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Abstract 

In this paper, the stability study of fuzzy control systems is 
presented. The approach developed is based on the convergence 
of regular vector norms, where the comparison, the overvaluing 
principle and the Borne and Gentina criterion are used. The 
controller is of type PI-fuzzy with different partition of the two 
fuzzy inputs. The system to be controlled is a nonlinear system 
and the application example is of second order. 
   Keywords: Stability, Fuzzy, Mamdani, Controller, Nonlinear 
System, Second order. 

1. Introduction 

Fuzzy control has had great interest from the community of 
researchers over the last decades. This was due to the 
possibility of implementation without an exact 
mathematical model, sometimes even exact model is 
available, the use of fuzzy control seems reasonable and 
presents many advantages [2]. Several applications 
highlight the main advantages of fuzzy control 
[1][23][29][46][52]. Though, various kinds of fuzzy 
systems are widely used nowadays, this variety is issued 
from the types of fuzzy controllers in the closed loop of the 
system to be studied. 
Stability analysis of such systems is still an open problem, 
in this way, many contributions were reported to discuss 
the cases of all types of fuzzy control systems 
[3][4][5][16][18][30][32][35][36][38][39][53][56][57][59] 
[60][61], even though no general approach is available. 
Sugeno in [48] classified fuzzy systems into three types. 
Type I, which was first introduced by Mamdani for steam-
engine control [34], is characterised by the consequence 
part of rules given by a fuzzy set. This type is linguistically 
understandable since it uses fuzzy variables in both 
premises and consequence. The stability study of such 
systems hadn’t the same opportunity as the other types 
[13][28][31]. Type II can be considered as a particular case 
of type I, the consequence is simply represented by a 
singleton [47][49]. For the last type of fuzzy systems which 
is called type III, the consequence is represented by a linear 
function. This type was first used for control of a model car 
[49][50]. The stability study of T-S fuzzy systems or 

systems of type III, was developed by many authors 
[16][20][47][48]. 
The concept of stability for nonlinear systems has been 
developed by many other authors [10][11][21][22][62], 
especially concerning the fuzzy logic controllers, since they 
are naturally nonlinear [6][12][19][35][37][51][55]. 
One of the authors presented a classification of the fuzzy 
system stability into two categories [28]: the nonlinear 
theory approach and the intuitive qualitative approach. The 
first class contains circle criterion, hyperstability approach, 
input-output theory, Lyapunov stability, phase plan 
criterion and other approaches. The second category is 
devoted to stability indices and energetic stability. 
Lyapunov is one of the pioneers to study the stability of 
motion [27][33]. His approach is a general one with the 
fuzzy controller being modeled as Sugeno one. It is a 
sufficient condition for fuzzy control stability. If one of the 
subsystems is unstable, the closed loop fuzzy control 
system remains stable. 
The phase plan criterion is a simple graphical approach. 
Inspecting the system trajectories will prove information on 
system stability or instability. This criterion is restricted to 
systems with an order less than two. 
Concerning the circle criterion [26][40], it is restricted to a 
system that can be modeled as sector bound nonlinearity, it 
is also used for a time-variant system, in this case, the 
membership has to be symmetrical. The Popov approach, 
derived from the Kalman-Yakubovitch lemma for a time 
invariant system is a simple graphical method. The stability 
can be obtained by studying the Popov line. This method is 
restricted to systems with known control process. 
There are some other approaches usually used for the 
stability of fuzzy control systems such that the passivity 
approach [14] and the hyperstability one [9][15][54]. We 
can also apply the notion of input-output stability to a Lur’e 
type system. In this case, the small gain theorem is 
frequently used [17]. 
Among the approaches used in the literature, a fuzzy 
controller is considered to be with a linear model to be 
controlled. In this paper, the fuzzy controller which is of 
type Mamdani corresponds to a nonlinear model. 
In [39], Rambault proposed an extension of Popov criterion 
to a nonlinear model with two inputs, the error and its 
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variation. The action surface is overvalued by a plan 
corresponding to a PD controller, where the input variation 
is a parameter. So, the nonlinearity becomes with only one 
input. The relative solution to stable models or with real 
poles, proposed in [12], uses state representation system 
and many of linear transformation on fuzzy controller 
inputs allowing the use of Popov criterion. Bühler proposed 
another algorithm based on Aizerman conjecture, in other 
way, the stability sector according to Popov coincides with 
that of Hurwitz [12]. By substituting the nonlinearity in the 
fuzzy controller by an equivalent linear characteristic, 
when the conjecture is checked, a criterion based on roots 
placement is proposed considering some important 
performances like the transient phenomenon damping. 
Melin and Vidolov in [36] extended the approach in [40] to 
the case of two input controllers, the error and its variation, 
controlling stable or marginally stable systems. In the first 
time, for particular fuzzy controllers with two inputs [53], 
Vidolov established sufficient stability conditions returning 
the closed loop stable by using the Kalman-Yacubovitch 
theorem. Then, results are extended to a controller with 
four rules [61]. Finally, by considering a controller with 
strict partition of triangular fuzzy subsets such that at most 
four rules are activated simultaneously, results obtained 
remain valid. 
In [42], there was an exploitation of the approach 
proposed in [6], [43] and [44] for stability study of 
continuous Mamdani fuzzy systems. This approach, was 
extrapolated to the case of nonlinear systems with the use 
of vector norms and comparison systems for particular 
case of input fuzzy subset partitions. In this paper, we 
present the stability study of fuzzy control systems for 
nonlinear systems to be controlled and for different input 
partition. So the following section is devoted to the 
description of the fuzzy control system containing a PI-
fuzzy controller and the system to be controlled. The 
remaining parts deal with the determination of stability 
conditions of the fuzzy system by using Borne and 
Gentina criterion and vector norms approach. The stability 
conditions and the application example are applied for 
second order nonlinear process in the next sections. 

2. System description 

The PI-fuzzy control system considered in this study has 
two inputs the error e  and its derivative de  and one 
output the control derivative as shown in Fig. 1, where 

, ete de duk k k  are scale factors. 

 
 

 

Fig. 1  Fuzzy Control system. 

A particular class of Mamdani PI-fuzzy controllers is 
obtained by considering a strong triangular partition of the 
normalized variables * * *, ande de du  presented in Fig. 2 : 

 

2b  

  

ZE  NM  PP  PMNP  NG  PG  

*e  1a  0  
1b  1a  1 11b  

2a  
2b  2a  *de  

*du  b  a  ab  
 

Fig. 2  Fuzzy Subset partition. 

The rule base considered is an r×r  traditional rule table 
that is of antidiagonal type such that the Mac Vicar-
Whelan one (Table 1) [58]. 

Table 1: The Mac Vecar-Whelan table rule 

e*/de* NG NM NP ZE PP PM PG 

NG NG NG NG NG NM NP ZE 

NM NG NG NM NM NP ZE PP 

NP NG NM NP NP ZE PP PM 

ZE NG NM NP ZE PP PM PG 

PP NM NP ZE PP PP PM PG 

PM NP ZE PP PM PM PG PG 

PG ZE PP PM PG PG PG PG 

 

Let * *( , )e de  the surface in the space * * *( , , ),e de du  

verifying the two properties [45] : 
i) If 0 then the input-output characteristic surface *( *, *) 0

ii) It exists >0 such as *( *) 0 for all *  and *

du e de

k du k du e de




 
  
 (1) 
The first property means that the intersection of the 

overvaluing surface   with the plan * *( , )e de  is a part of 

the intersection of the characteristic surface * * *( , )du e de  

with the same plan. The curve 0   is a straight line 
when the fuzzy input partition is identical for the inputs 
and it represents the second bisector. In general 
( 1 2 1 2anda a b b  ) the curve is piecewise linear as 

shown in Fig. 3. 
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Fig. 3  Curve 0.   

For this case of input partition, the global stability is 
difficult to prove due to the nature of the curve 0.   
In consequence, we will study the local stability of the 
fuzzy control system in the neighborhood of the 
equilibrium point. In this zone, the part of the curve 0   
is segment, in these conditions the characteristic surface of 
the fuzzy controller can be locally overvalued by a plan. 

3. Overvaluation of the fuzzy controller 
characteristic surface  

The characteristic surface of the fuzzy controller 
* * *( , )du e de  is locally overvalued and undervalued by two 

plans crossing the plan * *( , )e de  in a straight line. A part 

of this straight line is common with the curve 0   in 
* *

1 1 2 2[ , ] and [ , ]e a a de a a     such that : 

 
* *

2 1

0
de e

a a
   (2) 

The slopes of these plans are respectively max minandk k , in 

this way the output is as follows: 
* * * *

*
min max

2 1 2 1

( ) ( ),
de e de e

k du k
a a a a

    for each point 

* *( , )e de  of 1 1 2 2[ , ] [ , ]a a a a   , so we get : 
* *

*

2 1

(.)( )
de e

du f
a a

    then : 

min max(.)k f k   (3) 

 
where (.)f  is a nonlinear gain.  

The values of min maxandk k  are determined numerically. 

The fuzzy control system obtained is then given by  Fig. 4. 

 

Fig. 4  Fuzzy control system for different fuzzy subset partition. 

4. Proposed stability conditions 

4.1 Problem formulation 

The system to be controlled which is nonlinear is 
represented by the following state matrix given in the 
Frobenius form such that: 

n(.) (.)

(.)

x A x B u
x

y C x

 
 


�  (4.a) 

where: 

1 1

0 0 (.) (.) 0

1
(.) , (.) , (.)

0 0

0 1 (.) (.) 1

n n

T

a b

A B C

a b

      
     
       
     
     

      

    

   
 (4.b) 

According to the diagram given in Fig. 4, we have 
du u  , supposing  that v du u    and u  , which 

leads to : .v   

The nonlinear system equipped with the integration can be 
represented by the following state matrix: 

1

0
(.) (.)

0 0
1

nA B
z z v z 

 
            

  �  (5) 

where: and
x x

z z
 
   

    
   




  

now, we suppose that:  
0

(.) (.)
'(.) and '(.) ' .

0 0
1

A B
A B B

 
            

  

So, we can write n ny x z   where nx  (respectively nz ) 

is the thn  state variable of state vector x  (respectively z ), 

thus : '(.)y C z  where  '(.) ' 0 1 0C C   , and 

we get : 
* *

2 1 2 1

(.) (.) de e
du du

k e k ede e
v k f k f

a a a a

   
      

   


 (6) 
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After considering the system in the autonomous regime 

 0w  , we get   e y   and : 

2 1

2 1

(.)

(.) '(.) " '(.) "

de e
du

de e
du

k k
v k f y y

a a

k k
k f C z C z

a a

 
   

 
 

   
 





 

The closed loop of the fuzzy control system is given by: 
 

2 1

2 1

'(.) '(.)

'(.) '(.) (.) '(.) '(.)

'(.) (.) '(.) '(.) '(.) '(.)

de e
du

de e
du

z A z B v

k k
A z B k f C z C z

a a

k k
A z k f B C z B C z

a a

 

 
   

 
 

   
 







 (7) 

 
which allows to write: 

1
2 1

(.) ' ' '(.) (.) ' 'de e
n du du

k k
I k f B C z A k f B C z

a a

   
     

   
  (8) 

 

supposing now: 
1

2

1

(.) ' '

'(.) (.) ' '

de
n du

e
du

k
N I k f B C

a

k
M A k f B C

a


  

  


 

where:  

1 1

2 1

1 0 0 0 0 (.) (.)

0 1 1

,
0 0 1 (.) (.)

0 0 (.) 1 0 0 (.) 0

n n

de e
du du

a b

N M
a b

k k
k f k f

a a

   
   
   
   

    
   

   
   

      

  

    

         

  

 

 

and : det( ) 1N    

Finally, we obtain the following description of the closed 
loop system : 

(.)Cz A z  (9) 

where :  
1

1 1

1 1
2 2 1 2

(.)

0 (.) (.)

1

1 (.) (.)

0 (.) (.)( (.) ) (.) (.)

C

n n

de de e de
du du du

A N M

a b

a b

k k k k
k f k f a k f b

a a a a



 
 
 
 

  
 

 
   

  

 

  

    





 (10) 

 
Now we have to make a basic change leading to a new 
representation of the system for establishing stability 
conditions. 
We note : 'z Pz  and 1 'z P z  
where P  is a passage matrix such that : 

1
1 1

1
1 1

1 ( ) 0

1 ( )

0 1 0

0 0 1

n

n
n n

P

 

 




 

 
 
 
 
 
 
  



   

 



 

 

and then we get: 
1' (.) '

' (.) '
C

C

z PA P z

A z





 (11) 

where: 

1 1 1

'
1 1 1

1 1 1

1 1

0 (.) (.)

(.) 0 (.) (.)

(.) (.)

(.) (.) (.) (.)

C n n n

n

n

A

b

  

  
  
   

  





 
 
 
 
 
 
  



   







 (12) 

and: 
 

1

1
1,..., 1

( )
i n

i j
j
j i

i n
 




   


 (13) 

 

1

(.) (., ) 1,..., 1

(., ) (.)

i i

n
n n j

j
j

D i n

D a

 

   



    

  



 (14) 

 

1

(.) (., ) 1,..., 1

(., ) (.)

i i

n
n j

j
j

N i n

N b

 

  



   

 



 (15) 

 
1

1
1

(.) (.)
n

j
j

a 




    (16) 

2

(.) (.) 1,..., 1de
i du i

k
k f i n

a
       (17) 

1
2

(.) (.) (.)de
du

k
k f b

a
    (18) 

1

1
12 1

(.) (.) (.) (.)
n

de e
du j du

j

k k
k f a k f

a a
 





 
   

 
  (19) 

To make the matrix ' (.)CA  in a simple arrow form, we 

consider a comparison system relative to the following 
regular vector norm p  :  

 1 1 1( ') ' , , ' , max ' , '
T

n n np z z z z z      (20) 

Let ( ')Z p z we define the overvaluing system relative to 

p  such that : 
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  (.)CZ M Z  (21) 

The matrix (.)CM  is as follows : 

  

1 1

1 1

1 1

0 (.)

0
(.)

(.)

(.) (.) (.)

C
n n

n

M

 

 
  

 



 
 
 
 
 
 



 

 
 (22) 

 
where : 

  

1 1

(.) (.) (.) 1,..., 1

(.) (.)

i i i

n n
n n j n j
i j i j i

j j

i n

a b

  

   

 

    

   
 (23) 

  

 

2

(.) max , (.)

max 1, (.) , 1,..., 1

i i i

de
i du

k
k f i n

a

  





 
    

 

 (24) 

 
 1

1

1 1
1

1

1 1
12 1 2

(.) max (.) (.) , (.) (.)

( (.) ) (.) ,

max

(.) (.) (.) (.) (.)

n

j
j

n
de e de

du j du du
j

b

a b

k k k
k f a k f k f b

a a a

   













  

 
   

   
        





 (25) 
The matrix (.)CM  is in a simple arrow form due to a 

reduction of the system order using the vector norm .p  

Now we suppose that : 

2

(.) pour (.) 1de
i i du

k
k f

a
    (26) 

to apply the Borne and Gentina criterion on the matrix 
(.)CM , in other way to get the nonlinear elements in the 

last line, constant (.).i  

The matrix (.)CM  will be then in the following form : 

1 1

1 1

1 1

0 (.)

0
(.)

(.)

(.)

C
n n

n

M

 

 
  

 



 
 
 
 
 
  



 



 (27) 

The nonlinear elements are situated in the last column and 
then we can state the following theorem [43] and [44]. 

4.2 Stability conditions 

Theorem : 
If there exist <0i  for 1,..., 1i n  , i j i j     such 

that Z S   where S  is a neighbourhood domain of the 
equilibrium point : 

2

1
1

1

) (.) 1

) (.) (.) 0

de
du

n

i i i
i

k
i k f

a

ii    








  
 (28) 

 
then the equilibrium point =0Z  for the closed loop system 
is locally asymptotically stable. 

5. Application  

To illustrate the results developed and the stability 
conditions obtained, we discuss in this section the 
asymptotic stability of a fuzzy control system where the 
controller is of type PI-fuzzy described in the second 
section. The fuzzy control system is given in Fig. 4, and 
the system to be controlled is a nonlinear second order 
system given as follows : 

(.) (.)

(.)

x A x B u

y C x

 
 


 (29.a) 

where : 

 1

2

(.)0 0.8 0
(.) , (.) , (.)

(.)1 2 1
Tb

A B C
b

     
          

 (29.b) 

For v du u    and u  , the description of the nonlinear 

system with the integration will be : 

3

0
(.) (.)

0 , with
0 0

1

A B x
z z v z z



 
                

 �  (30) 

let : 

 

2

1

0 0.8 (.)
(.) (.)

'(.) 1 2 (.) ,
0 0

0 0 0

0

'(.) ' 0 , '(.) ' 0 1 0

1

b
A B

A b

B B C C

 
            

 
     
  

 (31) 

so, we get: 
'(.) '

'

z A z B v

y C z

 
 


 (32) 

When considering the local overvaluation of the fuzzy 
controller characteristic surface in the case of different 
fuzzy partition of the inputs, we can write:   

2 1

(.) de e
du

k e k e
du v k f

a a

 
   

 


 (33) 

and the system in the autonomous regime  0w  , we 

have : 
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2 1

(.) ' 'de e
du

k k
v k f C z C z

a a

 
   

 
  (34) 

since  'y C z . 

By replacing v  in (33) with its expression in (34) we get : 

2 1

'(.) (.) ' ' ' 'de e
du

k k
z A z f k B C z B C z

a a

 
   

 
   

which leads to: 

3
2 1

(.) ' ' '(.) (.) ' 'de e
du du

k k
z I f k B C A f k B C z

a a

   
     

   
  (35) 

 

when supposing : 
3

2

1

(.) ' '

'(.) (.) ' '

de
du

e
du

k
N I f k B C

a

k
M A f k B C

a

  

  


 

we get : 
Nz Mz  (36) 

where:  

2

1

2 1

1 0 0 0 0.8 (.)

0 1 0 , 1 2 (.)

0 (.) 1 0 (.) 0de e
du du

b

N M b

k k
f k f k

a a

   
      
     
   
   
      

 

The description of the whole system allows to write : 
(.)Cz A z  (37) 

with :  

2

1

1
2 2 1 2

0 0.8 (.)

(.) 1 2 (.)

(.) (.) 2 (.) (.)

C

de de e de
du du du

b

A b

k k k k
f k f k f k b

a a a a

 
 

 
  
 
  
    

  

 

 
We consider now the following basic change:  

'z Pz  (38) 
with : 

1 0

0 1 0

0 0 1

P

 
   
  

 

then we get: 
1' (.) ' ' (.) 'C Cz PA P z A z   (39) 

where : 

'
1

(.) (.)

(.) 1 (.) (.)

(.) (.) (.)
CA b

  


  

 
   
  

 (40) 

and : 
 

 2(.) 2 0.8       (41) 

2 1(.) (.) (.)b b    (42) 

2

(.) (.) de
du

k
f k

a
    (43) 

 

 
2 1

(.) (.) 2 (.)de e
du du

k k
f k f k

a a
     (44) 

1
2

(.) (.) (.)de
du

k
f k b

a
    (45) 

To isolate the nonlinear elements of the matrix in one 
range and apply the Borne and Gentina criterion, we 
consider the following comparison system : 

  (.)CZ M Z  (46) 

such that :  

 ( ')Z p z  and  1 2 3( ') ' , ax ' , '
T

p z z m z z     

and:  

  
1

(.)
(.)

(.) (.)CM
 
 
 

  
 

 

 
where: 

  

 

 
 

 

2
2 1

1
2

1

1

1
2 1 2

(.) (.) (.) 2 0.8 (.) (.)

(.) max 1, (.) max 1, (.)

(.) max (.) (.) , (.) (.)

2 (.) ,

max
(.) 2 (.) (.) (.)

de
du

de e de
du du du

b b

k
f k

a

b

b

k k k
f k f k b f k

a a a

     

 

   





       

     
  

  

   
 

  
   

 
 (47) 
Hypothesis : 

We suppose that: 
2

(.) 1de
du

k
f k

a
 , with 

2

(.) (.) de
du

k
f k

a
   , 

and so (.) 1   and  1(.) max 1, (.) 1    

In this way, the matrix (.)CM  is such that: 

1

(.)
(.)

(.) (.)CM
 
 
 

  
 

 

By applying the Borne and Gentina criterion, we get the 
following stability condition: 

  (.) (.) 0    (48) 

  is chosen negative. 

   1max (.) (.) , (.) (.) (.) (.) 0b           

This condition allows to get the gathering of the two 
following systems: 
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System 1 : 

  
 

1(.) (.) (.) (.)

(.) (.) (.) (.)

b  

    

   


  
 (49) 

and 
System 2 : 

  
 

1

1

(.) (.) (.) (.)

(.) (.) (.) (.)

b

b

  

   

   


  
 (50) 

The system 1 gives : 

  
 

1

1

(.) (.) (.) (.)

(.) (.) (.) (.)

b

b

  

   

   


  
 (50) 

 

   

 

1 1
2 1 2

1
2 1 2

(.) 2 (.) (.) (.) 2 (.)

and

(.) 2 (.) (.) (.) (.) (.)

de e de
du du du

de e de
du du du

k k k
f k f k f k b b

a a a

k k k
f k f k f k b

a a a

 

   


      




           

 

 (51) 
For (.) 0duf k  : 

   

   

1 1
2 1 2

1
1

2 1 2

(.) 2 (.) (.) 2

and

(.) 2 (.) (.) (.)

de e de
du

de e de
du

k k k
f k b b

a a a

k k k
f k b

a a a

 

   

  
          



           

 

which gives:    1
2 1 2

2 (.) 0de e dek k k
b

a a a


 
     

 
 and so: 

 

 

 
 

1

1
2 1 2

2
2 1

1
2 1 2

(.) 2
(.)

2 (.)

and

2 0.8 (.) (.)
(.)

2 (.)

du

de e de

du

de e de

b
f k

k k k
b

a a a

b b
f k

k k k
b

a a a





  

 

   


  





   
         

 

We suppose now that: 1 and 0.5e dek k     , so we 

get: 

 

 

1

1

2 1 2

2 1

1

2 2 1

(.) 1.5
(.)

(.)1.5 1

and

(.) 0.5 (.) 0.05
(.)

0.5 (.) 1.5 1
0.5

du

du

b
f k

b

a a a

b b
f k

b

a a a

 


  


     
   
  

 

For particular values of 1 2anda a  such as:  

1 2 10.33 and 0.5 with b (.) 0a a    we get the following 

conditions: 

 

1

1

2 1

1

(.) 1.5
(.)

0.0303 2 (.)

and

(.) 0.5 (.) 0.05
(.)

0.01515 (.)

du

du

b
f k

b

b b
f k

b

 





     

 

In these conditions the stability domain is given in the 
following schema (Fig. 5): 
 

 
 

Fig. 5  Stability domain with report to 1 2(.) and (.)b b . 

And the second system gives for (.) 0duf k  : 

 

   

   

1 1
2 1 2

1 2
1 2 1

(.) 2 (.) 2 (.)

and

(.) 2 2 0.8 (.) (.)

de e de
du

k k k
b f k b

a a a

b b b

 

    

  
          





      



 

So  1(.) 2 0b    , then for : 

1 2 11, 0.5 and 0.33, 0.5 with b (.) 0e dek k a a      
we obtain the following stability conditions : 

 1 1

2 1 1

(.) 0.03 2 (.) (.) 1.5

and

0.1 2 (.) 0.5 (.) (.) 1.5

duf k b b

b b b

  


    

 

 
Which becomes for 

1(.) 0.015b   
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1

1

2 1 1

(.) 1.5
(.)

0.03 2 (.)

and

2 (.) 0.5 (.) (.) 1.4

du

b
f k

b

b b b

  

   


 

Finally the stability domain for the whole fuzzy control 
system is the gathering of the two systems (system 1 and 
system 2). 

6. Conclusion 

The stability conditions of fuzzy control systems were 
presented in this paper. These conditions were deduced 
from stability study of overvaluing systems based on 
vector norms and the application of Borne and Gentina 
criterion. The controller is Mamdani PI-fuzzy one with a 
particular partition of the input subsets. 
The nonlinear case of processes to be controlled was 
treated. Stability conditions for the fuzzy control system 
were obtained by applying Borne and Gentina criterion to 
the state matrix after making a basic change. For the 
nonlinear case, the basic change allowed to get a state 
matrix of order ( 1)n   in thick arrow form. To return to 

the usual thin arrow form of the matrix and to get matrix 
with nonlinear elements isolated in only one range, we 
considered a comparison system relative to a regular 
vector norm. In this way, Borne and Gentina criterion was 
used to get sufficient stability conditions. These conditions 
were applied to a nonlinear second order system. 
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