
Improving Regression Testing through Modified Ant
Colony Algorithm on a Dependency Injected Test Pattern

Dr.K.Vivekanandan

Reader, Department of School of Management,

Bharathiar University,
Coimbatore - 641 046, Tamil Nadu, India

G.Keerthi Lakshmi
Research Scholar, Department of Computer Science,

 Bharathiar University,
Coimbatore - 641 046, Tamil Nadu, India

ABSTRACT
Performing regression testing on a pre production
environment is often viewed by software practitioners as a
daunting task since often the test execution shall by-pass the
stipulated downtime or the test coverage would be non linear.

Choosing the exact test cases to match this type of complexity
not only needs prior knowledge of the system, but also a right
use of calculations to set the goals right.

On systems that are just entering the production environment
after getting promoted from the staging phase, trade-offs are
often needed to between time and the test coverage to ensure
the maximum test cases are covered within the stipulated
time.

There arises a need to refine the test cases to accommodate the
maximum test coverage it makes within the stipulated period
of time since at most of the times, the most important test
cases are often not deemed to qualify under the sanity test
suite and any bugs that creped in them would go undetected
until it is found out by the actual user at firsthand. Hence

An attempt has been made in the paper to layout a testing
framework to address the process of improving the regression
suite by adopting a modified version of the Ant Colony
Algorithm over and thus dynamically injecting dependency
over the best route encompassed by the ant colony.

Keywords

Regression testing, Software Testing, Ant colony,
Dependency Injection

1. INTRODUCTION
Testing out the software delivery artifacts which is automated
in the latest cutting edge technologies,, say the hourly agile
builds in a real-time system and taking out the best build that
is deemed to get qualified as a stable build is a tedious and
time bound task, where the heuristics are to be applied at
tandem, which constitutes the most effective test cases that
could pave way to catch the high priority bugs.

On the other hand, dealing with high density of data
transmissions that span least in megabytes is nowadays
increasing due to the advent of more people connected on the
Go. With the advent of smart phones that produce real time
statistics like maps and weather that involves transmitting to
the near broadcasting point to avoid delay in response, the
applications that work beneath these phones are to be

intelligent and cloud enabled that provide the services
involving distributed spatial data. Testing these systems
without dealing effective way of dealing with the high
volumes of data is inevitable.

Each data transmission task consumes a finite bandwidth of
network resources and time, and empowering such a request
for testing would normally lead in failure of accomplishment
of test objectives, as they are time and resource bound.

Most end point services use the load balancer (Fig 1) which
decides on the appropriate cloud point (worker) to be called
on these situations. The database nodes are connected in real-
time with a snapshot replication for maintaining data integrity.

Fig 1 A Typical Cloud Hosting Architectural Environment

On Most cases, the service end point listens on the advertised
point through the publicized protocol, which usually vary
based on the domain cross functional requirements. There is
also a possibility of multiple bindings running at a specified
service end point to cater to various type of clients.

The end point request is finally tunneled to a single stream of
processing thread despite presence of multiple bindings where
the service is responded with the appropriate high density
bandwidth data information.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 593

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

1.1 Choosing the right testing strategy

Testing an application that is seeded at multiple locations like
cloud service that carries high density of information across
involves testing the individual end points by contacting the
load balancers through seeding the cloud at every point of
service end point and then awaiting for the response and
validating the actual results against the expected results.

if an endpoint fails out the test strategy can be changed by
referring to the next available service end point without
sacrificing the intermediate test results arrived so far at. This
being the advantage of cloud environment over the
conventional distributed environment is that during testing a
business case.

The test environment need to take the alternate course of
action upon detecting the tip of failure and need not wait for
the complete failure to happen before declaring the test case
as failure. The test environment must also be continuously
learning from its mistakes and able to apply the learning
towards the reduction of the testing time. Also, in real world
situations the test service cannot take on the complete
production bandwidth for testing, and also testing the
production environment needs to be quick and resource
conscious.

2. CHOOSING THE BEST COVERAGE
PATH

All the test cases regression testing in the pre-production
environment boils down to a NP-Hard problem which
involves finding the least-cost cyclic route through all nodes
of a weighted graph.

The first step of the problem is to apply ACO across
computing the best order of traversal from the starting test
case so that the maximum coverage is obtained.

In this case, the test cases are not executed but are just
estimated for the best possible travel paths.

Dependency injection is defined as a design pattern evident in
object-oriented computer programming whose primary
purpose is to improve testability of the target system and thus
simplify the deployment of components in large software
systems.

Allowing the option to choose among multiple
implementations of a provided interface at runtime, or via
configuration files, which would be picked up at runtime is
the primary purpose of the dependency injection pattern. The
pattern is mostly useful in providing the fake or mock test
implementations of complex components when adopting the
process of testings.

Unit testing of components in large software systems is
difficult, because components under test often require the
presence of a substantial amount of infrastructure and set up
in order to operate at all. Dependency injection simplifies the
process of bringing up a working instance of an isolated
component for testing. Because components declare their
dependencies, a test can automatically bring up only those
dependent components required to perform testing.

More importantly, injectors can be configured to swap in
simplified "mock" implementations of dependent components
when testing -- the idea being that the component under test
can be tested in isolation as long as the substituted dependent
components implement the contract of the dependent interface
sufficiently to perform the unit test in question.

Using dependency injection, the components that provide
access to the online service and back-end databases could be
replaced altogether with a test implementation of the
dependency interface contracts that provide just enough
behavior to perform tests on the component under test.

An attempt is made in this paper to apply the concept of
Partial Dependency Injection over the testing of the
distributed cloud environment involving the spatial data.

A simple cloud based Ecommerce solution that sells out
digitized media recording on the fly to the customers is
considered for testing. The application is resident over various
cloud endpoints as against a server farm technology the most
of the ecommerce web solutions offer currently.

The results are compared with the testing of cloud by using
the load balancer method that is in operation currently.

The results clearly indicate the dependency injection having a
clear edge over the conventional testing method, with the
advantages of mocking out an endpoint operation with the
existing results of the service provided the service is stagnant
in maneuverability.

3. THE EXISTING SYSTEM

The current system is an ecommerce portal which sells all
sorts of digitized portfolio – like providing real time map
service, streaming out a live –in concert over the web upon
fulfillment of payment to selected users, selling other
ecommerce products like normal websites offer including
books, CD’s etc..,

We studied the existing system by laying out the
complete architecture of the system – The current system is
cloud enabled by providing various service endpoints at geo-
locations. All requests to the service reach the load balancer,
which actually decides the service point which is capable of
servicing the load based on the location of the request. The
subsequent requests are directly carried out directly by the
participating endpoint.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 594

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

The endpoint intimates the load balancer about success or
failure of the operation on the following occasions:

a. When the process is successfully completed,
releasing the DMA token it shared with the
client, granted by the load balancer.

b. When the process could not be completed,
encountering a catastrophic failure. The load
balancer senses the failure and takes the
alternate course of action by determining the
next service end point and contacting it from
the last point of failure. In this occasion, the
client is totally unaware of this switch made by
the load balancer and that is the advantage of
hosting over a cloud.

c. Over periodic intervals, the end point intimates
the load balancer about the progressing point
as a heart beat signal.

We simulated the behavior of the existing system after
concluding the architecture and documented the various
artifices that are needed to test the system. We choose the
streaming model to virtualizes, as it was unusually different
from the normal ecommerce business, which would pay way
for effective test case generation and corner case
identifications.

The Ecommerce cloud had 6 sources of generation across the
geographic locations, one hosted in North America, one in
Brazil, next 2 in France and Ireland. In APAC, it was hosted
in India and japan, featuring a complete geo-clustered cloud.
Each of these sources was supplied with fail-over support,
24/7 uninterrupted access and checking of vital information
over the dashboard which is accessible in various channels
like over web, smart phone light weight application and over
the access of remote desktop.

The load balancer was registered with the DNS (Domain
name server) over an IP address which would be known to
the callers

3.1 The Testing Approach

Upon careful analysis of the system and analyzing the entire
serviceable endpoint and the environment, the testing
objectives were not to be myriad that the normal web testing
methods which could have been implemented using a load
tester software or the selenium.

 The intention of the testing is below:

a. To cover the maximum coverage criteria
b. To attain (a) within the best available time
c. To use the limited set of resources as the

testing directly affects the enduser bandwidth
since we are testing on the production
environment.

4. EXISTING APPROACH

The story board technique was used in arriving at
the test cases and a complete suite contained of the
following test case:

a. A customer logs in to the system
b. Customer checks the various live-in concerts/ live

feed copyrighted movies available for the day
c. Customer chooses a concert and a sample of the

clipping is streamed to the customer from the site
for a stipulated duration.

d. Customer decides to go for the concert and
completes the payment processing formalities.

e. Customer is given a direct link to view the concert /
copyrighted movie for a particular duration for the
generated IP address.

The normal testing approach is not to test the QoS
parameters, but to effectively test this live scenario in the
production environment without stealing the devoted
bandwidth allocated to the real customers.

 A total of 6 test cases was framed covering the
above mentioned scenario and was executed over 4 users
who were from India. The offset of the other users
wasn’t taken into account as we were measuring the test
execution times for Indian users only.

 The user 2 was introduced to the system 10 seconds
after the other users have logged in to deal with dead-
lock starvation handling and the results to execute the
test cases are tabulated below:

Table: 1 Output Metrics of the Current System

(In Seconds)

 Tc1 Tc2 Tc3 Tc4 Tc
5

Tc6 Total
(mm:ss)

keerthi 11 34 14 443 3 8 08:55

Vivek* 12 21 23 1027** 3 9 20:04

User3 17 22 8 385 2 9 07:38

User 4 14 28 44** 457 3 9 09:25

Total time: 20:04

* Started at 00:10

** Retip of the service end point to the LB

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 595

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

 Table 2: Code/ Statement Coverage

 Tc1 Tc2 Tc3 Tc4 Tc5 Tc6

keerthi 100 90 - 100 - 100

Vivek 100 75 - 100 - 100

User3 100 90 - 100 - 100

User 4 100 75 - 100 - 100

 Tc3 and Tc5 were not put in for code coverage as
they had streaming and a direct link respectively, where there
was no code to cover.

While we ran the entire scenario 3 times, the results above are
for the iteration 2. The system retipped to the load balancer
twice – first time at 00:52, when all the four users were active
at executing Tc3 that the APAC cloud gave up when the user4
accessed the system, causing the delayed execution of Tc3 for
user 4, which is greater than average of 23+14+8 /3 = 15. The
retipping happened at 10th second after User4 had pipelined to
the machine at test case Tc3, causing another 30 seconds to
fetch from the next APAC server at Japan.

 The second retipping happened at around 01:54
when the Tc4 was executing, which was to provide a sample
clip of the streaming, which collapsed the entire end point
from recovery and brought in the fail-over protection node
end point to action. Meanwhile , the load balancer detected
the heart beat was missing from the end point and it routed the
request to the next serviceable endpoint. When the service end
point was restored back by the failover node cluster, the heart
beat had resumed and the load balancer again started
streaming from the same end point which caused the failure.
The end user experience was the streaming was continuous
with good QoS, but with 3 times resuming the same clips as a
result of which the total execution time creped up above 20
minutes, featuring the segment highest.

5. PROBLEMS IN THE EXISTING
APPROACH

Though the current approach is versatile in terms of
completeness of the system, it would be skeptical to deal with
the current approach in terms of execution times when it
comes to deal with scalability. A few of the drawbacks are as
listed below:

A. The test case execution engine always relies on load
balancer to post the request and get the response.
Those this may sound fairly simple, on occasions
when the retipping happens, the execution engine
gets no clue and had to wait on the load balancer to
complete the response.

B. On the systems where the test execution is limited
to time, it is not possible to tune the system to
attribute to the complete coverage. For Example, the
tests cannot be flexed if a definite time interval is
given for execution.

C. There is no option to bye-pass the scenario and
continue the testing. For e..g.: if implementation for
Tc4 is kaput, the load balancer has no alternative
course of action than to return a failure to the caller,
thus not proceeding with the testing. Tc4 is a sample
renderer and most users may opt to bye-pass it and
continue their purchase for the live-in concert.

6. THE PROPOSED SOLUTION

The following metrics are derived and are used for
computations.

The idea is to analyze the records of the existing test runs and
compute the decision of introducing a dependency injection
container called “Mock”, if the scenario reaches any of the
below conditions:

a. The Bug Contribution Ratio is less than the Average
Contribution Ratio

b. The time for execution of the test-case is greater
than the average time of execution.

c. The provided net test execution time is less than the
sum of individual test case execution times.

7. STEP 1: DETERMINE THE
OPTIMAL PATH BY MODIFIED
ANT COLONY ALGORITHM

The observation of real ants in nature is the inspiration of this
original algorithm. Each ant is considered blind, weak and

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 596

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

almost insignificant. Yet, as a team they express strength by
cooperative living and survival and demonstrate complex
behavior. Finding the shortest route to the food zone is
regarded as the natural behavior of ants.

Ants lay down special chemicals called "pheromones." When
ants start using a specific path frequently for travelling, the
pheromone concentration on it increases, other ants tend to
follow this path which has got highest concentration of the
pheromone.

 An ant is placed randomly in each service point of the test
case and, during each iteration, chooses the next testcase to go
to. Dorigo (11) describes the below formula which chooses
the choices.Each ant located at place i traverses to a place
 j selected among the test-cases, where the probability of not
visiting is inferred as:

 where:

 is the probability that ant k in service
point i will go to servicepoint j.

 is the set of service points that have
not yet been visited by ant k currently in service
point i.

 is the relative importance of the pheromone
trail.

 is the relative importance of the distance
between the testcases (often determined during test
strategy formation).

The exact probability of a test case getting choosen matters
how much pheromone already exists on that path. By

changing the and parameters, we can find out which of
these has larger weight. When a tour is finished completely,
the next step is to calculate the pheromone evaporation of the
edges. The following formula (11) is used to calculate the
quantity of pheromone deposits of the ant on the complete
traversal

if , where:

 multiplies the pheromone
concentration on the edge between
cities i and j by p(RHO). The value of
this constant of evaporation lies between
zero and one, when set low it rapidly
evaporates and vice versa.

 is the amount of
pheromone an ant k deposits on an edge,

as defined by which is the length of
the sample space that originated from this
ant. As a natural tendency it can be
inferred that short distance of traversals
will yield a graph which has highest
concentrate of in pheromone on the
edges.

8. STEP 2 INJECT DYNAMICALLY
THE NEEDED DEPENDENCIES

The idea of Dependency Injection, originally coined
by Martin Fowler in 2004, states that: “Do not instantiate
the dependencies explicitly in your class. Instead,
declaratively express dependencies in your class
definition. Use the test engine to obtain valid instances of
your object's dependencies and pass them to your object
during the object's creation and/or
initialization”.

Fig 4 –Dependency Injection Architecture on Test Bed

In our case of distributed cloud, the test engine is
the actual Builder which creates the Class-A, which
involves a real object, i.e., testing the load balancer. The
test engine then creates a service-A which has the similar
properties of class-A but whose implementation is
mocked up as it has injected the dependency into it upon
reading the public interface of Class-A. The subsequent
requests to the test engine are decided based on the
available time whether to use the direct implementation
or proceed with the mock implementation.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 597

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

 The test engine also partially switches
from real object to mock object if it realizes the current
run time of a particular test case has gone above the
average run time and its BCR is less than ACR.

Table:3 Proposed Algorithm Psedo-Code

DynamicMock dataAccess = new
DynamicMock(typeof(ICloudDataAccess));

Ecom mockecom = new Ecom
((ICloudDataAccess)dataAccess.MockInstance);

Ecom realecom= new Ecom ();

While(test suite complete or execution time elapsed==
false)

{ if(bug found==true) { report and return to next case; }

If(BCR < ACR && test is insignificant)

{

Realecom=Mockecom.createInstance();

Exit();

}

realEcom.doOperations();

The proposed implementation is made on the simulated results
of the existing system and the actual results are tabulated as
below:

Table: 3 Output Metrics of the Current System

(In Seconds)

 Tc1 Tc2 Tc3 Tc4 Tc
5

Tc6 Total
(mm:ss)

keerthi 11 34 14 443 3 8 08:55

Vivek 12 21 23 45 3 9 01:53

User3 17 22 8 45 2 9 01:41

User 4 14 28 2* 45 3 9 01:41

Total time: 10:48

The second user is not similarly started 00:10
seconds as in the existing system testing, but instead is started
at 09:05 minutes as the first user has finished testing, which
constitutes the “Dry-Run” phase of the system. When Tc4 is
evaluated, it constitutes above the average time and hence the
mock object is evaluated instead of the real object thereby
concurring only 45 seconds for the direct playback time to
elapse, improving the system.

For the second and subsequent iterations, all the
other users programmatically start at the same time. When the
TC4 is evaluated, due to the load, the server had a retip
causing the heart beat signal to fail, the test engine senses this
immediately and provides a mock response, which yields http
status code 200, and response same as the previous iteration
testing, which informs the client application to proceed further
with the tests.

If the test engine is configured for 100% coverage, then it
behaves like the existing system and no mock is switched over
in case of tipping.

9. CONCLUSION

The concept of Dynamic injection is so powerful that when
combined with Artificial intelligence techniques for
computing testing strategies with an option to include
Decision Sub system, it performs excellently to reduce the test
execution time and not compromising on test run quality.

The implementation is also subjective to catch the bugs till the
point mock instance takes over so that early bugs in the
system can be easily detected in the production environment
without consuming enough of bandwidth.

10. REFERENCES
[1] Armando Roggio Ecommerce Know‐How: Cloud
Computing in the Ecommerce Forecast in Practical‐
Ecommerce, April 2009
 [2] Atul Jain Impact of Cloud Service Models on eCommerce,
HCL Blogs, 2010
 [3]D.Chays,Y.Deng,P.Frankl,S.Dan,F.Vokolos,and E.Weyuker.
An agenda for testing relational database
applications.SoftwareTesting,Verification and Reliability,1
4:17‐44, Mar 2004.
[4]Y.Deng,P.Frankl,andJ.Wang. Testing of web database
applications.In Workshop on Testing, Analysis and
Verification of WebServices, July2004.
[5]S.Elbaum, G.Rothermel, S.Karre, and M.Fisher.Leveraging
user session data to support web‐application testing. IEEE
Transactions on Software Engineering, May 2005.
[6]J.A.JonesandM.J.Harrold. Test suite reduction and
prioritization for modified condition/decision coverage. IEEE
TransactionsonSoftwareEngineering,29(3),March2003.
[7]E.Kirda,M.Jazayeri,C.Kerer,and M.Schranz. Experiences in
engineering flexible webservice. IEEE MultiMedia, 8(1):58–
65,2001
[8]http://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shu
ffle
[9] Edwards, W. and Barron, F.H. "SMARTS and SMARTER:
Improved Simple Methods for Multiattribute Utility
Measurement", Organizational Behavior and Human Decision
Processes, 60, (1994), pp. 306–25.
[10] http://www.martinfowler.com/articles/injection.html
[11] Buckland M, Artificial Intelligence Techniques for Game
Developers, Premier Press, Jan 2002.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 598

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

