
Identification of Nominated Classes for Software Refactoring
Using Object-Oriented Cohesion Metrics

Safwat M. Ibrahim1, Sameh A. Salem1, Manal A. Ismail1, and Mohamed Eladawy1

 1 Department of Electronics, Communications & Computers, Faculty of Engineering, Helwan University.
Helwan, Cairo, Egypt

Abstract
The production of well-developed software reduces the cost of
the software maintainability. Therefore, many software metrics
have been developed to measure the quality of the software
design. Measuring class cohesion is considered as one of the
most important software quality measurements. Unfortunately,
most of approaches that have been proposed on cohesion metrics
do not consider the inherited attributes and methods in measuring
class cohesion. This paper provides a novel assessment criterion
for measuring the quality of a software design. In this context,
inherited attributes and methods are considered in the assessment.
This offers a guideline for choosing the proper Depth of
Inheritance Tree (DIT) that refers to the nominated classes for
refactoring. Experiments are carried out on more than 35K
classes from more than 16 open-source projects using the most
used cohesion metrics.
Keywords: Class Cohesion, Metrics, Quality, Software
Measurement, Refactoring, Inheritance.

1. Introduction

Class cohesion is defined as the degree of the relatedness
of the members in the class [2], [3]. Various metrics were
developed to measure the similarity between the class
elements. Many cohesion measurements are based on the
Low-Level Design (LLD) information. LLD class cohesion
metrics require to analyze the algorithms used in the class
methods or the code itself (if available) in order to
measure the class cohesion [1], [2]. Another approach for
class cohesion measurement is based on the High-Level
Design (HLD) information. HLD class cohesion metrics
rely on information related to class and method interfaces
[2]. Many of the proposed LLD cohesion metrics focus on
measuring the correlation between pairs of methods in the
class. Such as Chidamber and Kemerer Lack of COhesion
in Methods (LCOM1 and LCOM2) metrics [6], [7],
Bieman and Kang Tight Class Cohesion (TCC) and Loose
Class Cohesion (LCC) metrics [4], Badri et al. Lack of
Cohesion in the Class-Direct (LCCD) and Lack of
Cohesion in the Class-Indirect (LCCI) metrics [3], and
Bonja and Kidanmariam Class Cohesion (CC) metric [5].

Generally, a pair of methods is correlated if a common
attribute is used (either directly or indirectly) or via
method invocation.

Alternatively, Henderson-Sellers [8] proposed LCOM3
metric as a different approach for measuring the class
cohesion by measuring the attribute-method correlation.
Because the LCOM3 metric has a drawback as it is not
normalized into ranging between 0 and 1, Braind et al. [6]
proposed the Coh metric by enhancing the LCOM3 metric
to be normalized.
Bieman and Kang [4] introduced the concept of tight and
loose class cohesion; Badri et al. [3] enhanced both TCC
and LCC metrics by including the methods invocation in
measuring the cohesion value.

For the analysis of the class cohesion, Braind et al. [6]
defined two options concerning the inherited attributes and
methods:

1. Exclude the inherited attributes and methods
form the analysis.

2. Include the inherited attributes and methods in
the analysis.

If the inherited attributes and methods are excluded, this
approach analyzes to what degree this extension represents
a single semantic concept [6]. If the inherited attributes
and methods are included, this approach analyzes whether
the class as a whole still representing a single semantic
concept [6]. The including and excluding of the inherited
elements (attributes and methods) are two different aspects
and both should be considered [6].

However, most of the developed cohesion metrics tools
measure only cohesion on the implemented elements
(attributes and methods) and do not consider the inherited
elements [25], but as a design inspector, there is a
necessity to study the overall class cohesion including all
inherited elements. Therefore, there is a need for design
quality measures that are able to examine the class
cohesion with/without the inherited elements. In this paper,
a Cohesion Measure Tool (CMT) is proposed to enable a

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 68

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

software inspector to either include or exclude the
inherited elements in the assessment. In addition, it
recommends the value of Depth of Inheritance Tree (DIT)
which contain the most promising classes for Refactoring.

This paper is structured as follows. Section 2 describes the
effect of including inherited elements in measuring the
class cohesion. Section 3 illustrates the measurement
process. Section 4 describes the different selected projects.
Section 5 provides the experimental results and discussion.
Finally, Section 6 draws conclusion.

2. Class Cohesion and Inheritance

This section analyzes the effect of including the inherited
elements (attributes and methods) in the measurement of
class cohesion.

2.1 Effect of Inheritance on Class Cohesion:

By including the inherited attributes and methods, the
class cohesion can be increased or decreased depending on
the design of the class and its parent classes. This section
illustrates several cases that address the increase of the
class cohesion when including the inherited elements. For
example, assume class B has n2 implemented elements,
and n1 inherited elements from class A, so the connections
among all elements in class B could be analyzed as the
connections between all nodes in a graph contains n1+n2
nodes. The connections in this graph could be classified
into three categories.
 Implemented elements internal connections:
This category contains all connections between
implemented elements.
 Inherited elements internal connections:
This category contains all connections between inherited
elements.
 Cross-connections between implemented and

inherited elements:
This category contains all connections between inherited
and implemented elements.
Therefore, the increase of the cohesion for a child class
when considering the inherited elements could be as a
result of one of the above categories. The next sections
discuss each category in details.

Category 1: Implemented elements internal
connections
In this case, the cohesion value for the implemented
elements increase as shown in Figure 1, This occurs when
a class contains elements that are connected through
elements defined in the parent class.

Inherited ElementsImplemented Elements

m1m2

m3

m4

a1

Fig. 1 Implemented elements internal connections

Figure 1 shows a class that has three implemented
methods m1, m2, m3 and two inherited elements a1 and
m4. As shown, the class methods (m1, m2, m3) are
connected via common attribute a1. Therefore by
excluding inherited elements, the cohesion value of the
class will be 0, while including inherited elements, the
class cohesion increases.

Category 2: Inherited elements internal connections
In this case, the cohesion increases because of the high
connectivity between the inherited elements. This occurs
when a class has a low cohesion value and inherits
elements from a very cohesive class.

Fig. 2 Inherited elements internal connections

Figure 2 shows a class that has two implemented methods
m1, m2 and three inherited elements a1, m3, and m4. As
shown, the class methods (m1 and m2) are not connected,
while the inherited elements are directly connected.
Therefore by excluding inherited elements, the cohesion
value of the class will be 0, while including inherited
elements, the class cohesion increases.

Category 3: Cross-connections between implemented
and inherited elements
In this case, the cohesion increases because of the
connection between the inherited elements and the
implemented elements, and this occurs in many scenarios:
1) Methods in the child class are used in the parent class
and that happens only when the child class overrides some
methods.
2) Most of the inherited elements are used in the
implemented elements, and generally the connection

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 69

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

between the elements in the class has two types, tight
connection and loose connection [4].

Inherited ElementsImplemented Elements

m1m3

m4

m2

a1

a2

Fig. 3 Cross-connections between implemented and inherited elements

Figure 3 shows a child class that has four implemented
elements a1, m1, m2, m3 and two inherited elements a2,
m4. As shown, the class methods (m1, m2, m3) are
connected via common implemented attribute a1 and
inherited elements a2 and m4. Therefore by excluding
inherited elements, the cohesion value of the class will be
based on the connection between m1 and m3, while it
increases when including inherited elements a2 and m4.

For example, the tight class cohesion value for the child
class (shown in Figure 3) in case of including inheritance
(like TCC metric) is 4/6=0.67 and the loose class cohesion
value (like LCC metric) is 6/6=1.0 as pairs of methods m2,
m3 and m3, m4 are loosely connected to each other.

It should be noticed that the third category is the most
descriptive category than other two categories, for
example assume class B has 5 inherited methods, and 5
implemented methods, so the internal connections (ether
for implemented or inherited elements) need (4*5/2) links
=10 links, but the cross-connections between inherited and
implemented elements need (9*10/2)-(10+10) = 25 links.

2.2 Cohesion Measure Tool (CMT)

In this subsection, a cohesion Measure Tool (CMT) is
proposed to examine the quality of object oriented
software design. This measure is based on a well known
cohesion metrics [13]. In this context, the CMT assesses
and computes the different cohesion metrics for Java
open-source code by processing the compiled code.
Additionally, the CMT enables a design inspector to
customize and configure the setting for each cohesion
metric, as follows:

 The design inspector can choose either to
exclude/include the access methods and
constructors from the analysis.

 The design inspector determines either to
exclude/include the inherited attributes and
methods.

The CMT is developed in Java using the ASM 3.2
framework [9]. Figure 4 shows a general overview for the
proposed CMT.

Fig. 4 Overview of the CMT

2.2.1 Configuration Details

Some researchers faced problems with some kinds of
special methods. Briand et al [6] mentioned that the access
methods artificially reduce the cohesion level, and it was
suggested to exclude the access methods for resolving
these problems [6], [14]. Bieman et al. [4] also
recommended to exclude constructors to remove the
impact of artificial connection by those methods [14].
Jehad Al Dallal [15] also illustrated empirically the effect
of excluding special methods (like constructors and
access methods) in improving the cohesion measurements.
Therefore, in measuring a class cohesion, the CMT is
configured to exclude the special methods to eliminate
their artificial effect on cohesion measurements.
Additionally, abstract classes and interfaces are also
excluded.
The static methods and fields are generally quite different
than instance methods and fields (in particular, static fields
are often used for constants)[13], Barker et al. [13]
excluded all static methods and attributes in measuring
class cohesion. Therefore, the proposed CMT is
configured to exclude all static methods and fields.
Badri et al. [3] recommended to exclude classes with
fewer than two public methods as TCC, LCC, LCCI, and
LCCD
 [3], [4] metrics provide undefined values in these cases.

2.2.2 Overloaded and Overridden Methods

Barker et al. [13] excluded all methods with same
signature and same number of parameters as these
methods caused difficulties in implementation, Badri et al.
[3] unified all methods with same name. The proposed

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 70

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

CMT adopted the same approach by unifying all
overloaded methods.
The overridden methods appear if the design inspector
configured the CMT to include the parent attributes and
methods. Then the tool recursively loads all parent classes,
and starts in the reverse direction (from the top parent
class and then the children classes) when the child class
has a method with the same name and signature as the
declared one in the parent class. In this case the new
method overrides the old existing method, so the tool
replaces the old method code from the list of declared
methods in the class with the new defined method in the
child class.

Fig. 5 Example of a simple class hierarchy

Figure 5 shows an example of a class hierarchy. It should
be noted that the proposed CMT can be configured to
include the inherited elements. In this case, Class C will be
analyzed as follows:

 Class C contains public attributes a1 and a2
inherited from parent classes.

 Private attribute a3 declared in the class C.
 Public method m1 with code declared in class B

(overridden method).
 Public Method m2 that unifies both overridden

methods m2() and m2(in Parameter1: Date) that
are declared in class C.

2.3 Practical Code Example

In this subsection, the effect of including the inherited
attributes and method in measuring class cohesion is
illustrated by analyzing a sample
CategoryImmediateEditor class from the Log4j [24]
project source code.

Fig. 6 CategoryImmediateEditor class diagram

As illustrated in Figure 6, The class
CategoryImmediateEditor has two implemented public
methods, these methods access the inherited attribute 'tree',
so by excluding the inherited elements the cohesion value
is 0 (lack of cohesion is 1) and by including the inherited
elements, the cohesion value increased. Additionally the
inherited elements (stopCellEditing, cancelCellEditing,
tree ..) are connected to each other, and connected to the
implemented methods via calling both 'tree' attribute and
the overridden method ' shouldSelectCell'.

Table 1: Results for CategoryImmediateEditor class

Some of the cohesion metrics are defined as cohesion
value and other metrics are defined as Lack of Cohesion
(LOC) value. Thus, in order to simplify the comparison
among metrics, all metrics are measured as LOC (LOC = 1
- the measured cohesion value for the class). Table 1
illustrates the results of applying different cohesion
metrics in both cases of including/ excluding of inherited
elements. It could be noticed from the results that the
cohesion value increased (lack of cohesion value
decreased) by including of the inherited elements.

Case
LCCI LCCD LCC TCC CC Coh LCOM3

Excluding
Inheritance 1 1 1 1 1 0.88 1.167

Including
Inheritance 0.00 0.36 0.00 0.36 0.87 0.87 0.92

Difference -1.0 -0.64 -1.0 -
0.64

-
0.13

-
0.01 -0.25

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 71

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

3. Measurement Process

This section describes the proposed steps to measure the
effect of including the inherited elements. Additionally,
the different patterns for the LOC difference are
illustrated.

3.1 Experimental Procedures

In order to study the relation between Lack Of Cohesion
(LOC) and Depth of Inheritance Tree (DIT) [7] for the
measured classes, the CMT is applied on the different
projects in the following steps:

Step 1: CMT is configured to include the inherited
elements, then the class lack of cohesion is measured for
all classes in open-source projects.

Step 2: CMT is configured to exclude the inherited
elements, then the class lack of cohesion is measured for
all classes in open-source projects.

Step3: Select classes that have defined values in both
cases of including and excluding of the inherited elements.
Classes with fewer than two public methods are excluded
as TCC, TCC, LCC, LCCD, and LCCI metrics provide
undefined values for these cases[3]. Additionally, classes
with attributes few than one attribute are excluded as
LCOM3 metric provides undefined value in this case [6].

Step4: Determine the DIT threshold. Consequently, all
classes with DIT higher than the DIT threshold will be
excluded.
The percentage of classes with certain DIT to the total
number of classes in the project (The DIT distribution)
varies from project to another. The number of classes with
certain DIT in some cases are relatively very small count
which may lead to inaccurate conclusion. Thus, in order to
enhance the analysis of the results, the following factors
are considered to determine the range of DIT that will be
included:

 The maximum DIT in the project.
 The distribution of the number of classes with

certain DIT.
 The total number of classes in the project.

By applying the mentioned criteria, there will be a number
of excluded classes whenever the classes that have certain
DIT is less than 2% of the project size.

Step5: Calculate the difference between lack of cohesion
value in case of including inherited elements and in case
of excluding inherited elements.

Step6: Measure the average value for the calculated
difference grouped by DIT.

3.2 LOC Difference

The difference between the Lack of Cohesion (LOC) value
in case of including inherited elements and in case of
excluding inherited elements is calculated in the following
Eq.(1):

(1)

Where:
AvgInc(DIT) is the average LOC measured for all classes
with same DIT in case of including the inherited attributes
and methods.
AvgExc(DIT) is the average LOC measured for all classes
with same DIT in case of excluding the inherited attributes
and methods.

The LOCDiff(DIT) can be classified into various patterns as
follows:

Pattern1: In this pattern the LOCDiff is a positive value in
almost all DIT range (as shown on Figure 7) which means
the LOC value in case of including the inherited elements
is greater than the value in the case of excluding inherited
elements. (i.e., the measured cohesion value is reduced by
including the inherited elements). This can be motivated
as follows, either the metrics couldn't measure the
reusability in the inherited classes, or the inherited
elements are not well used. Consequently the cohesion
value is reduced by inheritance.

Fig. 7 Pattern1 the LOC difference is a positive value in almost all DIT
range

Pattern2: In this pattern, the LOCDiff decreases by DIT
increase (as shown on Figure 8) which means the inherited
attributes and methods are highly reused in the children
classes. Therefore, on the basis of cohesion this project is

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 72

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

well designed as all the inherited elements are highly
reused in the children classes.

Fig. 8 Pattern2 the LOC difference decreases by DIT increase

Pattern3: In this pattern, the LOCDiff is a negative value at
lower DIT and step up to a positive value at DIT greater
than certain threshold (as shown on Figure 9). Therefore, it
should be noted that the DIT of these projects should not
be increased above the threshold, or refactor the classes to
higher DIT than this threshold.

Fig. 9 Pattern3 the LOC difference steps to positive at DIT greater than
certain threshold

4. Case Studies

In order to study the effect of measuring the inherited
attributes and methods, CMT is applied on different Java
open-source projects. These projects have been selected
due to the following criteria:
 Variation in vendors (selected projects are developed

in different organizations with different organizations
scales).

 Variation in project categories (selected projects are
distributed in different domains like games, tools,
application server, development, graphics, and
communications).

 Variation in scale and size (some projects are in range
of a few hundred of classes, other projects are in a
scale of thousands of classes).

The proposed CMT has been applied on more than 16
open-source projects, which contain more than 35K
classes. Table 2 illustrates the general overview for some
of the projects, including their version, category, and
number of classes.

5. Results and Discussion

This section describes the experimental results obtained by
applying the mentioned steps in section 3.1. Additionally,
the different patterns for the LOC difference are
illustrated.

5.1 Including the Inherited Attributes and Methods

 In this step the CMT is configured to included the
inherited attributes and methods. As mentioned in section
2.3, some of the cohesion metrics are defined

Table 2: Projects Overview

Project Version
Vendor/ Author Category Number of

Classes
Number of Classes After
Excluding Interfaces and

Abstract Classes

FreeMind [10] 0.9.0 Several people contributed
in the development

Business & enterprise
application 424 354

Azureus / Vuze [11] 4702 Vuze Communications application 4702 3253

Jboss Application
Server [12] 7.0.1 Red Hat Application server 2707 2254

JDK [16] 1.7.0 Oracle Software development kit 13278 9617

JSF [17] 2.1.6 Glassfish Web application framework 918 658

JUnit [18] 4.1 Kent Beck Testing tool 162 107

Log4j[24] 1.2.16 Apache Software
Foundation Logging tool 221 188

Google Web Toolkit
[20] 2.4.0 Google Ajax framework 4217 3120

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 73

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

as Lack of Cohesion (LOC) value. Thus, for the purpose
of simplicity, all metrics are measured as LOC (LOC = 1 -
the measured cohesion value for the class). Table 3
summarizes some of the obtained results by applying the
CMT on different open-source projects.

It can be analyzed from the obtained results that:
The average values for the Method-Method class lack of
cohesion metrics (LCC,TCC, LCCI, and LCCD) are lower
than the average values for the Attribute-Method class
lack of cohesion metrics (Coh, and LCOM3).
Additionally, the standard deviation for these Method-
Method metrics (LCC,TCC, LCCI, and LCCD) are higher
than the standard deviation for the Attribute-Method
metrics (Coh, and LCOM3) which reflects the difference
in metrics design where the variation in Method-Method
metrics measures (according to different classes with
various designs) are greater than the corresponding
Attribute-Method metrics measures.

5.2 LOC Difference Results

The second step (as mentioned in section 3.1) the CMT is
configured to exclude the inherited attributes and methods,
and lack of cohesion is measured for all the studied open-
source projects. Then, the difference between the average
LOC value in both cases of including and excluding
inherited elements is calculated. Figures 10 to 14 illustrate
the results for some projects.

Fig. 10 Results for FreeMind project

Fig. 11 Results for JHot Draw project

Table 3: Results in case of Including Inherited Elements

Project Measure LCCI LCCD LCC TCC CC Coh LCOM3

JDK [16]
Mean 0.360 0.495 0.533 0.623 0.796 0.706 0.785

Standard Deviation 0.337 0.347 0.323 0.308 0.240 0.245 0.258

Log4j [24]
Mean 0.459 0.667 0.585 0.709 0.856 0.768 0.872

Standard Deviation 0.361 0.303 0.329 0.297 0.196 0.218 0.225

JSF [17]
Mean 0.482 0.612 0.653 0.701 0.802 0.723 0.819

Standard Deviation 0.378 0.329 0.351 0.339 0.248 0.252 0.247

GWT [20]
Mean 0.558 0.626 0.697 0.726 0.843 0.782 0.893

Standard Deviation 0.348 0.323 0.359 0.343 0.245 0.244 0.273

Jruby [22]
Mean 0.385 0.541 0.513 0.607 0.773 0.739 0.819

Standard Deviation 0.361 0.324 0.360 0.327 0.263 0.260 0.272

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 74

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 12 Results for JSF project

Fig. 13 Results for GWT project

Fig. 14 Results for J2EE project

It could be noticed from Figures 10 to 14 that some of the
obtained results (projects FreeMind [10], Google Web
Toolkit (GWT) [20], JHot Draw [21], JRuby [22], and JSF
[17]) are belong to pattern1 (the Difference is positive for
all DIT range) and pattern2 (the difference decreases by
DIT increase). This could be explained by studying the
effect of the three categories that increase the class
cohesion. As illustrated in section 2.3 the most effective
category that has higher impacts on the cohesion value (in

case of including the inherited elements) is the cross
connection between the implements elements and the
inherited elements. Consequently, cohesion value
decreased in the tight method-method and attribute-
method metrics as it is not frequent where each inherited
element is tightly connected (used directly or indirectly)
with all the implemented elements. But the implemented
elements are loosely connected with inherited elements.
Therefore, the loose class cohesion metrics (such as LCC
and LCCI) produce negative values when including the
inherited elements.

Thus, it could be recommended empirically to use the
loose cohesion metrics (like LCC and LCCI) while
evaluating the project structure, as this category of
cohesion metrics detects the loosely connections between
class elements.

In other cases (only two projects J2EE [23] and Log4j
[24]) the difference graph is similar to pattern 3 (the DIT
was negative and stepped to positive value at DIT>1), and
it is recommended to revise the classes with higher DIT
values.

6. Conclusions

In this paper, a novel assessment criterion based on
including the inherited attributes and method has been
proposed. Additionally, the effect of including the
inherited attributes and methods in measuring class
cohesion has been extensively discussed.
Experimental results showed that the proposed approach
has a good indicator in identifying classes nominated for
software refactoring, especially if the loose cohesion
metrics (such as LCC and LCCI) are used in measuring the
class cohesion.

In the future, further investigations are needed to study
the effect of applying other High Level Design (HLD)
cohesion metrics using the proposed approach in
improving the identification of classes nominated for
software refactoring.

References
[1] J. Al Dallal, "Mathematical Validation of Object-Oriented

Class Cohesion Metrics", International Journal of Computers,
Vol. 4, No. 2, 2010, pp. 45-52.

[2] J. Al Dallal, and L. C. Briand, An Object-Oriented High-
Level Design-Based Class Cohesion Metric, Simula Research
Laboratory, 2009.

[3] L. Badri, and M. Badri, "A Proposal of a New Class
Cohesion Criterion: An Empirical Study", Journal Of Object
Technology, Vol. 3, No. 4, 2004, pp. 145-159.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 75

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

[4] J. M. Bieman, and B. Kang, Cohesion and Reuse in an
Object-Oriented System, In Proceedings of the 1995
Symposium on Software reusability, 1995, pp. 259-262.

[5] C. Bonja, and E. Kidanmariam, "Metrics for Class Cohesion
and Similarity Between Methods", In Proceedings of the 44th
Annual Southeast Regional Conference, 2006, pp. 91-95.

[6] L. C. Briand, J. W. Daly, and J. K. Wüst, "A Unified
Framework for Cohesion Measurement in Object-Oriented
Systems", Empirical Software Engineering, Vol. 3, No. 1,
1998, pp. 65-117.

[7] S. R. Chidamber, and C. F. Kemerer, "A Metrics Suite for
Object Oriented Design", IEEE Transactions on Software
Engineering, Vol. 20, No. 6, 1994, pp. 476-493.

[8] B. Henderson-Sellers, Software Metrics, Hemel Hempstaed,
U.K.: Prentice Hall, 1996.

[9] http://asm.ow2.org/download/index.html
[10] http://sourceforge.net/projects/freemind/
[11] http://sourceforge.net/projects/azureus/
[12] https://github.com/jbossas/jboss-as
[13] R. Barker, and E. Tempero, "A Large-Scale Empirical

Comparison of Object-Oriented Cohesion Metrics", In
Proceedings of the 14th Asia-Pacific Software Engineering
Conference, 2007, pp. 414-421.

[14] H. Chae, Y. Kwon, and D. Bae, "A Cohesion Measure for
Object-Oriented Classes", Software-Practice & Experience,
Vol. 30, No. 12, 2000, pp. 1405-1431.

[15] J. Al Dallal, "Improving Object-Oriented Lack-of-Cohesion
Metric by Excluding Special Methods", In Proceedings of the
10th WSEAS International Conference on Software
Engineering Parallel and Distributed Systems, 2011, pp. 124-
129.

[16] http://www.oracle.com/technetwork/java/javase/downloads
[17] http://java.net/projects/javaserverfaces/
[18] https://github.com/KentBeck/junit
[19] http://sourceforge.net/projects/hibernate/
[20] http://code.google.com/p/google-web-toolkit/
[21] http://sourceforge.net/projects/jhotdraw/
[22] http://jruby.org/download
[23] http://mvnrepository.com/artifact/javax/javaee-api
[24] http://logging.apache.org/log4j/
[25] R. Lincke, J. Lundberg, and W. Löwe "Comparing Software

Metrics Tools", In Proceedings of the 2008 International
Symposium on Software Testing and Analysis, July 20-24
2008.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 76

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

