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Abstract 
This paper deals with the design of optimal backstepping 
controller, by using the chaotic particle swarm optimization 
(CPSO) algorithm to control of chaos in Lur’e like chaotic 
system. The backstepping method consists of parameters which 
could have positive values. The parameters are usually chosen 
optional by trial and error method. The controlled system 
provides different behaviors for different values of the parameters. 
It is necessary to select proper parameters to obtain a good 
response, because the improper selection of the parameters leads 
to inappropriate responses or even may lead to instability of the 
system. The proposed optimal backstepping controller without 
trial and error determines the parameters of backstepping 
controller automatically and intelligently by minimizing the 
Integral of Time multiplied Absolute Error (ITAE) and squared 
controller output. Finally, the efficiency of the proposed optimal 
backstepping controller (OBSC) is illustrated by implementing 
the method on the Lur’e like chaotic system. 
Keywords: Lur’e Like System, Backstepping Method, Logistic 
Map, Particle Swarm Optimization, control of chaos. 

1. Introduction 

Chaotic phenomena can be found in many scientific and 
engineering fields such as biological systems, electronic 
circuits, power converters, chemical systems, and so on 
[1]. Chaotic systems have irregular, complex and 
unpredictable dynamic behavior. Since the pioneering 
work of Ott, Grebogi, and Yorke [2] proposed the well-
known OGY control method, the control of chaotic 
systems has been widely studied. Recently, quite a few 
techniques and approaches have been successfully applied 
to chaotic motion control under different conditions and 
requirements [3-5]. 
   The backstepping approach is one of the most popular 
nonlinear techniques of control design. It is capable of 
generating a globally asymptotically stabilizing control 
laws to suppress and synchronize chaotic system [6-8]. 
The idea of backstepping design is to select recursively 

some appropriate functions of state variables as pseudo-
control inputs for lower dimension subsystems of the 
overall system. 

Each backstepping stage results in a new pseudo-control 
design, expressed in terms of the pseudo-control designs 
from preceding design stages. When the procedure is 
terminated, a feedback design for the true control input 
results, which achieves the original design objective by 
virtue of a final Lyapunov function, which is formed by 
summing up the Lyapunov functions associated with each 
individual design stage.  

Evolutionary algorithms with their heuristic and 
stochastic properties often suffer from getting stuck in 
local optima. This common characteristic led to the 
development of evolutionary computation as an 
increasingly important field. A GA is a stochastic search 
procedure based on the mechanics of natural selection, 
genetics and evolution [9]. Since this type of algorithm 
simultaneously evaluates many points in the search space, 
it is more likely to find a global solution to a given 
problem. PSO describes a solution process in which each 
particle moves through a multidimensional search space 
[10]. The particle velocity and position are constantly 
updated according to the best previous performance of the 
particle or of the particle’s neighbors, as well as the best 
performance of all particles in the entire population. GAs 
have demonstrated the ability to reach near-optimal 
solutions for large problems; however, they may require a 
long processing time to reach a near-optimal solution. 
Similarly to GAs, BPSO is also a population-based 
optimizer. BPSO has a memory, so knowledge of good 
solutions is retained by all the particles and optimal 
solutions are found by the swarm particles if they follow 
the best particle. Unlike GAs, BPSO does not contain any 
crossover and mutation processes [11]. Hybridization of 
evolutionary algorithms with local search has been 
investigated in many studies [12, 13]. Such hybrids are 
often referred to as memetic algorithms (MA). An MA can 
be treated as a genetic algorithm coupled with a local 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 3, March 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 360

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



search procedure [14]. The shuffled frog leaping algorithm 
(SFL algorithm) combines the benefits of an MA and the 
social PSO algorithm. Unlike in MAs and PSO, the 
population consists of a set of solutions (frogs), which is 
partitioned into subsets referred to as memeplexes. In the 
search space, each group performs a local search, and then 
exchanges information with other groups [15]. Ant-colony 
optimization algorithms (ACO) were developed by Dorigo 
et al. Similar to PSO, they evolve not based on genetics 
but on social behavior. Unlike PSO, the ACO uses ants to 
find the shortest route between their ant hill and a source 
of food; ants can deposit pheromone trails whenever they 
travel as a form of indirect communication [16]. 

Generating an ideal random sequence is of great 
importance in the fields of numerical analysis, sampling 
and heuristic optimization. Recently, a technique which 
employs chaotic sequences via the chaos approach 
(chaotic maps) has gained a lot of attention and been 
widely applied in different areas, such as the chaotic 
neural network (CNN), chaotic optimization algorithms 
(COA), nonlinear circuits, DNA computing, and image 
processing. All of the above-mentioned methods rely on 
the same pivotal operation, namely the adoption of a 
chaotic sequence instead of a random sequence, and 
thereby improve the results due to the unpredictability of 
the chaotic sequence [17]. 

Chaos can be described as a bounded nonlinear system 
with deterministic dynamic behavior that has ergodic and 
stochastic properties [18]. It is very sensitive to the initial 
conditions and the parameters used. In other word, cause 
and effect of chaos are not proportional to the small 
differences in the initial values. In what is called the 
‘‘butterfly effect’’, small variations of an initial variable 
will result in huge differences in the solutions after some 
iteration. Mathematically, chaos is random and 
unpredictable, yet it also possesses an element of 
regularity. PSO shows a promising performance on 
nonlinear function optimization and has thus received 
much attention [19]. 

However, the performance of the traditional PSO 
greatly depends on its parameters, and it often suffers the 
problem of being trapped in local optima [20, 21]. In order 
to avoid these disadvantages, the chaotic particle swarm 
optimization (CPSO) method based on the logistic 
equation has been proposed [21, 22]. Such an algorithm 
which is known as Chaotic Particle Swarm Optimization 
(CPSO) is used in this paper in order to determine the 
optimal backstepping controller parameters. 

The backstepping controller consists of positive 
parameters which are determined optional and by trial and 
error. The system response is different depending on the 
choice of these parameters. Improper choice of the 
parameters causes improper performance and sometimes 
instability of the system. In this paper, the CPSO 
algorithm is utilized for determination of proper values of 

the parameters. In fact, this algorithm determines the 
parameters of backstepping controller by minimizing the 
objective function. The objective function, used for 
controller tuning has been taken as a weighted sum of the 
Integral of Time multiplied Absolute Error (ITAE) and 
squared control signal. In the proposed controller, the 
backstepping method parameters are chosen such that the 
time response of system states converges to zero in a short 
time, i.e. the system chaos is controlled faster. Besides, 
more limited control signal is needed for stabilization of 
system states and chaos control. 

The organization of this article is as follows. Section 2 
describes the backstepping method. PSO and CPSO are 
described in Section 3. The proposed optimal 
backstepping control design is given in Section 4. In 
Section 5, simulation results are provided to validate the 
effectiveness of the proposed method. The conclusions of 
this paper are drawn in Section 6. 

2. Backstepping Method 
   Backstepping is a recursive procedure, which allows 
deriving control law for a nonlinear system, associated 
with appropriate Lyapunov function, which guaranties 
stability. 

Considering the following n-order system with strict- 
feedback form: 
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Where ,nx R u R  . With (0) 0if   and (0) 0ig   

for 1, ...,i n . if  and ig  are smooth functions and are 

differentiable. 

Step1: Considering the first subsystem of (1), 2x  is taken 

as a virtual control input and choose: 
 

 2 1 1 1
1 1

1
( )

( )
x u f x

g x
   (2) 
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The first subsystem is changed to be 1 1x u . Choosing 

1 1 1u k x   with 1 0k  , the origin of the first subsystem 

1 0x   is asymptotically stable, and the corresponding 

Lyapunov function is 2
1 1 1( ) 2V x x , (2) is changed to: 

 

 2 1 1 1 1 1 1
1 1

1
( ) ( )

( )
x x k x f x

g x
     (3) 

 

Step2: Take 3x  as a virtual control input and the 1 2( , )x x  

subsystem is changed to (5). 
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Which is in the form of backstepping method, so the 

control law 2u  is as follow: 
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Where 2 0k  . This control law asymptotically stabilizes 

1 2( , ) (0, 0)x x   and Lyapunov function is as (7). 
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Substituting (6) into (4) gives 
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Step 3:  

Take 4x  as a virtual control input and the 1 2 3( , , )x x x  

subsystem is changed to (10). 
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Which is in the form of backstepping method, so the 

control law 3u  is as follow: 
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Where 3 0k  . This control law asymptotically stabilizes 

1 2 3( , , ) (0, 0, 0)x x x   and Lyapunov function is as (12). 
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Substituting (11) into (9) gives  
 

 

 

2
4 3 1 2 3

3 1 2 3 2

2
2 1 2 3 3 2 1 2 1 1

1

2
1 1 2 2 1 2 2 1 2 3

2

3 1 2 3

(

)

1
( , , ) [

( , , )

( , ) ( , ) ( )

( ) ( , ) ( , )

( , , )]

V
x x x x

g x x x x

g x x k x x x f x
x

g x x f x x g x x x
x

f x x x











  



   




  


 (13) 

 
Step n:  
Actual control law u  where can asymptotically stabilize 
(1), is as follows: 
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Where 0nk  . This control law asymptotically stabilizes 

1( , ..., ) (0, ..., 0)nx x   and Lyapunov function is as (15). 
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3. Optimization Method 

3.1 Particle Swarm Optimization (PSO) 

In original PSO [10], each particle is analogous to an 
individual ‘‘fish’’ in a school of fish. It is a population-
based optimization technique, where a population is called 
a swarm. A swarm consists of N particles moving around 
in a D-dimensional search space. The position of the ith 

particle can be represented by 1 2( , , ..., )ii i iDx x x x . 

The velocity for the ith particle can be written as 

1 2( , , ..., )i i i iDv v v v . Each particle coexists and evolves 

simultaneously based on knowledge shared with 
neighboring particles; it makes use of its own memory and 
knowledge gained by the swarm as a whole to find the best 
solution. The best previously encountered position of the 
ith particle is denoted its individual best 

position 1 2( , , ..., )i i i iDp p p p , a value called ipbest . 

The best value of the all individual ipbest  values is 

denoted the global best position 1 2( , , ..., )i Dg g g g  and 

called gbest . The PSO process is initialized with a 

population of random particles, and the algorithm then 
executes a search for optimal solutions by continuously 
updating generations. At each generation, the position and 

velocity of the ith particle are updated by ipbest  and 

gbest  in the swarm. The update equations can be 

formulated as: 

1 1

2 2
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new old new
id id idx x v   (17) 

 

1r  and 2r  are random numbers between (0, 1), and 1c  and 

2c  are acceleration constants, which control how far a 

particle will move in a single generation. Velocities 
new
idv and old

idv denote the velocities of the new and old 

particle, respectively. old
idx is the current particle position, 

and new
idx  is the new, updated particle position. The 

inertia weight w  controls the impact of the previous 
velocity of a particle on its current one [23]. In general, the 
inertia weight is decreased linearly from 0.9 to 0.4 
throughout the search process to effectively balance the 
local and global search abilities of the swarm [24]. The 
equation for the inertia weight w can be written as: 
 

max
max min min

max

( ) iIteration Iteration
w w w w

Iteration


   

 

(18) 

 

In Eq. (18), maxw  is 0.9, minw  is 0.4 and maxIteration  is 

the maximum number of allowed iterations. 

3.2 Chaotic Particle Swarm Optimization (CPSO) 

In the field of engineering, it is well recognized that 
chaos theory can be applied as a very useful technique in 
practical application. The chaotic system can be described 
by a phenomenon, in which a small change in the initial 
condition will lead to nonlinear change in future behavior, 
besides that the system exhibits distinct behaviors under 
different phases, i.e. stable fixed points, periodic 
oscillations, bifurcations, and ergodicity [25]. Chaos [26] 
is also a common nonlinear phenomenon with much 
complexity and is similar to randomness. Chaos is 
typically highly sensitive to the initial values and thus 
provides great diversity based on the ergodic property of 
the chaos phase, which transits every state without 
repetition in certain ranges. It is generated through a 
deterministic iteration formula. Due to these 
characteristics, chaos theory can be applied in 
optimization.    

In PSO, the parameters w , 1r and 2r  are the key factors 

affecting the convergence behavior [27, 28]. The inertia 
weight controls the balance between the global exploration 
and the local search ability. A large inertia weight favors 
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the global search, while a small inertia weight favors the 
local search. For this reason, an inertia weight that linearly 
decreases from 0.9 to 0.4 throughout the search process is 
usually used [24]. Since logistic maps are frequently used 
chaotic behavior maps and chaotic sequences can be 
quickly generated and easily stored, there is no need for 
storage of long sequences [29]. In CPSO, sequences 
generated by the logistic map substitute the random 

parameters 1r  and 2r  in PSO. The parameters 1r  and 2r  

are modified by the logistic map based on the following 
equation. 
 

( 1) ( ) ( )4 (1 )t t tCr Cr Cr      (19) 

 

In Eq. (19), (0)Cr is generated randomly for each 

independent run, with (0)Cr not being equal to {0, 0.25, 

0.5, 0.75, 1}. The velocity update equation for CPSO can 
be formulated as: 
 

1

2

( )

(1 ) ( )

new old old
id id id id

old
d id

v w v c Cr pbest x

c Cr gbest x
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   
 (20) 

 
In Eq. (20), Cr  is a function based on the results of the 
logistic map with values between 0.0 and 1.0. Fig. 1 shows 
the chaotic Cr  value using a logistic map for 150 

iterations where (0) 0.0001Cr  . The pseudo-code of 

CPSO is shown below [17, 22]. 
 
CPSO pseudo-code 
01:   begin 
02:     Randomly initialize particles swarm 

03:     Randomly generate (0)Cr 

04:     while (number of iterations, or the stopping  criterion 
          is not met) 
05:       Evaluate fitness of particle swarm 
06:       for n = 1 to number of particles 
07:         Find pbest 

08:         Find gbest 

09:         for d = 1 to number of dimension of particle 
10:           update the Chaotic Cr value by Eq. (19) 
11:           update the position of particles by Eq. (20) and  
                Eq. (17) 
12:         next d 
13:       next n 
14:       update the inertia weight value by Eq. (18) 
15:     next generation until stopping criterion 
16:   end 
 

Fig. 1. Chaotic Cr value using a logistic map for 150 generations; 
Cr(0)=0.0001 

 
In fact, In CPSO, a chaotic map was embedded to 

determine the PSO parameters 1r  and 2r . The PSO 

parameters 1r  and 2r  cannot ensure optimal ergodicity in 

the search space because they are absolutely random i.e. 

the 1r  and 2r  are generated by a linear congruential 

generator (LCG) with a random seed. The generated 
sequence of LCG consists of pseudo-random numbers that 
have periodic characteristics. Furthermore, the generated 
sequence of a logistic map also consists of pseudo-random 
numbers, but there are no fixed points, periodic orbits, or 
quasi-periodic orbits in the behavior of the chaos system 
[17]. As a result, the system can avoid being entrapment in 
local optima [21]. So we use CPSO, in this paper. 

4. Proposed Optimal Backstepping Controller 

By adopting the chaotic searching to improve the global 
searching performance of the particle swarm optimization 
(PSO), and using the improved PSO (CPSO) to optimize 
the key parameters of the backstepping controller, an 
optimal backstepping controller (OBSC) is formed. The 
structure of the proposed controller is depicted in Fig. 2. 
The backstepping controller consists of positive 
parameters which are determined optional and by trial and 
error. The system response is different depending on the 
choice of these parameters. Improper choice of the 
parameters causes improper performance and sometimes 
instability of the system. In proposed method, the CPSO 
algorithm is utilized for determination of proper values of  
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Fig. 2. The proposed optimal backstepping controller structure 

 
the parameters. In fact, this algorithm determines the 
parameters of backstepping controller by minimizing the 
objective function. The objective function, used for 
controller tuning has been taken as a weighted sum of the 
Integral of Time multiplied Absolute Error (ITAE) and 
squared controller output similar to that of [30], i.e. 
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Where ft  is the final time, in seconds and t is the time, in 

seconds. ix  is the system state and dix  is the favorite 

mood for ix . Based on the purpose of system for placing 

the state at zero value; dix  is equal to zero. Also, n 

represents the system degree, and u is the control signal.   

It is worth mentioning that the weights 1w  and 2w  

have been introduced in the objective function (21) with a 
provision of balancing the impact of the error and control 
signal. In the present simulation study we have considered 
equal weights for the two objectives to be met by the 
controller as such the minimization of the error index is as 
equally important as the control signal is. The objective 
function J in (21) is now minimized to find out the optimal 
set of controller parameters which simultaneously reduces 
the ITAE and control signal ( )u t . In fact, in the proposed 

controller, the backstepping method parameters are chosen  
 

such that the time response of system states converges to 
zero in a short time, i.e. the system chaos is controlled 
faster. Besides, more limited control signal is needed for 
stabilization of system states and chaos control. 

5. Simulation Results 

5.1 Lur’e like System 

The nonlinear function of Lur’e like system is 
discontinuous. The dynamic equations of Lur’e like 
system are as follows [31]  
 

1 2

2 3

3 1 2 3 1 1 2 3) ( , , )( f

x x

x x

x ax bx cx dsign x x x x  





 







 (22) 

 

Where 1x , 2x  and 3x  are the state variables and 

1.2a   , 0.6b   , 1c    and 2d  .For the initial 

condition 1 2 3( , , ) (1.5,1, 0)x x x   , the chaotic motion of 

the system is illustrated in Figs. 3 and 4. 

5.2 Controlling Lur’e like Chaotic System   

As shown in Figs. 3 and 4, the system has chaotic 
behavior when the control input does not apply. In this 
section, the backstepping method is utilized for the control 
of chaos of the Lur’e like system. For this purpose, a 
control signal u is added to the equation (1). The system 
(1) is rewritten, as following: 
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Fig. 3. Chaotic motion of states 

 

Fig. 4. Chaotic attractor (0-300sec) 
 

Backstepping method is used to set states 1 2 3, ,x x x  to 

the origin point (0, 0, 0) via the control signal u  
calculated with three steps. According to section (2), the 
design procedure is as follows: 

Step1: 2x  is taken as (26) to construct the Lyapunov 

function (25) for (24). 
 

1 2x x  (24) 

 
2

1 1 1( ) 2V x x  (25) 

2 1 1 1 1( )x x k x    (26) 

 
Step2: Take virtual control input (28) and Lyapunov 

function (29) for 1 2( , )x x  of (27). 

 

1 2

2 3

x x

x x








 (27) 

 

3 2 1 2 2 2 1 1 1 2 1( )( , )x x x k x k x k x x       (28) 

 

2 2
2 1 2 1 2 1 1

1 1
( , ) ( )

2 2
V x x x x k x    (29) 

 
Step 3: Final control input and Lyapunov function are 
given in (31) and (32) for (30). 
 

1 2

2 3

3 1 2 3 1)( u

x x

x x

x ax bx cx dsign x  





 







 (30) 

 

1 2 3 1 3 3

1 2 1 1 2 2 1 2 2

1 2 3 2 1 1

0.6 2 ( )

(1 ) ( ) (1 )

( ) ( )

1.2 (

)

signu x x x x k x

k k x k k x k k x

k k x x k x

    

    

 







 (31) 

 

2 2
3 1 2 3 1 2 1 1 3

2
2 2 1 1 1 2 1( )

1 1 1
( , , ) ( )

2 2 2
[

]

V x x x x x k x x

k x k x k x x  

    
 (32) 

 
According to equation (31), it is observed that the 

control signal consists of the parameters which are 
positive. These parameters have to be chosen properly. 
Improper selection of the parameters causes improper 
performance and even instability of the system. Besides, 
finding the parameters through trial and error is so time-
consuming. The CPSO algorithm obtains the proper values 
of the parameters via minimizing the fitness function. The 
parameters of the CPSO Algorithm are set as shown in 
Table 1.  The sampling time in this simulation is 0.02. 

In proposed controller, The searching ranges for the 

backstepping parameters 1k , 2k , and 3k  are limited to [0, 

10]. The backstepping parameters are obtained for 20 

iterations. In this example ft  is equal to 10 seconds.  

 
 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 3, March 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 366

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



Table 1: Parameters used in the CPSO 
Population size 20 

Acceleration constant 
1

c  2 

Acceleration constant 
2

c  2 

Inertia weight w  started from 0.9 and decreased 
linearly to 0.4 

Number of iterations 20 
 

Fig. 5. The parameter value trajectory k1 

 

Fig. 6. The parameter value trajectory k2 
 

Besides, the weights w1 and w2 of fitness function are 
chosen as 0.5. n represents the system degree and is equal 
to 3 in this example. 

The parameters of backstepping controller are obtained 

by using CPSO algorithm, as follows: 1 1.5512k  , 

2 0.6958k  , 3 0.1k  . The search process of CPSO 

algorithm for finding the parameters is shown in Figs. 5-7.  

Fig. 7. The parameter value trajectory k3

 

Fig. 8. The Objective function trajectory

 

Fig. 9. Controlled time response of the state x1
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Besides, the fitness value obtained by the algorithm is 
25.9687. The trajectory of fitness variations with respect 
to algorithm iteration is shown in Fig. 8. 

The time response of the states of Lur’e like system 
after applying the controller is shown in Figs. 9-11. The 
controlled chaos of the system is demonstrated in Fig. 12. 
Also, the control signal is illustrated in Fig. 13. 

 

Fig. 10. Controlled time response of the state x2  

 

Fig. 11. Controlled time response of the state x3  

 
As illustrated in Figs. 9-12, the CPSO algorithm causes 

the time response of the states of the system converge to 
zero in a short time by minimizing the fitness function. 
Whereas, if the values of the parameters were chosen by 
trial and error, the time response of the system states 
converged to zero much slowly. In fact, the optimal 
backstepping controller causes the system states become 
stable in a shorter time and in consequence, the system 

chaos is controlled in much shorter time. In addition, 
according to Fig. 13, it is observed that the proposed 
controller has created a limited control signal to chaos 
control of Lur’e like system and it is because, in the 
proposed objective function, the control effort is applied. 
And by minimizing the objective function, the saturation 
of control signal is avoided. In fact, the CPSO algorithm 
via the minimization of the objective function, causes the 
system states become stable in a shorter time, i.e. the 
system chaos is controlled in a very short time and also, a 
lower control signal is needed to control of chaos. And in 
fact, the saturation of control signal is avoided. Fast 
control of chaos in a very short time and having more 
limited control signal for this purpose, are the great 
advantages of the proposed controller. 

 

Fig. 12. Controlled Chaotic attractor (0-300sec) 

 

Fig. 13. The control law u 
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6. Conclusion 

This paper has proposed an optimal backstepping 
controller (OBSC) for chaos control of the Lur’e like 
chaotic system.  The backstepping controller consists of 
parameters with positive values.  The system responds 
differently for each value of the parameters. The improper 
choice of the parameters causes an improper behavior 
which may cause serious problems such as instability of 
system. In the optimal backstepping controller, the 
parameters of backstepping controller are determined 
automatically and intelligently by CPSO algorithm 
without trial and error. A weighted sum of the Integral of 
Time multiplied Absolute Error (ITAE) and squared 
control signal is the minimized fitness function via the 
CPSO algorithm. In fact, the CPSO optimizes the 
controller to obtain optimal and proper values for the 
parameters. In the proposed controller, the backstepping 
method parameters are chosen such that the time response 
of system states converges to zero faster, i.e. the system 
chaos is controlled in a short time. Besides, more limited 
control signal is needed for stabilization of system states 
and chaos control. Numerical simulations are presented to 
show the effectiveness of the proposed scheme. 
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