

CBASeRA: A Compiler Based Approach towards Semantic CBASeRA: A Compiler Based Approach towards Semantic CBASeRA: A Compiler Based Approach towards Semantic CBASeRA: A Compiler Based Approach towards Semantic

Requirements AnalysisRequirements AnalysisRequirements AnalysisRequirements Analysis

Atifa Rafique1, Kashif Ayub2, Muhammad Ilyas3 and Josef Kueng4

 1,2,3Department of Computer Science and IT, University of Sargodha, Sargodha, Pakistan
4Institute for Application Oriented Knowledge Processing, Johannes Kepler University of Linz, Austria

Abstract

Requirements Engineering (RE) becomes one of an important

aspect in Software Development Life Cycle (SDLC). To improve

the overall process of requirements engineering, different

techniques, models and practices are available. Semantic based

requirements analysis and verification is one of the techniques to

improve the overall quality of software. A new methodology is

proposed for semantic based requirement analysis and

verification which practices compiler based approach. Lexical

Analyzer highlights ontologies from each requirement

specification, described in natural language. During Ontologies

Recognizer, the relationships and entities are extracted by

acknowledging ontologies. Now by applying SQL commands on

ontologies (entities and relationships), we form Requirements

Knowledge Base. Tree Based Semantic Analyzer constructs a

well-structured tree of entities and relationship. Semantic

application on this tree presents the requirements in

unambiguous form. In order to remove the ambiguities, the

process of semantic based requirements analysis and verification

is described with a case study.

Keywords: Requirements, Requirements Analysis, Ontologies,

Knowledge Base, Compiler, Knowledge Base

1. Introduction

In Software Development Life Cycle (SDLC), requirements

engineering plays a major role. RE is the process of

identifying the stakeholder’s needs. It is also used to

document the requirements for the analysis,

communication and development of software. RE consists

of many activities like eliciting, modeling, analyzing,

communicating, agreeing, and evolving requirements [20].

A lot of research work is performed in this area of software

engineering. The American Standish Group’s professional

research indicates that’s the 50 percent of software failure

is almost depend on factors that are related to software

requirements [1]. Many theories and practices are available

for RE, but there is a big gap between these theories and

practices which make a RE process weak [2]. So RE must

be strong enough that they increase the overall quality of

software.

 In RE, the involvement and usage of semantic web and

ontologies has given innovative dimensions. These areas

facilitate the requirements elicitation and analysis process.

They allow communication and understanding between

stakeholders throughout the SDLC [3]. Semantics are

meanings, which used for requirements analysis and

verification. Requirements can be describe in many form

like it may be written in natural language (English), in

mathematical form, or in semi-formal form (use cases,

scenarios) [22, 23]. The ambiguity can be arises in semi-

formal or natural language representation of requirements

because for most of the participants, it is difficult to

understand the requirements which are written in these

from.

RE can also be supported with Knowledge Base (KB)

systems. They are helpful for the requirements analysis and

verification because they can explore large amount of

application specific knowledge [14]. Informal

requirements are gathers from customer in KB,

Requirements Analysis and Knowledge Elicitation System

(RAKES) and then produce the formal specification.

RAKES is a good example of KB implementation [13]. In

this paper, we will use Requirement Knowledge Base

(RKB), which is used to store the requirements.

For semantic and syntactic analysis of natural language

statements, Compiler Based Approach (CBA) is used.

Compiler consists of front end and back end interfaces.

Front end have phases like lexical analyzer, syntax

analyzer, semantic analyzer, and intermediate code

generator. Back end interface consists of code optimizer

and code generator [15]. Front end compiler is also used

for natural language processing. Many techniques are

available for processing the statements in natural language

to check their syntax and semantics. For example, first they

find out the keywords and then describe the meanings of

sentence. One of available technique which is used to

check the semantics of sentences in natural language is

CBA. In this technique the input string is organized as

noun, prepositional, verb, adverb, adjective phrases etc.

Then these phrases are analyzed during semantic analysis

process to remove the ambiguities in words. Knowledge

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 197

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

base is used to store all the possible meanings for words

[16]. In order to extract information from such KB, we use

Structured Query Language (SQL) for database

manipulation. Here’s SQL commands are used to

manipulate ontologies in Knowledge base.

New requirements analysis and verification method is

introduced in this paper which is CBA. Requirements are

defined in the form of natural language statements. Now

the first phase of proposed framework is Lexical Analysis

through which the entities and relations are highlighted and

then Ontologies Recognizer generates the ontologies from

highlighted information. SQL commands are used to form

a RKB, from which Tree Based Semantic Analyzer

construct a tree. Finally the Requirements Generator

produces the furnished requirements by parsing a tree.

In this paper we present the CBA for Semantic Based RE.

For requirements analysis and verification, RKB and SQL

commands are used. Section 2 describes context and

background work that is related to RE, Semantic RE, RKB

and Compiler. In section 3 the detailed proposed approach

is provided. While Section 4 discusses the case study

which support our proposed framework. Section 5 presents

the prototype for proposed approach. The final section

gives a conclusion followed by future work.

2. Related Work

In past, many research works have been performed to

support the RE process. Bashar Nuseibeh et al. presented a

comprehensive roadmap to RE. RE activities are re-

examined and associated with only core activities. They

include the need for requirements elicitation, analysis and

modeling [20]. Opdahl et al presented a review of research

papers published at ten conductive annual workshops on

RE. They performed qualitative analysis for the evolution

of RE activities, so the research interests are disclosed

[21].

Semantic based RE and ontologies techniques are used to

improve the RE process [18]. These assist in requirements

elicitation and analysis process. FengdiShu, et al. provides

the method of requirements elicitation, which based on

users individualities and context. This method encourages

the user involvement in requirements elicitation and also

improves the domain knowledge reuse [17]. Ontologies

play an important role in software applications

development [4]. These applications include natural

language processing [5], databases [6], multimedia [7],

data mining [8], and information retrieval systems [9].

Haruhiko et al. proposed an approach in which they have

applied the knowledge of domain ontology towards the

requirement elicitation and analysis process. They map the

software requirements description with the domain

ontology. Their domain ontology system contains

inference rules and thesaurus parts that are suitable for

processing the semantics. It facilitates the requirements

engineers for requirements specification analysis with

respect to application domain semantics. They show three

types of semantic processing with the help of case study.

These semantic processing includes: identifying the

inconsistent and incomplete requirements, quantifying the

requirements specification through its meaning, and

predicting the changes in requirements [18].

Requirements analysis and verification can be facilitated

by the semantic based approaches. A new semantic

approach based on domain methodology is presented for

the analysis and the verification of requirement [10].

Semantic Wiki is one of the semantic based approaches

which is used for RE. It is used explicitly to expose the

relationship between requirements elements [11]. Yanwu

Yang, et al. presented an integrated (two level) framework

for semantic based RE (shown in fig. 1). This two level

framework is basis for requirements understanding and

management. It is also act as eliciting, analyzing,

modeling, communication, and approving requirements.

The lower level integrates the user ontology, enterprise

ontology and domain ontology for the semantic

representation of software requirements. User ontology is

used for eliciting and modeling the requirements when user

has no clear idea what they want. Enterprise ontology

defines the rules, goals, resources and responsibilities with

respect to business to hold high level requirements.

Domain ontology plays key role, it assists the stakeholders

to share background knowledge. The middle level of this

framework consists of RE activities including modeling,

analysis, communication and evolution. Requirements

knowledge is acquired according to application domain.

Requirements knowledge base is used to structured and

store this knowledge. Requirements items can be analyzed

in figure 1 [19].

Semantic based composition is another idea used in formal

semantic studies, which benefits the reasoning to identify

the conflicts between requirements and also assist the

meaningful mapping to derived architecture [12]. Haibo

Hu, et al., proposed an approach, a structural and formal

semantic based approach on domain ontology. Moreover,

it uses inference rule for analysis and verification of

software requirements. They described requirements in

natural languages.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 198

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Fig.1 An integrated framework for semantic requirements engineering

[19].

For requirements analysis, requirements descriptions are

decomposed into atomic requirement item which

represents with triplet D (C, R, AR, X) of semantics in

domain ontology. Now the requirements are analyzed and

verified according to provided framework (figure 2). The

domain ontology which is described in this paper consists

of semantic elements. These elements are represents as

concepts and relationship between these concepts and rules

of inference. They map the requirement elements to the

domain ontology with the help of inference rules to

analyze and verity the completeness, correctness, and

consistency. In order to support their idea they used

predicate calculus notations for requirements elements and

domain ontology representations. They introduced

notations for mapping functions Fm(r) and inference rules

D(c)/D(p) which describe the instance concept c or binary

relation p [10].

Fig. 2 Framework of requirement analysis based-on ontology [10].

The KB is another important aspect for analysis of

requirements used in RE. In a Knowledge based approach,

RAKES is implemented for requirements analysis. RAKES

take informal requirements from user and produce formal

specification. For input, system uses the requirements in

natural language and produce output in Formal

specification. It also produces another kind of output like

as side notes that is stored in knowledge base. A formal

analysis is performed to analyze the requirements. This

approach is totally concerned with analysis phase; however

the information that is stored in knowledge base can also

be useful during the entire software life cycle [13].

Overview of RAKES is shown in figure 3.

Fig. 3 Overview of RAKES [13].

For semantic and syntactic analysis, another good

approach is the usage of compilers, which have many

applications used in natural language processing (shown in

figure 4). It extracts the words and phrases (verbs, nouns,

adverbs, adjectives …) from natural language statements.

These words and phrases are analyzed to remove the

ambiguities from statements. Knowledge Base is used to

keep the record of application specific knowledge and

general knowledge. It contains all possible meanings of

sentences. Lexical analyzer check the syntax and semantic

of each word in a statement and then store it in Knowledge

Base. In this method the input strings are converted to SQL

statements and then computer run these statements [16].

Fig. 4 Natural Language Processing [16].

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 199

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

3. Proposed Framework

This paper proposed a new requirements analysis and

verification method which uses CBA. Here in this idea a

string is an input, this string represents a requirement in

simple natural language. Exactly one information string

represents a requirement. The requirement string as input

went to Lexical Analyzer. This analyzer reads the string

and highlights the entities and relationships. Entities can be

subjects or objects and relationships can be verbs. Now the

highlighted information comes into Ontologies Recognizer,

where Ontologies Jars are generated on the bases of

highlighted information from input string. Now the actual

string shrinks to core information related to some

requirement. Requirement Knowledge Base (RKB) forms a

Knowledge Base via SQL statement on the bases of

relations between recognized ontologies. Tree Based

Semantic Analyzer generates a well-structured tree of

information from these ontologies, so the information gets

some shape of representation. Now Requirement Generator

generates requirements from constructed tree of ontologies

and sends these requirements as its output.

Fig.5 CBASeRA Framework

3.1 Lexical Analyzer

Lexical Analyzer gets string as an input. This string

consists on a natural language sentence which completely

describes a requirement. This requirement passes to

Lexical Analyzer where process re-reads the string

completely and highlights some very basic information to

it like entities and relationship. Normally these relations

are of general type in these natural language sentences.

3.2 Ontologies Recognizer

Ontologies Recognizer recognizes the highlighted

information (Entity1, Entity2, Relation1…) from a string

and generates ontologies on the basis of this highlighted

information, embeds some extra information like

relationships between them. Now actual string breaks into

small parts of information and shrinks as well.

3.3 Requirements Knowledge Base (RKB)

In this process, Ontologies Jar (O1, O2, O3…, On) form a

RKB by using SQL commands. This KB can be of nested

form, means multiple relationships can be describe in it.

Like as:

Relation1 (Entity1, Relation2 (Entitiy2, Entity3)) etc.

Above example of KB is actually describing multiplicity of

relationships between ontologies. RKB is shown in figure

6.

Fig.6 RKB Representation in CBASeRA Framework.

3.4 Tree Based Semantic Analyzer

Tree Based Semantic Analyzer gets the RKB as an input to

construct a tree. Normally relationships between entities

become even levels of tree and entities on odd levels. This

is a valid scenario if we have binary relationships (as

shown in fig. 7), but when there came multiplicity in

relationships then this rule is no longer remaining

applicable. It increases the possibility to have relationships

on either level. But one thing is sure either in binary

relationship tree or in multiplicity relationships oriented

tree, top node on level zero is always a relationship node.

This starting node can’t be entity in any case. After

generating a well-structured tree, now information of KB is

in a well presentable form for any level of study. At this

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 200

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

instant, any type of processing is applicable on this tree of

information.

Fig.7. Binary Tree Representation

3.5 Requirements Generator

Now requirement generator process is going to extract

requirements via tree parsing. Tree has entities and

relationships between these entities nodes. Requirement

generator process is using same information to go through

this tree and extract requirements. These requirements can

be a string or in some other narrations for requirements.

Here these requirements are the outputs from our

framework of RE.

3.6 CBASeRA Algorithm

The algorithmic steps of CBASeRA are given as:

MAIN CALL

1- Initialize requirements file as <file> object

2- Initialize lexical class and TreeGraph class as

<Lex> and<Tree>

3- Read the requirements strings line by line from

the <file> till to the end of the file.

4- Call the lex.InfoExtractor<file.cirruentline>

5- Call to lex.

Highlighter<lex.infoExtractor<file.currentline

>>

6- Save the requirements output file as

knowledgebase in some file.

7- Now read the highlighted knowledgebase file as

<filehighlihter>

8- Generate call to

lex.Ontologies<filehighlighter.currentline>

9- Keep creating jars and put ontologies into it.

10- Read ontologies one by one and put them into the

tree.Branch

End call from main

3.7 Library Descriptions

Library description of CBASeRA is as follows:

Lexical Class

DataStructure Dictionary

1- Load each data base file of dictionary into

<FileVerb,FileNoun,FilePreposition,FileAdverb,

FileAdjective>

2- Create an object of this structure

Function InfoExtractor<Line > as string

1- Read the line word by word till to the end of line

appears.

2- Make check either the current word is match to

<fileAdjective or FilehelpingVerb or

filePreposition, word>

3- if above check passes then remove the current

word to compact the information

4- if not the condition describe in 2 then skip current

and move to next

Function Highlighter <Line > as string

1- Initialize a <state> object as integral information

to 1 as starting state.

2- Read the <Line> object word by word till to the

end of line appears.

3- On state 1 check either the current word is some

subject then does highlighting and get next word

from the current line and update the state object to

2. Otherwise raise error of constraint violation.

4- On state 2 matches if the current word is a verb

and next appearing word is not a proper verb.

Then update the state to 3 and do highlighting.

5- If next appearing word is a proper verb then keep

the state to 2.

6- If the next word is “AND” or “OR” then just

update state to 4.

7- On state 3 check for object, if founded then do

highlighting and remain on same state.

8- If next word is “AND” or “OR” then stay state5

and search for object again.

9- If there still remains some input in the string then

raise error.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 201

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

10- If the string comes to end it means operation

successes.

End to Class Lexical

Class TreeGraph

Function TreeBraches<info, position>

1- If the position is 0 (zero) then put on parent

branch of binary tree.

2- If position is 1 then put the info on left child of

binary tree.

3- If the position is 2 then put the info on right child

of binary tree.

End to class TreeGraph

4. Case Study

Following is the case study of a pizza shop’s SMS based

Order Placing System (SMS OPS). We use natural

language to describe the requirements. This case study

describes implementation of our proposed framework

toward semantic based requirement engineering. In this

scenario user can do the following things with pizza shop’s

SMS OPS.

Requirements:

1. Customers can place order.

2. Customers can place from menu.

3. Customers can place order from regular deals.

4. Customer can register itself.

5. Registered Customer can place order from menu.

6. Register customers can place order from member

menu.

7. Register customer can place order from regular deals.

8. Register customer place order from member deals.

Blank () is a proper string in NLP. Above are the

English statements which describe the requirements for

SMS OPS functionalities. These statements describe each

and every requirement properly and separately. These

requirement statements can be in any natural language.

Now we are going to apply our framework on the above

mentioned requirements to get the furnished requirements.

4.1 Lexical Analyzer

This process reads all string one by one separately and

highlights the relationships and entities from them. This

highlight process uses the object, subject, verbs

recognition pattern to highlight the words.

1. Customers can place order.

2. Customers can place from menu.

3. Customers can place order from regular deals.

4. Customer can register itself.

5. Registered Customer can place order from menu.

6. Register customers can place order from member

menu.

7. Register customer can place order from regular deals.

8. Register customer place order from member deals.

Highlighted (Italic style) words provide the meaning of

each requirement. This process treats each requirement

individually but later we merge them to get the results as

a whole.

4.2 Ontologies Recognizer

Highlighted strings (output of Lexical Analyzer) are the

inputs for this process. It recognizes the highlighted words

and creates the ontologies. These ontologies also consist of

some additional information which is attached with them

like either the word is verb, object or subject. This

additional information is helpful in constructing the tree.

We get the ontologies from this process are given as:

Here E denotes to Entity (Italic words) and R to

Relationship (Bold word).

1. [Customers(E)][Place order(R)].

2. [Customers(E)][place order(R)][Menu (E)].

3. [Customers(E)][place order(R)][Regular deals (E)].

4. [Customers(E)] [Register (E)].

5. [Registered customers(E)][Place order(R)][Menu

(E)].

6. [Registered customers(E)][Place order(R)][Menu

(E)].

7. [Registered customers(E)][Place order(R)][Deals

(E)].

8. [Register customers(E)][Place order(R)][Deals (E)].

4.3 Requirement Knowledge Base

This process creates Requirement Knowledge Base

(RKB) by using ontologies. SQL statements fills this

database oriented RKB with requirements entities with

respect to relationships between then. This RKB also

helps to form final tree.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 202

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Our scenario based SQL statements are as:

1. INSERT INTO RKB VALUES(customer);

2. INSERT INTO RKB VALUES(customer, menu);

3. INSERT INTO RKB VALUES(customer, deals);

4. UPDATE RKB SET customer=’register customer’;

5. INSERT INTO RKB VALUES(customer, menu)

WHERE customer= (SELECT customer FROM RKB

WHERE customer=’register customer’);

6. INSERT INTO RKB VALUES(customer, menu)

WHERE customer=’register customer’;

7. INSERT INTO RKB VALUES (customer, deals)

WHERE customer=’register customer’;

8. INSERT INTO RKB VALUES(customer, deals)

WHERE customer=’register customer’;

Real RKB forms through relationships taken from

ontologies recognizer process’s output and entities from

RKB database. Now real RKB looks like this:

Place order(customer)

Place order(customer, menu)

Place order(customer, deal)

Register customer(customer)

Place order(register customer (customer), menu)

Place order(register customer (customer), menu)

Place order(register customer (customer), deals)

Place order(register customer (customer), deals)

This is the final representation of RKB which is further

used for tree construction.

4.4 Tree Based Semantic Analyzer

Tree Based Semantic Analyzer takes each statement from

RKB as a separate input. It initially forms a tree for the

individual requirement and at the end it forms a final tree

as its output. Relationship between entities becomes parent

nodes and left and right nodes are the entities associated

with that relationship. So tree representation of each

requirement statement is illustrated as:

Fig.8. Tree for requirement 1.

Fig.9 Tree for requirement 2.

Fig.10. Tree for requirement 3.

Fig.11. Tree for requirement 4.

Fig.12. Tree for requirement 5.

Fig.13. Tree for requirement 6.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 203

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Fig.14. Tree for requirement 7.

Fig.15. Tree for requirement 8

Final tree forms on bases of relationship. Here all nodes

merges on the basis of similar relationship nodes and then

removes the ambiguities like repeated or similar branches

from these newly connected nodes of tree (figure 16).

Fig.16. Final tree representation after mapping.

4.5 Requirements Generator

In this process, we get furnished requirements in any

format from tree based semantic analyzer. By parsing a

tree, final requirement can be either in simple English

language statement or even can export complete tree of

figure 16 by using some data structures like link list, queue

etc.

We have designed these formulas for requirements

verification:

Formula 1: Completeness = Com = Com / T

Formula 2: Ambiguous =AMB= Amb/T + Blank/ T

Formula 3: correctness = T – AMB

Formula 4: consistency = T - AMB - Blank

Where Blank is the total blank requirements in

requirements specification document and we find this when

there is no tree built for any requirement. Amb is the total

ambiguous requirements and find when we get no proper

tree for requirement. Com is the total number of complete

requirements and this parameter is measured by counting

the total requirements which has proper trees. Because

blank is considered as a proper string in NLP and no tree is

forms.

To check the completeness of requirements we count how

much requirements forms the well structures trees. The

following conclusions are drawn from using above

formulas:

1- Completeness = 6/8 = 75%.

2- Ambiguous = 1/8+0/8 = 12.5 %

3- Correctness = 87.7%

4- Consistency = 87 %

5. CBASeRA Prototype

We have designed and implemented a system of our

proposed approach for semantic based requirements

analysis and verification (Figure 17). System consists of

three parts: opening for stakeholder’s requirements

document and providing some functions such as editing;

preceding to platform for highlight the information such as

subjects, objects and verbs, recognizing the ontologies

from highlighted information and then constructing the

ontologies jar; platform for separate trees for each

requirement specification.

5.1 CBASeRA Interface

The main interface which is used for opening and editing

the requirements document is shown in figure 17.

Fig. 17 Main Interface of CBASeRA

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 204

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

5.2 Interface for ontologies recognizer

When the requirements document is opened then click on

the proceed button on right corner of figure 17. We get the

output window which has three parts. The first part of

output window, information such as entities (subjects or

object) and relationships (verbs) and highlighted. Now this

information are come into ontologies recognizer where red

color indicate relationship, blue and cyan colors represents

the entities. Last part of interface generates the ontologies

jar where the bracket [] with each ontology indicate its

requirement number. These ontologies in a jar are

separated based on their colors.

Fig. 18 Interface for ontologies recognizer and ontologies jar generation

5.3 Interfaces for requirements trees generation

 Tree graph interface for each requirement shown as:

Fig. 19 Tree graph interface for requirement 5

Fig. 20 Tree graph interface for requirement 3

Fig. 21 Tree graph Interface for requirement 4

6. Conclusion and Future Work

This paper explores the idea for requirements analysis and

verification which follows compiler based approach.

Requirements are in simple English language statements

and ontologies are highlighted during Lexical Analyzer

phase from them. SQL commands create Knowledge Base

on the bases of ontologies (entities and their relationship).

Now tree based semantic analyzer construct a tree of

information from these ontologies and requirement

generator generates final requirements.

In future, we will try to define output format by using some

data structure. Furthermore, we will try to export final tree

of Tree Based Semantic Analyzer as output by using link

list data structure where each node will hold some

information in its data portion which will describe either

this is a relation node or Entity node and some addresses

which will establish connection between these list nodes.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 205

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

References

[1] J. Zhi, L. Lin, and J. Ying, Software Requirements

Engineering: Principles and Methodology, Science

Press. 2008, pp. 4-5.

[2] D. Zowghi, and C. Coulin, “Requirements Elicitation:

A Survey of Techniques, Approaches, and Tools”,

Engineering and Managing Software Requirements,

Heidelberg, Germany, 2005, pp. 19-46.

[3] T. Berners-Lee, J. Hendler and O. Lassila, “The

Semantic Web”, Scientific American, Vol. 184, No. 5,

2001, pp. 29-37.

[4] L. Shanping, Y. Qiwei, H. Yujie, et al., “Overview of

Researches on Ontology”, Journal of Computer

Research and Development, Vol. 41, No. 7, 2004, pp.

1041-1052.

[5] E. Dominique, N. Chris, and Z. Andrew, “Towards

Ontology-based Natural Language Processing”,

Proceedings of the 4th Workshop on NLP and XML,

Barcelona, 2004, pp. 59-66.

[6] L. Jiang, T. Topaloglou, A. Borgida, et al., “Goal-

Oriented Conceptual Database Design”, Proceedings

of the 15th International Conference on Requirements

Engineering IEEE, New York, 2007, pp.195-204.

[7] T. Seidl, and H. Kriegel, “Efficient User-Adaptable

Similarity Search in Large Multimedia Databases”,

VLDB97, 1997, pp. 506-515.

[8] B. Braunmueller, M. Ester, H. P. Kriegel, and J.

Sander, “Efficiently Supporting Multiple Similarity

Queries for Mining in Metric Databases”, Proceedings

of the 16th International Conference on Data

Engineering, 2000, pp. 256--.

[9] R. Baeza-Yate, and B. Ribeiro-Neto, Modern

Information Retrieval, Addison-Wesley Publishing

Company, 2008.

[10] H. Hu, L. Zhang, and C. Ye, “Semantic-based

Requirements Analysis and Verification”,

International Conference on Electronics and

Information Engineering, 2010, pp. 241-246.

[11] H. Bart, and P. Liang P, “A survey of semantic wikis

for requirements engineering”, Software Engineering

and Architecture Group, Department of Mathematics

and Computing Science, University of Groningen.,

Tech. Rep. RUG-SEARCH-09- L03, 2009.

[12] N. Weston, R. Chitchyan, and A. Rashid, “A Formal

Approach to Semantic Composition of Aspect-

Oriented Requirements” Proceedings of the 16th

International Conference on Requirements

Engineering, 2008, pp. 173-182.

[13] A. Liu and J. Tsai, “A Knowledge-Based Approach to

Requirements Analysis”, TAI '95 Proceedings of the

Seventh International Conference on Tools with

Artificial Intelligence, Washington, 1995, pp.26-33.

[14] R. Burlon, B. Cardile, M. Conti, F. Pietri, P. Puncello,

and P. Torrigiani, “A knowledge based tool for the

requirements analysis”, Proceedings of the Twenty-

Second Annual Hawaii International Conference on

System Sciences, 1989, Vol.2, pp.78-84.

[15] C. Liu, Y. Wang, and Z. Jin, “Elicit the Requirements

on Software Dependability: A Knowledge-Based

Approach”, Software Engineering Conference

(APSEC '09), Asia-Pacific, 2009, pp.233-240.

[16] W. S. Davis, and D. C. Yen, “The Information System

Consultant's Handbook: Systems Analysis and

Design”, CRC Press LLC, ISBN: 0849370019, Dec.

1998.

[17] S. Fengdi, Z. Yuzhu, W. Jizhe, et al., “User-Driven

Requirements Elicitation Method with the Support of

Personalized Domain Knowledge”, Journal of

Computer Research and Development, Vol. 44, No. 6,

2007, pp. 1044-1052.

[18] H. Kaiy, and M. Saeki, “Ontology Based

Requirements Analysis: Lightweight Semantic

Processing Approach”, QSIC 2005, 2005, pp. 223-230.

[19] Y. Yanwu, F. Xia, W. Zhang, X. Xia, Y. Li, and X. Li,

“Towards Semantic Requirement

Engineering” ,WSCS '08, 2008, pp. 67 – 71.

[20] B. Nuseibeh, and S. Easterbrook, Requirements

Engineering: a roadmap, ACM Press, 2000, pp. 35-46.

[21] A. L. Opdahl, E. Dubois, and K. Pohl, “Ten years of

requirements engineering: Foundations of software

quality—outcomes and outlooks”, Proceedings of

REFSQ’04, 2004, pp- 73-93.

[22] C. Damas, B. Lambeau, P. Dupont, and A.

Lamsweerde, “Generating Annotated Behavior

Models from End-User Scenarios”, IEEE Transaction

on software Engineering, 2005, Vol. 31, No. 12, pp.

1056-1073.

[23] Z. Yan, H. Jun, Y. Xiaofeng, et al., “ Scenario-Driven

Component Behavior Derivation”, Journal of Software,

(in Chinese), Vol. 18, No. 1, 2007, pp. 50-61.

[24] V. A. Alfred and R. Sethi, Compiler Design and

Construction, Hardcover 2nd edition, Van Nostrand

Reinhold, 1987.

Atifa Rafique is a student of the Master of Science in Computer
Sciences at the University of Sargodha. Her research interests
include Software Engineering, Semantic Web and other topics.

Kashif Ayub is a student of Bachelor’s of Science in Computer
Sciences. at the University of Sargodha. His research interests
include Software Engineering, and Semantic Web

Muhammad Ilyas is an assistant professor at the University of
Sargodha, Pakistan, PhD awarded by Johannes Kepler University,
Linz Austria.

Josef Kueng is a professor at Institute for Application Oriented
Knowledge Processing, Johannes Kepler University, Linz Austria.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 206

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

