
Software Metrics to Estimate Software Quality using
Software Component Reusability

Prakriti Trivedi1, Rajeev Kumar2

 1 Department of Computer Engineering, Government Engineering College,

Ajmer, Rajasthan, India

2 Department of Computer Engineering, Government Engineering College,
Ajmer, Rajasthan, India

Abstract
Today most of the applications developed using some existing
libraries, codes, open sources etc. As a code is accessed in a
program, it is represented as the software component. Such as in
java beans and in .net ActiveX controls are the software
components. These components are ready to use programming
code or controls that excel the code development. A component
based software system defines the concept of software
reusability. While using these components the main question
arise is whether to use such components is beneficial or not. In
this proposed work we are trying to present the answer for the
same question. In this work we are presenting a set of software
matrix that will check the interconnection between the software
component and the application. How strong this relation defines
the software quality after using this software component. The
overall metrics will return the final result in terms of the
boundless of the component with application.
Keywords: Components, Reusability, Quality, Estimation,
Metrics

1. Introduction

Software engineering deals with the development of
software systems. As the size of a software system
increased, new approaches of software development come
to the environment. These approaches include the object
oriented programming, component based programming,
aspect based programming etc. These approaches provide
a better view to present and develop a software system.
These approaches are very much inspired from the real
world and provide a systematic and rapid development
approach. In this proposed work we are basically dealing
with the concept of reusability that exists in all kind of
approaches. Here the object oriented and component based
approaches are considered as the main concept of software
reusability.

The code reusability means to use the existing
code or the component in a software system. This existing

code can exist in the form of some library, plug-in or
software other software code developed by the user. There
also exist different approaches to perform the reusability.
Such as Coupling, composition etc. Each kind of
interfacing has its own advantage as well as cost. In this
proposed we are also presenting these approaches also as
the cost estimator.

To understand the concept of component based
reusability, we need to understand the concept of
components, its type and accessibility. A software system
is the collection of different software modules or the
components that are integrated as the whole system. With
the inclusion of the software components the complete life
cycle of the software is changed. Now it needs to test and
estimate each software components individually, and if
these components are already in running mode in some
other application we need to just perform the interfacing
of the current application with these software components.
Now there is need to test and estimate the interfacing
between code and the software components. Here we are
presenting more clear view of software components and
the related reusability factor.

1.1 Software Components

Some basic properties of the software components are:
(i) A software component can be a code block,

module, function, class, control or the project or
software itself.

(ii) The software component can be language
dependent or language independent.

(iii) A software component can be end product or it
can be extendable.

(iv) A software component is the unit of interfacing
that conceptually specifies it’s internal and the
external interfacing with main application.

(v) A software component can also be a deliverable
software object.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 144

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

(vi) A software component can be online or the
offline product or code.

As we can see a software component is not an

individual term it is the basic concept that gives the
software reusability in some way. Any kind of internal or
interfacing in software in the form of individual
component is represented in the form of software
components.

Each of the software language defines most of software
components in different way.

Fig. 1 Software Components.

1.2 Component Based Software Engineering

As the most of business software uses the concept
component based development approach, because of this it
require more scientific approach to estimate the software
quality and the complexity. There was the requirement of
some improvement in the software development process as
well as in analysis of software system. It is one of the
reason that the developers think in a new direction to
estimate the software quality. There was requirement of
such an approach that was structured and the rule based.
Such an approach should be compatible to most of the
available software and the software development
processes. This gives the development of a new concept
called CBSD i.e. component based software development
[1].

Component-based software development (CBSD) is an
approach in which systems are built from well -defined,
independently produced pieces, known as components.
Some definitions emphasize that components are
conceptually coherent packages of useful behavior, while
some others state that components are physical,

deployable units of software which are executed within a
well defined environment [1].

1.3 Software Metrics

As the number of components available on the market
increases, it is becoming more important to devise
software metrics to quantify the various characteristics of
components and their usage. Software metrics are intended
to measure the software quality and performance
characteristics quantitatively, encountered during the
planning and execution of software development. These
can serve as measures of software products for the purpose
of comparison, cost estimation, fault prediction and
forecasting. Metrics can also be used in guiding decisions
throughout the life cycle, determining whether software
quality improvement initiatives are financially worthwhile
(Sedigh et al., 2001). A lot of research has been conducted
on software metrics and their applications. Most of the
metrics proposed in literature are based on the source code
of the application. However, these metrics cannot be
applied on components and component-based systems as
the source code of the components is not available to
application developers. Therefore, a different set of
metrics is required to measure various aspects for
component-based systems and their quality issues [2].

1.4 Software Reusability

Software reuse is the process of implementing or updating
software systems using existing software components. A
good software reuse process facilitates the increase of
productivity, quality, and reliability, and the decrease of
costs and implementation time. An initial investment is
required to start a software reuse process, but that
investment pays for itself in a few reuses [3].
In short, the development of a reuse process and
repository produces a base of knowledge that improves in
quality after every reuse, minimizing the amount of
development work required for future projects, and
ultimately reducing the risk of new projects that are based
on repository knowledge [4].

Why Reuse?

Reuse has been proven to offer many rewards. When we
reuse code, components and other artifacts, our goals are
to [5]:
 Reduce time to market.
 Reduce the cost of developing the product.
 Improve the productivity of the development teams.
 Improve the predictability of the development

process.
 Increase the quality and reliability of the product.

Software
Component

s

Java
Beans

ActiveX

COM
Objects

VBX Window
Services

Corba
Components

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 145

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

 When reuse is mentioned, we often think only of code
reuse.

This is perhaps one of the lesser productive forms of
reuse. That is not said it is of little or no value, just that
there are rewards to be gained in considering inheritance,
template, component, framework, pattern and domain
component reuse. Additional worthy candidates for reuse
are our previously created use cases, standards documents,
models, procedures and guidelines.
Reuse eventually saves us time and money, and will
ultimately lead to a more stable and reliable product.

Software development with reuse:
Software development with reuse is an approach which
tries to maximize the reuse of existing software
components. Benefit of this approach is that overall
development costs of the software are decreased [6]. Cost
reduction is only one potential benefit of software reuse.
Systematic reuse in the development offers further
advantages:

 System reliability is increased:
Reused components in working systems should
be more reliable than new components. These
components have been tested in variety of
operational systems environment and have
therefore been exposed to realistic operating
conditions.

 Overall process risk is reduced:
If we use a function which is already exists, there
is less uncertainty in the cost of reusing that in
the cost of development. For project management
this is important factor as it decreases uncertainty
in project cost elimination. If relatively large
components such as sub systems are reused then
this becomes true.

 Effective use defined by specialists:
Application specialists doing the same work on
different project environment instead these
specialists can develop reusable components
which encapsulate their knowledge.

 Organizational standards can be embodies in
reusable components:
We can reuse some standards such as user
interface standard which can be implemented as a
set of standard components.

Software reuse is the process of implementing or updating
software systems using existing software assets. A good
software reuse process facilitates the increase of
productivity, quality, and reliability, and the process of
costs and implementation time. An initial investment is
required to start a software reuse process, but that
investment pays for itself in a few reuses [7].

In short, the development of a reuse process and
repository produces a base of knowledge that improves in
quality after every reuse, minimizing the amount of
development work required for future projects, and
ultimately reducing the risk of new projects that are based
on repository knowledge.
Software component reuse does not just indicate the reuse
of application code. It is possible to reuse specification
and designs. The potential gains from reusing abstract
product of development process such as specifications
may be greater than those from reusing code components.

Software reuse enables developers to leverage past
accomplishment and facilitates significant improvement in
software Productivity and Quality. The Objective of this
research is to estimate the software quality on the basis of
Software reuse effectively.

2. Literature Survey

Software reuse enables the developers to leverage past
accomplishments and facilitates significant improvements
in software productivity and quality. The contribution of
this paper is a recommended process model for the
implementation of software reuse effectively. A critical
problem in today’s practice of software reuse is the lack of
a standard process model which describes the necessary
details to support reuse based software development and
evolution [8] Software has been reused in applications
development ever since programming started. However,
the reuse practices have mostly been ad hoc, and the
potential benefits of reuse have never been fully realized.
Most of the available software development
methodologies do not explicitly identify reuse activities.
The Application of Reusable Software Components
Project of the Software Engineering Institute is developing
a reuse-based software development methodology, and the
current direction and the progress of the methodology
work are discussed in this paper. The methodology is
based on the life cycle model in DoD-STD-2167A with
refinement of each phase to identify reuse activities [9].
The reuse activities that are common across the life cycle
phases are identified as: 1) Studying the problem and
available solutions to the problem and developing a reuse
plan or strategy, 2) Identifying a solution structure for the
problem following the reuse plan, 3) Reconfiguring the
solution structure to improve reuse at the next phase, 4)
Acquiring instantiating, and/or modifying existing
reusable components, 5) Integrating the reused and any
newly developed components into the products for the
phase, and 6) Evaluating the products. These activities are
used as the base model for defining the specific activities
at each phase of the life cycle. This methodology focuses

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 146

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

more on identification and application of reusable
resources than on construction of reusable resources, and
some enhancements in the construction aspect might be
necessary to make it more complete [9].

The component reuse and maintenance requires the
development and utilization of specialized tools. In order
to be correctly used, any software components need to be
properly understood, engineered and catalogued. Different
information about components had to be organized,
developed and retrieved during the process. In this paper
we discuss a methodology based on Information Retrieval
techniques, for automating cataloguing existing software
components. We describe with an experiment the
utilization of the system with prototype examples of reuse
and maintenance and finally we evaluate the results of the
experimental phase [10]. Software reuse enables
developers to leverage past accomplishments and
facilitates significant improvements in software
productivity and quality. Software reuse catalyzes
improvements in productivity by avoiding redevelopment
and improvements in quality by incorporating components
whose reliability has already been established. This study
addresses a pivotal research issue that underlies software
reuse—what factors characterize successful software reuse
in large-scale systems? The research approach is to
investigate, analyze, and evaluate software reuse
empirically by mining software repositories from a NASA
software development environment that actively reuses
software [11].

This software environment successfully follows principles
of reuse-based software development in order to achieve
an average reuse of 32 percent per project, which is the
average amount of software either reused or modified
from previous systems. We identify two categories of
factors that characterize successful reuse-based software
development of large-scale systems: module design factors
and module implementation factors. The modules reused
without revision had the minimum faults, per source line,
and lowest fault correction effort. The modules reused
with major revision had the highest fault correction effort
and highest fault isolation effort as well as the most
changes, most changes per source line, and highest change
correction effort. In conclusion, we outline future research
directions that build on these software reuse ideas and
strategies [11].

A framework in which to study software productivity.
Approaches to understanding software development
processes and improving software productivity also
discussed include using and designing automated software
development tools, studying human factors in software
development, and applying software productivity

measurement and evaluation techniques. A meta-system
environment that allows users to define functionalities,
structures, and constraints of various software components
is discussed. Information about these components is used
by a knowledge-based system to support the selection,
configuration, and distribution of reusable components
[12].

One of the primary obstacles to the reuse of
independently-developed binary components on the
industrial level lies in that the existing component
technologies do not clearly separate component assembly
from component development. To tackle this problem
[13]. A new system was proposed a component assembly
method, and a runtime framework, which together
amounts to what we call Active Binding Technology. This
new component model suggests how to make software
components as pure parts, and the assembly method
expresses message flows between these components in a
model, while the runtime framework performs dependency
injection to make the components interact with each other
observing type safety constraints [14].

An empirical study of methods for representing reusable
software components is described. Thirty-five subjects
searched for reusable components in a database of UNIX
tools using four different representation methods:
attribute-value, enumerated, faceted, and keyword [15].
The study used Proteus, a reuse library system that
supports multiple representation methods. Searching
effectiveness was measured with recall, precision, and
overlap. Search time for the four methods was also
compared. Subjects rated the methods in terms of
preference and helpfulness in understanding components.
Some principles for constructing reuse libraries, based on
the results of this study, are discussed [16].

3. Proposed Work

Here we are performing an analysis of available software
matrices in terms of software reusability .As these metrics
are defined we will generate a system metric on
combination of some independent matrices and derive the
decision on the basis of it. As the basic concept the
complete code will be represented as the software
components, it can be a source code or some library or the
components and then we will establish the relationship
between these components and this whole relationship will
be represented in the form of a directed graph. This whole
part will be represented in the form of data acquisition.
Now once all of the components related to the system are
derived along with their relationships between them, we
need to assign some weightage to each interfacing. We can

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 147

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

also represent the weightage on the bases of degree in the
connected graph. As shown in following figure 2.

Fig. 2 Software Component Interfacing.

As the basic initialization done we need to define some
metrics that will analyze these concepts respective to a
separate relation type such as interface metric.

From the above figure we know that there are some
interactions between component A to B (Single
directions), from A to C (both direction), from A to D
(single direction), between B to D (both directions) from
D to C (single direction), D to F (both direction), and E to
C (single direction), F to E (single direction).

Now to estimate the software reusability in terms of
software components we estimate the following matrices.

3.1 System Coupling Metrics

The system Coupling Metrics (SCOUP) for CBSS will be

 (1)

Here is the Coupling metrics for component j and m

is the number of the components in CBSS [16]. We use
number of components is six, so m=6.
The output obtain in the above example is SCOUP =
2.7253.
3.2 System Cohesion Metrics

The system Cohesion Metrics (COM) for CBSS will be

 (2)
Here is the Cohesion metrics for component j and

m is the number of components in CBSS [16]. We use
number of components is six, so m=6.
The output obtain in the above example is SCOUP
=1.2226.

3.3 System Actual Interface Metrics

According to above table the measurement of actual
interactions for a component j, System Actual Interface
Metrics (SAIM) is the integration of the interface metrics
of the total number of components [16].

 (3)
Here m is the number of components.
The output obtain in the above example is SAIM =1.6043.

3.4 Sole System Complexity Metrics

Similarly, we need to compute a sole system complexity
metrics (SSCM), so we may combine above three system
metrics with different weights for each metrics [16].

 (4)

Here’ , and are the weights for system coupling

metrics, cohesion metrics, interface metrics with the
condition as .
The output obtain in the above example is SSCM

=2.0884.

Fig. 3 Results of Proposed System.

In the above figure all the matrices are collectively defined
for the system. Complexity The above figure represents
the complexity as 2.7253 (SCOUP), 1.2226 (SCOH),
1.6043 (SAIM) and 2.0884 (SSCM) have hardly any
meaning for themselves. However, when such data are
used to compare the complexity levels among several
software systems, the developers will know which CBSS
needs more people and more time during the coding and
testing stages, or they may expect the vulnerabilities will
happen in which component according to the complexity
metrics.

4. Conclusion

The proposed work is about to estimate the software
reusability in a software program. Software components
are one of the major factors that provide the software
reusability. The system will check that the use of the

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 148

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

component based approach in the system is favorable to
the system or not.

References

 [1] Arun Sharma, Rajesh Kumar, P S Grover, “Managing
Component-Based Systems with Reusable Components”,
International Journal of Computer Science and Security,
Volume 1: Issue (2).

 [2] Hironori Washizaki, Hirokazu Yamamotoand Yoshiaki
Fukazawa, “A Metrics Suite for Measuring Reusability of
Software Components”, 2005.

 [3] Jagdeep Kaur Saini, Amitabh Sharma, Dr. Parvinder S.
Sandhu, “Software Reusability Prediction using Density
Based Clustering”, 2006.

 [4] G.N.K. Suresh Babu, DR.S.K.Srivatsa, “Analysis and
Measures of Software Reusability”, International Journal of
Reviews in Computing 2009.

 [5] Jo Woodison, Managing Software Reuse with Perforce”,
Mandarin Consulting.

 [6] Maurizio Pighin “A New Methodology for Component
Reuse and Maintenance” University degli Studi di Udine,
Italy.

 [7] K. S. Jasmine, and R. Vasantha, “DRE - A Quality Metric
for Component based Software Products”, World Academy
of Science, Engineering Technology 34, 2007.

 [8] Jasmine K.S, Dr. R. Vasantha “A New Process Model for
Reuse Based Software development Approach” Proceedings
of the World Congress on Engineering 2008 Vol IWCE
2008, July 2 - 4, 2008, London, U.K.

 [9] Kyo C. Kang, Sholom Cohen, Robert Holibaugh, James
Perry, A. Spencer Peterson, “A Reuse-Based Software
Development Methodology”, Software Engineering Institute
Carnegie Mellon University, Pittsburgh, Pennsylvania
15213.

 [10] Richard W.Selby, “Enabling Reuse-Based Software
Development of Large-Scale Systems”, Northrop Grumman
Space Technology, One Space Park, Redondo Beach, CA
90278.

 [11] Jay F. Nunamaker, Jr.Minder Chen “Software Productivity:
A Framework of Study and an Approach to Reusable
Components”, Department of Management Information Systems,
the University of Arizona Tucson, Arizona 85721.

 [12] Yoonsun Lim, Myung Kim, Seungnam Jeong and Anmo
Jeong “A Reuse-Based Software Development Method”
Dept. of Computer Science & Engineering, Ehwa Womans
university,120-750 Seoul, Korea.

 [13] William B. Frakes and Thomas P. Pole “An Empirical Study
of Representation Methods for Reusable Software
Components”, IEEE transactions on software engineering,
vol. 20, august 1994.

 [14] McClure, Carma McClure, “Software Reuse Techniques”,
Prentic-Hall, Inc., 1997.

 [15] [Yu, 1991] D. Yu, "A view on Three R’s (3Rs): Reuse, Re-
engineering, and Reverse Engineering," Software
Engineering Notes, Vol. 16, No. 3, P. 69, July. 1991.

 [16] Jianguo Chen, Hui Wang, Yongxia Zhou, Stefan D. Bruda
“Complexity K. Metrics for Component-based Software
Systems”, International Journal of Digital Content
Technology and its Applications, Volume 5, 2011.

Asst. Professor. Prakriti Trivedi received his BE
(Computer Science & Engg.) from MBM
Engineering College Jodhpur in 1994, ME
(Computer Science & Engg.) from NITTTR,
Punjab University, Chandigarh, India. She has
teaching experience of more than 15 years (from
Aug 1995) in the field of engineering. She is
presently working as Head of Department (CS &
IT) in Govt. Engg. College Ajmer, Rajasthan India.
She has several papers published in international &
national journals and presented papers in
international and national conferences. She is also
responsible person in different administrative
department.

Rajeev Kumar has received his B.Tech degree in
(Computer Science & Engg.) from BBIET&RC
Bulandshahr (Uttar Pradesh Technical University,
Lucknow) in 2007 and pursuing M.Tech from Govt.
Engg.College Ajmer (Rajasthan Technical
University, Kota). He has presenting several papers
in international & national conferences. His research
interests include Component based software Reuse,
software Architecture, Verification Testing etc.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 149

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

