and discuss the operation of BRGA. The main components 
of BRGA can be described as follows. 

3.1 Chromosome representation 

Both binary and floating point encoding schemes are used 
to represent chromosomes of two equivalent populations of 
candidate solutions. These populations are frequently 
updated by mapping from one version to another during 
the evolutionary cycle. 
In BRGA, the initial population is usually generated as real 
numbers and quantization method is used to map the 
chromosomes from the floating point format to the binary 
format and vice versa. Quantization begins by sampling a 
function (i.e. an optimization problem at hand) and placing 
the samples into equal quantization levels, which are 
nonoverlapping subranges. Then, the samples will be 
assigned unique discrete values equal to the mid values of 
the quantization levels. The difference between actual 
value and quantized value is known as quantization error.  
It also possible to assign the samples values equal to the 
highest and lowest values of the quantization level.  
However, using the mid value of the quantization level is 
better in terms of generated quantization errors. [10] 
Supposing that we have a population of initial solutions, 
where P is the Pth chromosome from that population and Pn 
is the nth variable (or gene) within P. Then, the 
mathematical formulas for binary encoding and decoding 
of Pn can be described as the following: 

For encoding; 

                                            (1)  

                       (2) 

For decoding ; 

                     (3)   

                               (4)    
In each case, Pnorm is the normalized variable, 0 ≤ Pnorm  ≤ 1. 
Plo is the minimum value within the variable Pn range. Phi, 
is the maximum value within the variable Pn range. 
gene[m], is the binary version of  Pn. round{.} is round to 
the nearest integer equal to or greater than argument. M is 
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Fig. 1 Typical optimization cycle in BRGA. 
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the number of assigned bits to represent the variable Pn. 
Pquant is the quantized version of Pnorm. Finally, qn is the 
quantized version of  Pn. 
It is clear from Eq. (3) that increasing the number of bits 
will decrease quantization error. Actually, such direct 
relationship between quantization error and number of bits 
is one of the obstacles that limit the performance of BGAs 
whenever applied to real parameters optimization problems. 

3.2 Binary coded GA (BGA)       

In this study, we use a standard BGA as described by 
Haupt and Haupt [10] to implement the BGA part. A 
simple implementation adopted for the BGA to keep the 
complexity of BRGA as minimum as possible. The main 
components of the BGA are the mating operators (single 
point crossover operator and one point mutation operator) 
and the rank weighting selection scheme with elitism.  
Selection is survival-of-the-fittest mechanism used by the 
GAs to allocate more offspring to the better individuals, 
and the rest thrown away from the evolutionary process. 
There are a variety of schemes that simulate this 
mechanism; however, roulette wheel selection is the most 
common among them. With this approach the probability 
of selection is proportional to an individual’s fitness. 
Individuals with better fitness have greatest probabilities to 
be selected to the next generations, while those with 
weakest fitness have a very low probability of propagation 
to the next generations.  In BGA part, a version of this 
mechanism, known as roulette wheel weighting, was 
implemented. This version is problem independent and 
finds a probability from the rank, r, of the individual as 
follows.  

                                                    (5) 

                                            (6) 
Where, n is the individual rank according to its fitness, S is 
a user define parameters that takes a value from the range 0 
< S < 1, round{.} is round to the nearest integer equal to 
or less than argument and Npop is a user defined parameters 
refers to the population size. Therefore, each individual 
receives a cumulative probability according to its rank 
defined as the following. 

                                                                   (7) 
So, the selection scheme proceeds by firstly generates a 
random number between zero and one. Then, by starting 
from the top of the list, the first chromosome with a 
cumulative probability that is greater than or equal to the 
random number is selected for the mating pool. This 
process is repeated several times until Nkeep is satisfied.  
And the population members within the mating pool are 
arranged in pairs to be processed later one by the mating 
operators. 
On the other hand, The BGA part employs a single point 
crossover and one point mutation as mating operators. 
BGAs usually use crossover operator as a method for 

exploration of new parts of the search space by combining 
information from different solutions. In the single point 
crossover, pairs of individuals are selected from mating 
pool to produce offspring. The single point crossover 
proceeds by cutting the pair of selected strings at a 
randomly selected locus, or crossover point, and swapping 
the tails to create child strings. The probability of applying 
crossover operator can be estimated from the following: 

                                            (8) 
On the other hand, mutation is another operator used by 
BGAs to explore fitness landscape. It acts as a method to 
maintain diversity by introducing new traits in the original 
population and keeps the GA from converging too fast 
before sampling the entire cost surface. A single point 
mutation simply changes a 1 to a 0, and vice versa. 
Mutation points are randomly selected from the total 
number of bits in the population matrix. The total number 
of these points can be deduced from the following formula. 

                  (9) 
Where Pm is mutation probability and Nbits is number of 
bits per gene (or variable).  It is clear from Eq. (9) that the 
best chromosome is excluded from mutation process due to 
the elitism. Actually, Keeping the best, or the elite, 
individual between generations is another technique used 
by the  BGA part to avoid converging too fast to and 
trapping to the local minima. 

3.3 Real-coded GA (RGA): 

RGAs do not suffer from the problem of quantization 
limitation that faces the BGAs. Therefore, RGAs have a 
better ability to find solutions of better precision ability. 
Due to the importance of this part, we use Unimodal 
Normal Distribution (UNDX) as an advanced real 
crossover operator [11] with the minimal generation gap 
(MGG) [12] as a generation alteration model to implement 
the RGA part. For RGAs, It has been accepted by the 
researchers that mutation operators are the most important 
operators and they can act as main search operators, while 
crossover operators can perform only assistant roles.  
However, UNDX along with BLX-α[13], Fuzzy 
recombination (FR) [14], and Simulated Binary crossover  
(SBX) [15] are a group of advanced crossover operators 
that have been developed for RGAs which show relatively 
good performance and ability to operate independently 
from mutation operators. When compared with other 
RGAs` crossover operators, UNDX generates new 
population lie on some ponds or along some valleys in 
order to focus the search on promising areas from a 
viewpoint of search efficiency. So, UNDX can efficiently 
optimize functions especially those have epistasis among 
parameters.  Moreover, one dimensional UNDX with 
MGG has shown good performance on several benchmark 
problems [11]. 
UNDX procedure can be briefly explained as follows.  
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(1). Select 3 individuals as parents’ gp1, gp2 and gp3 from 
the population of solutions. Where gp1, gp2 are the main 
parents and gp3 is a subparent. 
(2). Define the middle point of the main parents gm, where 

 
(3). Let the direction from gp1 to gp2 be primary search 

line d, where 
 

(4). Define D as the distance from gp3 to primary search 
line direction (d). Where 

 
(5). Define ei be the orthogonal basis vectors spanning the 
subspace perpendicular to the primary search direction (d).

 (6). Two children gc1 and gc2  are now generated as 
follows; 

                             (10) 

(11)

                                           (12) 
Where n is the dimension of search space, N (a,v) 
represents a normal distribution whose average is a and 
whose variance is v,  and  are constant  parameters that 

are recommended to be set as (1/2) and (0.35/ 

)  respectively.  
It has been found that minimal generation gap, or MGG, is 
appropriate for keeping the diversity of the population. 
The MGG model consists of the following five steps. 
(1). Generate an initial population. 
(2). Select a pair of individuals randomly from the 

population as parents.  
(3). Generate 2Ncross offspring by carrying out Ncross 

time’s crossover.  Where Ncross is a user defined 
parameter.  

(4). Select two individuals from the family containing the 
two main parents and their 2Ncross offspring. The first 
individual is the best one within the family, while the 
second individual is one selected by the roulette 
wheel selection (similar to that in BRGA). Replace 
the two main parents in step (2) with the two 
individuals. 

(5). Repeat the procedure from step (2) to step (4) until a 
stopping condition is satisfied. 

3.4. Population handover: 

The main contribution of our work is in the population 
handover mechanism, which is the core of the hybrid 
scheme of the BRGA. Due to the using of low alphabet 
cardinality, BGA has a better possibility to identify 
promising regions within search space. So, by receiving 
feedback from BGA through population handover, RGA 
can approach optimal solution regions rapidly by 
exploiting these promising regions. On the other hand, 
RGA has a better ability to obtain better quality solutions.  

So, BGA can adapt it behavior in scanning the search 
space based on feedback received from RGA part through 
population handover. So, during a typical optimization 
cycle, the populations of real and binary solutions are kept 
updated by frequently mapping from one version to 
another and vice versa. Population handover is the 
responsible on controlling the mapping process in itself 
and the frequency of its occurrence.  The pseudocode of 
handover procedure is shown in Fig. 2.   
As it is clear from Line 0 in Fig. 2, the handover process 
happens at moments controlled by the by Κ. Κ is user 
defined dynamic parameter that takes an initial value of  

and an incremental step size of  as shown in the equation 

of Line 43.Whenever handover process starts, the 
computational power switches from BGA part to RGA part 
and BRGA starts by updating handover process counter, T, 
and stores the final population which generated by BGA, 

, to be used in the subsequent handover steps. 

BRGA uses two user defined parameters, which are  to 

evaluate the quality of improvement achieved in  in 

comparison with  and to control the influx of 

information exchange between the BGA and RGA parts. It 
should be noted that  is the final population 

generated by RGA part from the last handover cycle. In 
case of initial handover cycle it equals the initial randomly 
generated solutions. Both  and  are sorted 

according to their penalized fitness values. Taking into 
consideration that the framework in Fig. 2 has been 
developed for the minimization problems, BRGA starts a 
binary-to-real population handover considering the 
following selection criteria: 
(1). The mean performance of BGA part is better than the 
mean performance of RGA part, i.e. logic in Line 3 and 
Line 4 are true. This scenario can be especially true at the 
initial stages of the evolutionary search where BRGA 
usually moves within regions far away from the optimality 
region. Here, the BGA part has a good opportunity in 
frequently identifying new promising search regions and 
adapts population towards them. If this happens, then 
BRGA wants from the RGA part to extensively exploit 
these regions so it increases the influx of data migration 
between the two parts by setting the value of  to its 

maximum (Lines 6 and 11) and directs RGA part to 
replace the solution members of   by new members 

from POP1 and POP2 (Lines 7-9, 12-14) where POP1 is a 
fraction of  best members, while POP2 is the 

random samples taken by BRGA from the region defined 
by POP1. By taking samples from this region, BRGA 
hopes that RGA part can locate rapidly higher quality 
solutions. Finally, the logic in Line 5 is introduced to 
protect the elite member within  , if existed, from 

being destructed by the above mentioned replacement 
process.  
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(2). The mean performance of BGA part is slightly better 
than the mean performance of RGA part, i.e. the logic in 
Line 3 is true while the logic in Line 4 is false. As the 
evolutionary search progresses, the probability of 
identifying new promising regions decreases. So, the BGA 
part gradually losses its ability in significantly pushing the 
mean performance of the population of member solutions.  
However, since the BGA part still exhibits signs of 
improvement, BRGA still hopes that RGA can find higher 

quality solutions by accepting new best members of  POP1 

(Line 18) and POP2 or the random samples generated from 
the region defined by POP1 (Line 19). However here, 
BRGA decreases the influx of data migration from BGA 
part to RGA part (Line 17) and it directs RGA part to 
replace only the worst half of its population members 
(  ) by POP1 and POP2 (Line 20).  

0.  IF    = iga   THEN 

1.    

2.     

3. IF Mean( )) < Mean( )) THEN 

4.  IF Mean( )) - Mean( ))  >=  THEN 

5.   IF Min )) < Min )) THEN 

6.     =  

7.     ; 

8.    );  

9.      

10.    ELSE 

11.      =  

12.     ; 

13.    );  

14.      

15.   END;  

16.  ELSE 

17.    =  

18.    ; 

19.   );  

20.     

21. ELSE 

22.  IF Mean( )) - Mean( ))  <= THEN 

23.    =  

24.    ; 

25.    ; 

26.  END; 

27. END; 

28.  FOR i = 1:  

29.   Apply RGA( ;  

30.  END; 

31.   ; 

32. IF Mean( )) <= Mean( )) THEN 

33.   =  

34.   ;  

35.    

36. ELSE 

37.  IF (Mean( )) - Mean( ))) <= THEN 

38.   =  

39.   ; 

40.  ; 

41.  END; 

42. END; 

43. ; 

44. ; 

45.  END; 

Fig. 2 Population handover pseudocode. 
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(3). The mean performance of BGA part is slightly lags 
behind the mean performance of RGA part, i.e. the logic in 
Line 3 is false while the logic in Line 22 is true. This 
situation indicates that the performance of both parts of 
BRGA becomes comparable to each other and the RGA 
starts gradually to dominate the performance of BRGA. 
Here, BRGA becomes less interested in accepting new 
members from BGA part.  So, it keeps the low influx of 
data migration from the BGA part toward the RGA part 
(Line 23) and it directs the RGA part to replace only the 
worst quarter of its population member ( Line 25) by POP1 

(Line 24). By increasing the percentage of good members 
within , BRGA hopes to fasten the convergence 

profile towards optimality region.  
(4). The mean performance of BGA part is lags behind 
the mean performance of RGA part, i.e. the logic in Lines 
3 and 22 are false. This scenario can be true especially at 
final stages of the evolutionary search, where the BRGA 
comes within the vicinity of the optimality region. Here, 
there is a very low probability for the BGA part to find 
even better promising regions by visiting new parts of the 
search space. Whenever this scenario happens, BRGA 
stops data migration and it directs the RGA part to use its 
un-updated   in the subsequent search process.  

On the other hand, the pseudocode in Fig. 3 describes the 
random sampling process. The random sampling process 
takes POP1 and  as an input from the handover process 

(Lines 8, 13 and 19, Fig. 3). The process starts by creating 
Xlo and Xhi vectors which contain the minimum and 
maximum population members for each search dimension 
within POP1 respectively. These vectors draw the boundary 
of the regions from which random samples to be taken by 
BRGA. The random samples are generated according to 
the equation in Line 7. Where, N is pseudorandom value 
drawn from the standard normal distribution. The elements 
within Xlo and Xhi should be distinct from each for 
sampling process to be implemented effectively. However, 
as the evolutionary search progresses the diversity within 
the population members decreases gradually. Actually, it is 
highly possible that populations of best members become 
replicas of the same solution at some moments during the 
evolutionary search.  To guard against such situation, logic 
in Line 3 is introduced. It shifts an Xlo element by an 
amount determined by Ω from a correspondent element 
within Xlo. Ω is a real valued user defined parameter that 
takes values greater than zero.  
So, whenever the process of binary-to- real handover 
process completes, the RGA part starts from  a fresh 

search with iteration budget controls by .  is a dynamic 

user defined parameter that takes an initial value of  and 

an incremental step size of  as shown in the equation in 

Line 44. As discussed above,  gives the RGA part small 

fractions from total computational budget of BRGA at the 
initial stages of the evolutionary search to allow an 
extensive exploration of the search space by the BGA part. 

On the other hand, it increases gradually to allow the RGA 
part to concentrate more on the exploitation of the 
promising search space regions by the final stages of the 
evolutionary search.  Therefore, Κ and   are the deceive 

factors in dividing the total computational budget available 
to BRGA between the BGA and the RGA parts. 
So, when the RGA part completes its iteration budget, 
BRGA stores the final population generated by RGA as 

(Line 31). It starts the reverse population handover 

process, or real-to-binary handover, since the 
computational power switches back to the BGA part. By 
comparing  to , the handover framework has 

been developed to process the following selection criteria: 
(1). The mean performance of RGA part is better than or 
equal to the mean performance of BGA part, i.e. logic in 
Line 32 is true. This scenario can be true when true when 
the RGA was successful in identifying an even better 
quality solutions from the regions suggested as 
“promising” by the BRGA part. So, the BRGA wants 
from the BGA to continue the search towards these 
regions. If this scenario happens, BRGA maximize the 
influx of reverse migration of data from the RGA part 
toward the BGA part (Line 33) and it directs the BGA 
part to replace all of its member solution in  (Line 

35) by POP1 from the RGA part (Line 34).  
(2). The mean performance of RGA part is slightly lags 
behind the mean performance of BGA part, i.e. the logic 
in Line 32 is false while the logic in Line 37 is true.  This 
scenario can be true when the BRGA approaches the 
optimality regions. Here, the performance of both parts 
becomes comparable from each others. However, here, the 
RGA parts still fails in finding significantly better 
solutions from the regions suggested as “promising” by 
the BGA part and it shows signs of lagging. So, the 
BRGA wants from the BGA parts to retain some of its old 
population members and continue the exploration of the 
search space. If this scenario happens, BRGA decreases 
the influx of reverse migration from RGA part to the BGA 
part (Line 38) and directs the BGA part to replace only 
the worst quarter of its member’s solutions (Line 40) by 
POP1 from the RGA part (Line 39). By increasing the 
percentage of good members within , BRGA hopes 

that can enhance the ability of the BGA part to find even 
better promising regions within the search space.  
(3). The mean performance of RGA part is lags behind 

0.  = Min( ); 

1. = Max( ); 

2. FOR i  = 1: n 

3.   IF    THEN 

4.     =  - ; 

5.  END; 

6.  FOR j = 1:  

7.   (j,i) = N( - ) + ; 

8. END; 

9. END; 

Fig. 3 Random sampling pseudocode. 
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the mean performance of BGA part, i.e. the logic in Lines 
32 and 37 are false.  This scenario can be frequently 
happened at the initial stages of the evolutionary search.  
Since, the BRGA is far from the optimality region there is 
a very low chance for RGA part to find good solutions 
within the regions suggested as “promising” by the BGA 
part. So, BRGA becomes less interested in initiating data 
exchange between the two parts since this process can 
degrade the quality of solutions within . If this 

situation happens, the BRGA stops the reveres migration 
from the RGA part toward the BGA part. By starting from 
the same un-updated , BRGA hopes to preserve the 

quality of solutions within   from the influx of low 

quality members within .  

4. Numerical Evaluation  

In order to systematically evaluate the performance of 
BRGA, we have followed an experimental procedure that 
can be explained as follows. 

4.1 Experimentation setup  

The experimentation in EC suffers from the lacking of 
standardized benchmark problems. The available ones 
within the literature are usually based on small subset of 
standard test problems. The empirical results are generally 
confusing and limited such that the same algorithm 
working well for a set of functions may not working well 
for some other set of functions. Therefore, algorithms 
should be evaluated more systematically by determining a 
common termination criterion, size of problems, 
initialization scheme and running time. So, the special 
session on real-parameter optimization in CEC’2005 
proposed a test suite of 25 benchmark functions, which 
represent a step toward achieving this objective [16].  
These functions and the proposed guidelines were 
employed in our experiments.  In addition, All the 
experiments were programmed in MATLAB 7 and ran in 
the same computer, Intel Celeron(R) 575 2GHZ, 3 GB 
RAM, Windows Vista (SP2). On the other hand, we have 
used Minitab 16 software was used for applying the 
required statistical techniques.  

4.2 Parameter tuning 

The aim of the experiments in this phase is to pick up the 
interactions between \algorithm performances against a 
particular benchmark function within the suite by 
identifying parameter configurations that maximize the 
performance of the algorithm for that particular function. 
In this study, we have adopted “experimental analysis of 
search heuristics”, which is proposed by Bartz–Beielstein 
[17]. It is a useful approach which utilizes design of 
experiments and statistical testing techniques in 
investigating how sensitive performance of an algorithm is 
to parameter changes. In addition, it is more flexible and 
requires fewer experimental runs when compared with 
other approaches. Like Schaffer et. al. who proposed the 
use of a complete factorial design experiment to study 

control parameters of GA [18].  Or, Myers and Hancock 
who proposed different experimental framework based on 
factorial designs for the empirical modeling of GA [19]. In 
section 5, we describe the details of the parameter tuning 
procedure and discuss the obtained optimal parameter 
configurations. 

4.3 Investigating the quality 

In order to judge the quality of improvement achieved by 

our hybrid algorithm, comparison experiments were 

conducted against the original BGA and RGA (UNDX) 

over the CEC’2005 benchmark functions.  The aim of the 

experiments is to analyze the effectiveness and efficiency 

performance of the BRGA. The conducted experiments 

can be explained as follows. 

4.3.1 Effectiveness experiments 

To evaluate our algorithm Effectivity, or the ability of the 
algorithm to achieve good performance over a wide range 
of test problems, the experiments in this phase were run for 
a fixed Number of Fitness Evaluation (MAX_FES = 1E+5) 
or up to achieve a fixed tolerance.  Table 1 shows the 
descriptive statistics for the obtained errors from the 
experiments. The error is computed as (Error = f(x) –f(x*)), 
where f(x) is the best found solution by the algorithm, 
while the f(x*) is the already known global optimum for a 
particular benchmark function [16]. So, performance of the 
algorithm can be analyzed from the following stand points: 

a) Best solution found: It is obvious from the Table 1 
that BRGA was able to locate solutions within the 
specified accuracy levels defined by CEC’2005 in 7 cases 
(F1-2, F4, F6-7, F12 and F15).  The best found solutions 
are in the vicinity of required accuracy level in 6 cases (F5, 
F9-11, and F13-14). While the best found solutions for the 
remaining functions are located far from the global optimal 
solution.  

b) Problem characteristics: The experimental results 
show that the performance of BRGA interacts differently 
with the underlying problem properties. Some of the 
properties are greatly affect the performance. For example, 
the benchmark contains functions with different condition 
numbers (F1-3). The using of high condition number, as 
the case of F3, greatly deteriorates algorithm performance 
by increasing its convergence time to the global optimum.  
The performance of the algorithm also deteriorates on the 
function which uses high condition number matrix (F22) 
compared with the function that uses orthogonal matrix 
(F21). Moreover, BRGA performs better with continuous 
function (F21) compared with non-continuous function 
(F23). On the other hand, BRGA shows a little sensitivity 
towards other properties. For example, the rotation of the 
benchmark function has a very small affect on the 
algorithm performance, since the mean performance is 
comparable for functions without rotation (F9 and F15) 
against functions with rotation (F10 and F16). In addition, 
locating the global optimum on bounds, like the case of 
F20 in comparison with F18, does not affect the 
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performance of the algorithms. The same is true for the 
profile of the global optimum and initialization range. 
Locating the global optimum in a narrow basin (F19) 
compared with wide basin (F18) or locating the global 
optimum within the initialization range (F24) compared 
with locating it outside the initialization range (F25) has no 
affect on the algorithm performance. Finally, the same is 
true for the noise since the performance of BRGA for 
functions without noise (F2 and F16) is similar to the 
performance of BRGA with noisy functions (F4 and F17).  

c) Comparison with BGA and RGA: To evaluate the 
effectiveness of the proposed hybrid scheme in improving 
the performance of its component algorithms, the original 
BGA and RGA were run on the same benchmark functions 
under similar experimental conditions with the 
recommended parameter configurations. The obtained 
results are reported in Table 1. When compared with BGA, 
it is clear that BRGA outperforms BGA in obtaining better 
quality solutions for all the functions.  When compared 
with RGA, it is obvious that BRGA found better solutions 
for 19 functions (F3 and F5-F22).  Both BRGA and RGA 
found the same best solutions for 6 functions (F1-2, F4 and 
F23-25). For these functions, both RGA and BRGA were 
able to identify solutions within the required accuracy 
levels for F1-2, while the performance is comparable for 
F23-F25. However, RGA has a better mean performance 
for F23, while BRGA has better robust performance for 
F24-25. So, the results show that that both the proposed 

hybrid scheme and the adopted parameter tuning procedure 
were successful in improving the performance against its 
component algorithms for CEC’2005 benchmark functions. 

d) Comparison with other EAs: To evaluate the position 
of BRGA within the literature of EAs, we compare the 
performance of BRGA with some state-of-the-art EAs. 
Table 2 compares the obtained results from the BRGA 
experiments with some of EAs which has been testified 
against CEC’2005 benchmark suite under similar 
experimental conditions.  
According to [20], steady-state Real parameter GA called 
SPC-PNX has been successfully applied to several 
nonlinear parameter estimation problems arising in Earth 
Sciences. When compared with BRGA, BRGA 
outperformed in 12 cases by identifying better best 
solutions for F3, F6-8, F10, F12, F14-17, F21 and F25. 
Both algorithms exhibit similar behavior in 10 cases when 
they achieved same level of accuracy for F1-2 and F4, 
while the performance is comparable in F9, F18-20 and 
F22-24. SPC-PNX was able to identify better best 
solutions only in 3 cases (F5, F11 and F13). 
 On the other hand, Estimation of Distribution Algorithms 
(EDAs) refer to a class of EAs which based on 
probabilistic modeling instead of classical genetic 
operators such as crossover or mutation. In [21] the 
authors used EDAmvg, which employs a multivariate 
Gaussian distribution and is therefore able to represent 
correlation between variables in the selected individuals 

Table 1: Error values achieved for problems 1-25 (10D) 

F 

BRGA UNDX bGA 
Tolearnce  

Best Mean Std Best Mean Std Best Mean Std 

1 5.73E-07 8.28E-07 1.39E-07 3.32E-07 7.92E-07 1.80E-07 1.15E+04 2.19E+04 4.59E+03 1.00E-06 

2 7.57E-07 9.39E-07 6.67E-08 5.91E-07 8.75E-07 1.16E-07 1.09E+04 2.99E+04 1.06E+04 1.00E-06 

3 6.24E+02 2.43E+04 2.12E+04 6.35E+03 5.33E+04 5.01E+04 1.40E+08 4.41E+08 2.67E+08 1.00E-06 

4 4.14E-07 8.34E-07 1.42E-07 6.62E-07 8.26E-06 2.37E-05 1.58E+04 3.90E+04 1.21E+04 1.00E-06 

5 3.41E-01 1.69E+00 7.76E-01 5.88E-01 2.62E+00 2.51E+00 1.46E+04 2.04E+04 3.27E+03 1.00E-06 

6 7.51E-03 3.32E+01 7.22E+01 9.87E+00 1.00E+02 1.11E+02 4.54E+08 7.88E+09 3.53E+09 0.01 

7 7.62E-03 6.13E-02 4.74E-02 3.63E-01 7.34E-01 1.87E-01 4.23E+02 8.65E+02 2.93E+02 0.01 

8 2.00E+01 2.01E+01 1.41E-01 2.02E+01 2.04E+01 7.72E-02 2.03E+01 2.04E+01 5.46E-02 0.01 

9 9.95E-01 6.09E+00 2.79E+00 1.17E+01 2.04E+01 3.60E+00 8.89E+01 1.10E+02 1.16E+01 0.01 

10 9.95E-01 3.85E+00 1.66E+00 1.54E+01 2.35E+01 3.62E+00 1.28E+02 1.78E+02 1.85E+01 0.01 

11 3.86E-02 6.67E-01 5.15E-01 6.13E+00 7.54E+00 6.93E-01 8.08E+00 9.12E+00 5.61E-01 0.01 

12 4.94E-03 3.28E+02 6.51E+02 7.96E+03 2.38E+04 6.70E+03 3.24E+03 1.05E+04 4.34E+03 0.01 

13 3.50E-01 8.21E-01 3.45E-01 1.47E+00 2.08E+00 2.47E-01 2.28E+01 1.19E+02 9.31E+01 0.01 

14 8.83E-01 2.47E+00 6.07E-01 2.81E+00 3.34E+00 1.59E-01 4.34E+00 4.74E+00 1.24E-01 0.01 

15 9.53E-03 2.56E+02 1.39E+02 2.48E+02 3.40E+02 4.09E+01 3.70E+02 6.05E+02 1.26E+02 0.01 

16 7.22E+01 9.52E+01 6.29E+00 1.08E+02 1.32E+02 8.80E+00 3.03E+02 3.53E+02 2.21E+01 0.01 

17 4.15E+01 9.59E+01 1.42E+01 1.26E+02 1.47E+02 9.43E+00 3.45E+02 3.89E+02 2.81E+01 0.1 

18 3.00E+02 4.20E+02 2.18E+02 3.03E+02 3.74E+02 1.35E+02 1.05E+03 1.07E+03 9.05E+00 0.1 

19 3.00E+02 4.00E+02 2.04E+02 3.03E+02 3.95E+02 1.08E+02 1.06E+03 1.07E+03 9.47E+00 0.1 

20 3.00E+02 3.60E+02 1.66E+02 3.05E+02 4.30E+02 1.66E+02 1.06E+03 1.07E+03 5.23E+00 0.1 

21 2.00E+02 5.32E+02 1.57E+02 5.00E+02 5.18E+02 6.21E+01 1.47E+03 1.54E+03 2.45E+01 0.1 

22 3.00E+02 6.53E+02 2.02E+02 3.03E+02 5.49E+02 2.22E+02 1.08E+03 1.13E+03 3.32E+01 0.1 

23 5.59E+02 6.09E+02 1.36E+02 5.59E+02 5.61E+02 5.37E+00 1.43E+03 1.54E+03 3.45E+01 0.1 

24 2.00E+02 2.00E+02 0.00E+00 2.00E+02 2.00E+02 1.45E-02 1.40E+03 1.43E+03 2.74E+01 0.1 

25 2.00E+02 2.00E+02 0.00E+00 2.00E+02 2.00E+02 2.03E-02 1.29E+03 1.43E+03 4.10E+01 0.1 
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via the full covariance matrix of the model. When 
compared with BRGA, BRGA outperformed in 13 cases 
by identifying better best solutions for F7-11, F13-17, F21-
22 and F25. Both algorithms exhibit similar behavior in 8 
cases when they achieved same level of accuracy for F1-2 
and F4, while the performance is comparable in F18-20 
and F23-24. However, EDAmvg was able to identify better 
best solutions only in 4 cases (F3, F5-6 and F12).  
Moreover, An evolutionary strategy with covariance 
matrix adaptation (CMA-ES) [22] becomes popular as an 
efficient tool for real parameter optimization. However, in 
[22] the Mutation Step Co-evolution algorithm (coEVO) 
does not use any covariance matrix, rather it co-evolves a 
population of successful mutation steps used in previous 
generations which substitute the probabilistic model (the 
variances or the covariance matrix) used in ES. The new 
population is then created by mutating the whole old 
population, thus allowing the algorithm to perform the 
search in several areas of the search space, and not only in 
one area covered by the Gaussian cloud (as in the case of 
CMA-ES). When compared with BRGA, BRGA 
outperformed in 15 cases by identifying better best 
solutions for F6-20 and F23. Both algorithms exhibit 
similar behavior in 7 cases when they achieved same level 
of accuracy for F1-2 and F4, while the performance is 
comparable in F21-22 and F24-25. However, coEVO was 
able to identify better best solutions only in 3 cases (F3, F5 
and F23). 

Finally, Memetic Algorithms (MAs) [23] refers to a class 
of EAs that apply a separate Local Search (LS) process to 
refine new individuals. In MAs, GAs are hybridized with 
LS with aim of addressing the trade-off between the 
exploration abilities of the GA, and the exploitation 
abilities of the LS used. One commonly used formulation 
of real coding MAs applies LS to members of the 
population after recombination and mutation, with the aim 
of exploiting the best search regions gathered during the 
global sampling done by the RGA. In [23], the authors 
used adaptive LS with a Steady-State Genetic Algorithm 
(SSGA) in their Real Coded Memetic Algorithm (RCMA). 
When compared with BRGA, BRGA outperformed in 13 
cases by identifying better best solutions for F3, F6-8, F10, 
F13, F15-18, F20-21 and F25. Both algorithms exhibit 
similar behavior in 7 cases when they achieved same level 
of accuracy for F1-2 and F4, while the performance is 
comparable in F19 and F22-24. However, RCMA was able 
to identify better best solutions only in 5 cases (F5, F9, 
F11-12 and F14). 

4.3.2 Efficiency experiments 

The aim of the experiments in this phase is to evaluate 
algorithm efficiency, or how competent our algorithm is in 
using the available computational resources to come closer 
to the specified solutions targets.  Therefore, the 
experiments in this phase were run until they reached a 
predefined error tolerance or a maximum number of fitness 
evaluation (1E+5). Since the fixed accuracy levels defined 

Table 2: Error values achieved for problems 1-25 (10D) 

F 
BRGA SPC-PNX[20] EDAmvg[21] coEVO[22] RCMA [23] 

Best Mean Best Mean Best Mean Best Mean Best Mean 

1 5.73E-07 8.28E-07 6.49E-09 8.90E-09 0.00E+00 0.00E+00 4.60E-09 8.83E-09 9.87E-09 9.87E-09 

2 7.57E-07 9.39E-07 8.74E-09 9.63E-09 0.00E+00 0.00E+00 5.00E-09 8.60E-09 9.94E-09 9.94E-09 

3 6.24E+02 2.43E+04 7.75E+02 1.08E+05 0.00E+00 0.00E+00 5.67E-09 8.49E-09 7.21E+03 4.77E+04 

4 4.14E-07 8.34E-07 7.69E-09 9.38E-09 0.00E+00 0.00E+00 6.13E-09 8.55E-09 8.77E-09 2.00E-08 

5 3.41E-01 1.69E+00 7.94E-09 9.15E-09 1.97E-06 2.34E+02 9.17E-02 2.13E+00 2.96E-08 2.12E-02 

6 7.51E-03 3.32E+01 1.86E-02 1.89E+01 0.00E+00 0.00E+00 1.27E+00 1.25E+01 4.06E-01 1.49E+00 

7 7.62E-03 6.13E-02 9.86E-03 8.26E-02 3.94E-01 5.35E-01 1.02E-02 3.71E-02 2.22E-02 1.97E-01 

8 2.00E+01 2.01E+01 2.08E+01 2.10E+01 2.02E+01 2.03E+01 2.01E+01 2.03E+01 2.01E+01 2.02E+01 

9 9.95E-01 6.09E+00 9.95E-01 4.02E+00 2.34E+01 3.23E+01 8.99E+00 1.92E+01 8.10E-09 4.38E-01 

10 9.95E-01 3.85E+00 1.99E+00 7.30E+00 2.47E+01 3.19E+01 1.50E+01 2.68E+01 3.04E+00 5.64E+00 

11 3.86E-02 6.67E-01 3.00E-04 1.91E+00 3.75E+00 8.27E+00 6.78E+00 9.03E+00 1.14E-03 4.56E+00 

12 4.94E-03 3.28E+02 3.91E+00 2.60E+02 0.00E+00 5.37E+01 2.66E+01 6.05E+02 1.18E-03 7.43E+01 

13 3.50E-01 8.21E-01 3.49E-01 8.38E-01 1.59E+00 2.61E+00 4.69E-01 1.14E+00 3.81E-01 7.74E-01 

14 8.83E-01 2.47E+00 1.39E+00 3.05E+00 2.92E+00 3.61E+00 3.26E+00 3.71E+00 6.84E-01 2.03E+00 

15 9.53E-03 2.56E+02 6.32E+01 2.54E+02 3.34E+02 5.11E+02 1.37E+02 2.94E+02 5.69E+01 3.11E+02 

16 7.22E+01 9.52E+01 9.11E+01 1.10E+02 1.32E+02 1.64E+02 1.23E+02 1.77E+02 8.96E+01 1.02E+02 

17 4.15E+01 9.59E+01 9.89E+01 1.19E+02 1.50E+02 1.83E+02 1.45E+02 2.12E+02 1.04E+02 1.27E+02 

18 3.00E+02 4.20E+02 3.00E+02 4.40E+02 3.00E+02 4.20E+02 8.00E+02 9.02E+02 8.00E+02 8.03E+02 

19 3.00E+02 4.00E+02 3.00E+02 3.80E+02 3.00E+02 4.00E+02 5.00E+02 8.45E+02 3.00E+02 7.63E+02 

20 3.00E+02 3.60E+02 3.00E+02 4.40E+02 3.00E+02 3.80E+02 5.00E+02 8.63E+02 8.00E+02 8.00E+02 

21 2.00E+02 5.32E+02 3.00E+02 6.80E+02 5.00E+02 5.00E+02 2.00E+02 6.35E+02 5.00E+02 7.22E+02 

22 3.00E+02 6.53E+02 3.00E+02 7.49E+02 7.66E+02 7.73E+02 3.00E+02 7.79E+02 3.00E+02 6.71E+02 

23 5.59E+02 6.09E+02 5.59E+02 5.76E+02 5.59E+02 5.59E+02 4.25E+02 8.35E+02 5.59E+02 9.27E+02 

24 2.00E+02 2.00E+02 2.00E+02 2.00E+02 2.00E+02 2.00E+02 2.00E+02 3.14E+02 2.00E+02 2.24E+02 

25 2.00E+02 2.00E+02 4.06E+02 4.06E+02 3.64E+02 3.76E+02 2.00E+02 2.57E+02 2.02E+02 7.92E+00 
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by CEC’2005 are too strict, we defined a more flexible 
error tolerance levels derived from the best found solutions 
shown in Table 1. The fixed error tolerances in addition to 
the empirical results of this phase are shown in Table 3. 
The competition in this phase is limited to RGA, since it is 
the only competing algorithm which showed competitive 
results from the previous phase. Efficiency rates in 
addition to descriptive statistics of FES to reach the fixed 
tolerance are used as metrics to evaluate the efficiency of 
the competing algorithms.  Efficiency rate is a quality-
effort metric defined by Hillstrom [24]. It is used to 
measure how efficient an algorithm is in progress from the 
starting point using the available computational resources.  
It can be described as follows: 

                       (13) 

Here, and  are the mean of best initial and final 
solutions found by algorithm, f* is the known global 

optimum and  is mean time elapsed by the algorithm to 
reach the final solution. Smaller efficiency rates indicate 
higher efficiency in using the computational resources to 
reach high quality solutions.   

It is clear from Table 3 that BRGA outperforms in term of 
efficiency rates in all the cases. It should be noted that 
BRGA gains better efficiency rates even for cases when it 
has a comparable quality performance to the UNDX, as the 
cases of F1-2, F4 and F23-25. This is an indication that the 
good performance for BRGA in term of efficiency rates is 
resulted not only form it ability in finding a better solutions 

but also from that fact that it has a better time complexity 
when compared with RGA. 

5. Parameter Tuning Procedure 

In [17], Bartz–Beielstein proposed a general heuristic 
procedure for parameter tuning that relies on techniques 
from statistical testing, design of experiments and 
Response Surface Methodology (RSM). The proposed 
framework consists from three steps of screening, 
modeling and optimization. The aim in the screening phase 
is to reduce the initial list of parameters by dropping out 
statistically insignificant parameters from the tuning 
procedure. Screening experiments were implemented using 
2-levels Plackett-Burman design (P-B design) experiments 
[25], which are efficient in estimating the main effects of 
all factors at the same precision. Regression analysis in 
addition to graphical methods like Normal probability plot 
and the Pareto plot of the standardized effects were used to 
separate out the significant factors which needs further 
investigation in the subsequent steps. Then, a suitable local 
model (first-order or second-order) is usually built to 
approximate the shape of the response surface within the 
region of interest in the modeling step.  This model is 
essential in guiding the search for optimal parameter 
values in the subsequent optimization step.  In the case of 
first-order model, the direction of improvement was 
determined by implementing line search in the direction of 
the “path of the steepest descent”, i.e. it is a minimization 
problem. If no further improvement along the path of the 
steepest descent was possible, we explored the area by 

Table 3: The number of fitness evaluations to achieve the requested accuracy levels 

F 
relaxed 

tolerance 

BRGA UNDX 

Min Mean Std Eff. Rate Min Mean Std Eff. Rate 

1 1.00E-02 4692 5958.48 724.08017 11.653693 16178 17547.92 819.13867 4.2658297 

2 1.00E-02 8100 11491.28 1822.9161 4.8413387 32090 43700.24 3968.0541 1.6133544 

3 6.24E+02 80013 99216.68 4000.7667 0.6080307 100010 100010 0 0.3828527 

4 1.00E-02 29056 41490.88 6759.214 2.2796215 40202 53703.44 7536.5416 1.2605565 

5 4.00E-01 85013 99415.88 3000.6 0.6693871 100010 100010 0 0.3736455 

6 1.00E-02 75222 96508.44 7483.2521 1.1341429 100020 100020 0 0.783671 

7 1.00E-02 69589 98830.6 6092 0.5052535 100020 100020 0 0.3562993 

8 20 100002 100003.44 0.8205689 0.0034568 100020 100020 0 0.001073 

9 1 87026 99510.8 2601 0.2111119 100020 100020 0 0.1061642 

10 1 99556 100032.16 99.2 0.2098578 100020 100020 0 0.1101683 

11 0.05 92286 99678.36 1548.8857 0.0667475 100020 100020 0 0.015342 

12 0.01 56070 96523.68 11415.636 0.2988972 100020 100020 0 0.0781164 

13 0.5 35452 93427.2 17126.969 0.2773496 100020 100020 0 0.1580582 

14 1 90053 99654.28 2000.2676 0.0368567 100020 100020 0 0.0135691 

15 0.02 95022 99823.92 1000.4 0.0147541 100020 100020 0 0.0041089 

16 73 94013 99773.96 1200.2 0.0119735 100020 100020 0 0.006876 

17 41.51 97009 99889.96 600.2 0.0204165 100020 100020 0 0.0068924 

18 300.01 52553 78340.92 21319.181 0.0123079 100020 100020 0 0.0060959 

19 300.01 38400 74839.36 27042.861 0.0139932 100020 100020 0 0.0053907 

20 300.01 56432 75880.08 15268.06 0.0144898 100020 100020 0 0.0042801 

21 200.01 90030 99633.84 2000.8 0.0080166 100020 100020 0 0.0038307 

22 300.01 68194 95077.2 10537.892 0.0069542 100020 100020 0 0.001187 

23 559.01 93050 99773.84 1400.8 0.0052568 97019 99899.96 600.2 0.0040857 

24 200.01 22516 26127.04 2788.9475 0.0762959 94140 99391.2 1459.3204 0.0069285 

25 200.01 22958 26773.68 1477.9093 0.0732316 97524 99920.16 499.2 0.0107656 
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fitting another local first-order model and obtain a new 
direction for the steepest descent. This step was repeated 
until the expected optimum area is found (if the response 
surface is unimodal). Here, the linear model is inadequate 
and shows significant lack-of-fit.  Therefore, 2- levels 
central composite designs experiments were conducted to 
fit second-order regression models [26]. From this model, 
the optimal values for the parameters were deduced using 
graphical methods like response surface plots and contour 
plots. On the other hand, it is possible for the tuning 
procedure to be terminated by the first-order model when 
the rate of improvement becomes small or insignificant. 
Finally, it should be noted that the underlying assumptions 
of the obtained regression models in the above mentioned 
stages were verified using the appropriate graphical and 
formal statistical approaches. On the other hand, we have 
used Box-Cox power transformation to correct the 
obtained dataset for normality assumption [26].   
We have identified an initial list of 12 parameters as shown 
in Table 4. We assume that these can influence the 
performance of BRGA. These parameters can be explained 
as follows.  

1) BGA part parameters;  BGA part has three parameters 
that can influence the performance of BRGA, which  are 
selection pressure (S), mutation probability (Pm) and 
number of assigned bits per gene or variable (Nbits). 
Selection pressure (S) is inversely affects crossover rate 
(Pcross) as shown in Eq. (8). The crossover operator is 
considered by many researchers to be at least very 
important for GA. Different values have been found to be 
optimal parameter settings for Pcross as shown in Table 4. 
On the other hand, it has been suggested by many 
researchers [27] that a good performance for GA can be 
guaranteed by using mutation operator with low mutation 
probability.  Table 4 shows different values recommended 
for mutation probability. Finally, the value of Nbits can be 
adjusted according to the problem domain of the specific 
problem at hand. However, identifying an optimal 
parameter value is important since it affects the quality-
effort balance of the algorithm. By increasing Nbits, we can 
enhance the ability of the BGA part to find better 
resolution solutions (according to the Eq. (3)), however 

such process can also increase time overhead of the 
algorithm itself. 

 
2) RGA part parameters; from the RGA part parameters, 
we selected   and Ncross to be included in the parameter 

tuning procedure. According to [11] plays a role in 

preserving the statistical characteristics of the population 
distribution. The authors showed though theoretical 
analysis and numerical experiments that the optimal value 
for this parameter is 0.5 for UNDX algorithm.  However, 
we would like to investigate how this value can be 
influenced by the synergetic effects between the RGA and 
BGA parts within BRGA. On the other hand, Ncross is that 
kind of parameters that affects both quality and time 
complexity of the algorithm. Increasing Ncross  can enhance 
the ability of UNDX in finding better solution; however it 
also increases the time overhead of the algorithm. Different 
values have been used for Ncross within the literature as 
shown in Table 4.  
3) Population size: it is one of the most important 
parameters that can affect the performance and time 
complexity of the GAs in general. According to analytical 
and experimental investigation done by Goldberg [28], 
selecting the suitable population sizing is essential to 
guarantee the success of genetic search in BGAs. However, 
different population size has been proposed as good 
settings for BGA as shown in Table 4.  For UNDX, on the 
other hand, the author in [11] used different population 
sizing of 50 for unimodal functions and 300 for 
multimodal functions.  
4) Hybrid scheme parameters: the hybrid scheme has 6 
parameters that can affect the ability of the hybrid scheme 
in regulating the synergetic effects between the cooperative 
algorithms. Since these parameters are novel ones, it is 
necessary to include them into parameter tuning procedure 
to gain some insight about optimal parameters range and 
the significance of these parameters to BRGA performance.  
In the experiments of parameter tuning, we usually located 
the initial range for these parameters around the values 
shown in the Table 4.  

Table 4: Initial list of the parameters 

Parameter Abbreviation Type Recommended values 

BGA part parameters 

S Real  0.5 [10], (Pcross = 0.95) [27] 

Pm Real  0.15[10], 0.01[27] 

Nbits Integer  Depends on specific problems at hand. 

RGA part parameters 
Sigma (  ) real 0.5 [11] 

Ncross Integer  5 [11] 

Population size POPsize Discrete (300,50) [11], 30[10] 

Hybrid scheme parameter 

Lamda_i (Γi) Integer  initial range located around 50 

Lamda_s (Γs) Integer initial range located around 

Κi Integer initial range located around 

Κs Integer initial range located around 

Omega (Φ) Real  initial range located around 0.05 

Phi (Ω) Real  initial range located around 0.3 
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So, Table 5 reports the obtained optimal parameter 
configurations by the tuning procedure for the benchmark 
functions. On the other hand, Table 6 summarizes the main 
outcomes the tuning procedure. It reports the cost of tuning 
in terms of FES and the shape of the response surface at 
the termination of tuning procedure. The most significant 
parameters refer to those which persist up to the 
termination of the tuning procedure. In case of termination 
at first-order model, only two of the most influential and 
statistically significant parameters were reported.  Finally, 
the shape of response surface at optimal configurations in 
case of second order model is illustrated in Fig. 4 (A&B).   
So, it is possible to argue that the performance of the 
BRGA is affected by the underlying problem 
characteristics. However, the parameter tuning procedure 
plays a vital role in picking up the interaction between the 
performances of BRGA against the specific problems at 
hand. By identifying the optimal values for control 
parameter, it was possible to secure a good performance 
for BRGA against a large spectrum of problems within the 
benchmark suite.  
Moreover, the parameter tuning procedure gives us 
valuable insights into the behaviour of the BRGA. Taken 
Tables 5 and 6 into consideration, it can be briefly 
summarized as the following.   
1) It is well known that conventional GAs performs 
poorly with small population sizes due to insufficient 
information processing.  However, the results of parameter 
tuning procedure indicate that better performance for 
BRGA can be obtained at smaller population size. So, 
BRGA behavior from this point is similar to that of Micro-

genetic algorithm.  
2) Due to the synergetic affects, the RGA parts exhibits 
different behavior when with normal UNDX algorithm. In 
UNDX, the value of σε plays a vital role in preserving the 
statistical characteristics of the new generations. So, it has 
been set to 0.5 [11]. However, the tuning procedure reveals 
that the RGA part acts as a population widening for some 
functions (the value of σε greater than 0.5). 
3) The results of the parameter tuning procedure confirm 
that the mutation-crossover scheme with relatively small 
mutation rate and moderate crossover rate is beneficial for 
the BGA part. However, there exceptions. The value of 
mutation rate is extremely small for F12, while the value of 
crossover rate is relatively large (or relatively small S 
values) for F1-2. On the other hand, the effect of resolution 
(or Nbits) was critical for the performance of BRGA 
especially for F3,F5-7,F9-11, F13-15 and F17 as it is clear 
from Table 6. 
4) The results of the parameter tuning procedure are 
important in clarifying the region of interest for the hybrid 
scheme parameters, which are newly proposed ones.  It is 
oblivious from Table 6 that the parameters which 
responsible on regulating the frequency of population 
handover (Ki and Ks) has been critical for the performance 
of BRGA in many cases. On the other hand, the effects of 
parameters which regulate the budget of RGA part (Гi and 
Гs) have been evident especially for F2-3, F7.  In addition, 
the relatively high value for Φ associated with low value of 
Ω suggests that the RGA part is less stringent to receive 
members from the BGA part at initial stages of the search, 
while it becomes more stringent at the final stages of the 

Table 5: Optimal parameters configurations 

F 
Hybrid Scheme Parameters 

POPsize 
BGA parameters RGA Parameters 

Γi Γs Κi Κs Φ Ω Pm S Nbits Ncross σξ 

1 40 44 46 30 0.06924 0.3 8 0.15 0.388394 13 15 0.9 

2 50 44 43 49 0.05 0.3 4 0.15 0.308664 16 9 1.5 

3 45 47 85 48 0.13869 0.195744 4 0.145472 0.432845 17 16 1.05 

4 30 30 30 30 0.05 0.3 20 0.15 0.5 10 30 0.5 

5 30 32 34 30 0.05 0.3 20 0.15 0.5 10 33 0.6 

6 30 37 43 35 0.068227 0.222166 20 0.15 0.5 16 12 0.866162 

7 30 22 61 74 0.05 0.137252 20 0.31498 0.5 19 30 0.689394 

8 30 30 36 38 0.05 0.3 4 0.126245 0.443884 10 23 0.5 

9 30 30 40 59 0.000347 0.3 20 0.15 0.5 5 30 0.5 

10 30 30 30 16 0.05 0.3 44 0.15 0.404154 4 29 0.491662 

11 30 30 12 30 0.05 0.3 36 0.15 0.5 4 22 0.5 

12 27 30 30 84 0.043126 0.3 4 0.023659 0.426096 10 30 0.932241 

13 30 30 84 30 0.05 0.3 20 0.15 0.5 12 30 0.430303 

14 30 51 50 13 0.082524 0.3 16 0.15 0.5 14 30 0.5 

15 30 35 30 34 0.05 0.3 52 0.130237 0.5 9 30 0.5 

16 30 30 26 30 0.05 0.3 44 0.15 0.5 3 18 0.5 

17 30 30 22 30 0.5 0.3 32 0.15 0.5 5 33 0.468097 

18 30 30 55 30 0.05 0.3 40 0.07401 0.5 8 30 1 

19 30 30 60 16 0.05 0.3 24 0.15 0.5 6 44 1 

20 30 30 30 30 0.05 0.3 36 0.15 0.5 6 32 1.15985 

21 30 30 30 26 0.05 0.3 52 0.15 0.5 6 18 0.774659 

22 30 58 70 30 0.05 0.3 52 0.15 0.5 8 30 0.723715 

23 30 30 30 30 0.105266 0.3 56 0.15 0.5 6 30 0.790051 

24 33 30 34 30 0.05 0.3 32 0.15 0.5 6 30 0.54146 

25 30 32 34 32 0.05 0.3 32 0.15 0.5 6 30 0.571519 
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evolutionary search. This relation has been critical for the 
performance of BRGA especially for F3, F6 and F9.  
Finally, it is evident that the parameter tuning procedure is 
computationally an expensive one. However, the payoff of 
this cost is the optimal control values and the insight into 
the behavior of the algorithm. BRGA is a stochastic 
approach and hybrid in nature. So, it is extremely difficult 
to use the formal methods to analyze the behavior of the 
BRGA or to predict the optimal values for the control 
parameters. Taking the limitation of the formal methods 
into consideration, it is even more difficult to predict the 
changes in the behavior of algorithm in response to the 
changes in the underlying problem characteristics.  

6. Conclusion and Future Work  

BRGA is a recent hybrid approach that relies on a 
parameterized hybrid scheme to share the computational 
power and control the interactions between two 
cooperative versions of GAs (BGA and RGA). In this 
article, we conducted experimental investigation to 
evaluate the performance of BRGA using CEC’2005 
benchmark function. The experimental results showed that 
BRGA succeeded in locating the global optimum or 
approaching the vicinity of it for 13 problems. The most 
challenging problems for performance of BRGA are those 
which uses high condition number, high condition number 
matrix and non-continues problems. On the other hand, 
BRGA shows a little sensitivity toward characteristics like 
noise, rotation, locating global optimum on bounds or 

outside initialization regions or locating it in challenging 
profiles. When compared with BGA, BRGA outperforms 
in all the cases. When compared with RGA, BRGA 
showed better quality and time performance for majority of 
the cases. The results are an indication that the adopted 
hybrid scheme was successful improving the performance 
of BGA and RGA components against the benchmark 
functions. Moreover, the experimental results showed that 
BRGA has a superior performance when compared with 
other state-of-the-art EAs that had been testified on the 
same benchmark suite under similar experimental 
conditions. In addition, the outcomes of parameter tuning 
procedure confirmed that BRGA is efficient in using 
memory since it uses small population sizes. Finally, the 
implemented parameter tuning procedure was 
computationally expensive. However, it was effective in 
identifying optimal parameter settings which secures a 
good performance for BRGA over a broad spectrum of the 
benchmark functions. Most importantly, it sheds some 
lights on the behavior and the internal mechanisms of 
BRGA. 
Important points within or current research agenda 
includes extending the algorithm to the constrained 
optimization problems by incorporating appropriate 
constraints handling techniques and applying it to complex 
real-world problems like the resource allocation problem 
in cloud platforms, which is a part of our  research agenda 
[29].Another possible directions for future work includes 
investigating the effectiveness of the hybrid scheme when 
the BGA part is implemented by more advanced BGAs 
versions and reducing the number of hybrid scheme 
parameters by fixing some of them or by introducing more 
innovative adaptive schemes. 

Acknowledgments 

We would like to express my sincere gratitude to the 
anonymous reviewers for their efforts and comments, 
which help considerably in improving the quality of this 
paper. Moreover, this work is supported by KAKENHI 
(No.22500196), Japan Society for the Promotion of 
Science. 

References 
[1] O. Abdul-Rahman, M. Munetomo and K. Akama, “An 

Adaptive Resolution Hybrid Binary-Real Coded Genetic 

Algorithm”, Proc.of the 16th International Symposium on 

Artificial Life and Robotics  (AROB 16th ’ 11), Jan. 

2011,pp. 359-362.Japan. 
[2] O. Abdul-Rahman, M. Munetomo and K. Akama, “An 

adaptive resolution hybrid binary-real coded genetic 
algorithm”, Journal of Artificial Life and Robotics, Springer, 
Vol. 16(1), 2011, pp. 121-124.  

[3] K. Krishnakumar, R. Swaminathan, S. Garg and S. 
Narayanaswamy, “Solving large parameter optimization on 
problems using genetic algorithms”, Proc. of the Guidance, 
Navigation, and Control Conference, 1995, pp.449-460. 

[4] M. Arakawa and I. Hagiwara, “Development of adaptive real 
range (ARRange) genetic algorithms”, JSME Intl. J., Series 
C, Vol. 41(4), 1998, pp. 969-977. 

Table 6: Outcomes of parameter tuning procedure 

F 
Most significant 

parameters 

Response 

surface at 

Termination 

Cost (FES) 

1 Nbits, σξ first-order 4.00E+06 

2 σξ , Ncross, Γi,Ki second-order 1.27E+07 

3 σξ , Ncross, Γs,Φ, Nbits second-order 1.27E+07 

4 Pm, POPsize, σξ, Ki second-order 6.98E+06 

5 
σξ , Ncross, POPsize, 

Nbits,Ki 
second-order 7.10E+06 

6 σξ ,Ω,  Ncross, Nbits second-order 6.05E+06 

7 σξ ,Nbits, Pm, Γs, Ks second-order 2.00E+07 

8 POPsize, Ks first-order 4.10E+06 

9 Nbits, Ks, Ki, Φ second-order 1.43E+07 

10 POPsize, Nbits, Ks second-order 2.55E+07 

11 POPsize, Ncross, Nbits, Ki second-order 1.43E+07 

12 σξ , Pm, Ks second-order 1.11E+07 

13 σξ , Nbits, Ki second-order 1.20E+07 

14 POPsize, Nbits, Γs first-order 1.26E+07 

15 POPsize, Nbits first-order 2.25E+07 

16 POPsize, Ncross, Ki second-order 1.46E+07 

17 σξ , POPsize, Ncross, Nbits second-order 1.74E+07 

18 σξ ,Ki first-order 1.48E+07 

19 σξ ,Ncross second-order 1.39E+07 

20 σξ ,Ncross, POPsize second-order 1.60E+07 

21 σξ ,POPsize second-order 4.23E+08 

22 σξ ,POPsize second-order 1.29E+07 

23 σξ ,POPsize first-order 1.03E+07 

24 σξ ,POPsize first-order 1.18E+07 

25 σξ ,POPsize first-order 1.18E+07 

 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 50

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



 

[5] A. Munawar, M.Wahib, M. Munetomo and K. Akama, 

2.00.9

1.5

1.0

1.1

1.2

5.0 1.0
7.5

10.0
12.5

Y1= Y^(5/100)

SG

NX

Lamda_i 50

Ki 43

Nbits 16

Hold Values

Surface Plot of Y1 vs Sigma, Ncross

F2

25

20

12

13

15

14

0.5

15

10
1.0

1.5

Y1 = ln(Y)

Ncross

Sigma

Lamda_s 47

Omega 0.1387

Nbits 17

Hold Values

Surface Plot of Y1 vs Ncross, Sigma

F3

0.20

1.3 0.15

1.4

1.5

0
10 0.10

20
30

Y1 = Y^(6/100)

Pm

POPsize

Ki 30

Sigma 0.5

Hold Values

Surface Plot of Y1 vs Pm, POPsize

F4

50

40
0.2

0.4

30

0.6

0.8

0.4 20
0.6

0.8

Y1 = Y^-(1/4)

Ncross

Sigma

Ki 34

POPsize 20

Nbits 10

Hold Values

Surface Plot of Y1 vs Ncross, Sigma

F5

1.0

0.8
0.3

0.4

0.6

0.5

0.1

0.6

0.2 0.4
0.3

0.4

Y1 = Y^(-1/4)

Sigma

Omega

Nbits 11

Ncross 25

Hold Values

Surface Plot of Y1 vs Sigma,Omega

F6

25

200.85

0.90

15

0.95

0.5 10
1.0

1.5

Y1 = Y^(2/5)

Nbits

Sigma

Lamda_s 45

Ks 52

Pm 0.2100

Hold Values

Surface Plot of Y1 vs Nbits, Sigma

F7

15

1.95

10

2.00

2.05

2.10

40
60 5

80

Y1 = Y^(1/2)

Nbits

Ks

Ki 40

Phi 0.0003468

Hold Values

Surface Plot of Y1 vs Nbits, Ks

F9

60

50
2.0

2.5

40

3.0

3.5

2 30
4

6

Y1 = Y^(1/2)

POPsize

Nbits

Ks 16

Hold Values

Surface Plot of Y1 vs POPsize, Nbits

F10

 
Fig. 4-A Second-order performance empirical models at optimal parameters configurations. 
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Fig. 4-B Second-order performance empirical models at optimal parameters configurations. 
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