

Enhanced Genetic Algorithm Based Load Balancing
in Grid

Sandip Kumar Goyal and Manpreet Singh

 Department of Computer Science & Engineering, M. M. Engg. College,
M. M. University, Mullana, Ambala, Haryana 133203, India

Abstract

Load Balancing (LB) has been an increasingly important
issue for handling computational intensive task in a grid
system. By developing strategies that can schedule such
tasks to resources in a way that balance out the load, the
total processing time will be reduced with improved
resource utilization. In this paper, an Enhanced Genetic
Algorithm (EGA) is proposed for achieving task
scheduling with load balancing. The simulation results
show that proposed algorithm yields better performance
when compared with other traditional heuristic
approaches.
Keywords: Load Balancing, Task Scheduling, Genetic
Algorithm, Grid.

1. Introduction

Grid computing environment [15] has become a cost
effective and popular choice to achieve high performance
and to solve large scale computation problems. Grid
computing involves coupled and coordinated use of
geographically distributed resources for purposes such as
large scale computation and distributed data analysis.
Task scheduling [4] and load balancing [16] are key grid
services, where issues of load balancing represent a
common concern for most grid infrastructure developers.
In fact, it would be inaccurate to say that the computing
power of any system increases proportionally with the
number of resources involved. Care should be taken so
that resources do not become overloaded and some other
stays idle. In general, load balancing algorithms can be
roughly classified as centralized or decentralized in terms
of location where the load balancing decisions are made.

A load balancing scheme usually consists of
three phases: information collection, decision making and
data migration. During the information collection phase,
load balancer gathers the information of workload
distribution, state of computing environment and detects
whether there is load imbalance. The decision making
phase focuses on calculating an optimal data distribution,
while the data migration phase transfers the excess
amount of workload from overloaded resource to under

loaded ones. In the past decades, a lot of research has
focused on the development of effective load balancing
algorithms for grid computing environment [1]. To make
effective use of tremendous capabilities of the
computational resources distributed within the grid
environments and maximize the resource utilization,
efficient task scheduling algorithms are required [11]
[13]. Task scheduling algorithms are commonly applied
by the grid manager to optimally dispatch the task to the
grid resources [9] [14].

Decision about the assigning of tasks to the resources
and finding the best match between the tasks and
resources is NP-complete problem [2] [3]. This paper
proposes a new task scheduling algorithm to maximize
the utilization of grid resources. The algorithm uses
genetic heuristic and searches the possible couples of the
tasks and resources to find the best matching between
them.

The rest of the paper is organized as follows: Section 2
presents related work and our motivation. Section 3
presents the system model. Section 4 describes in detail
the design of the proposed algorithm. In Section 5, the
performance of proposed algorithm is compared with
other traditional heuristic approaches in a series of
simulations. Finally, this paper is concluded in Section 6.

2. Related Work

A lot of research had already been done in the field of
distributed environment related to load balancing. Due to
some specific parameters of grid environments such as
relatively high communication costs between resources,
most of previously given scheduling and load balancing
algorithms are not applicable to these systems [7] [8].
Therefore, there have been ongoing attempts to propose
new scheduling algorithms, especially within
heterogeneous distributed systems and grid environments
[12] [13]. Some of these works are discussed below
briefly.
 [6] presented Min_min algorithm in which minimum
completion time of each task with respect to all resources
is computed. Then the task having overall minimum

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 260

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

completion time is selected and assigned to the
corresponding resource. The mapped task is removed and
process is repeated until the remaining tasks are mapped.
[6] also presented Max_min algorithm in which
minimum completion time of each task with respect to all
resources is computed. Then the task having overall
maximum completion time is selected and assigned to the
corresponding resource. The mapped task is removed and
process is repeated until the remaining tasks are mapped.
 In [7], authors have presented an algorithm (QoS
guided Min_min) which schedules tasks requiring high
bandwidth before the others. Therefore, if the bandwidth
required by different tasks varies highly, it provides better
results than the conventional Min_min algorithm.
Whenever the bandwidth requirement of all the tasks is
almost same, the QoS guided Min_min algorithm act
similar to the Min_min algorithm. [8] proposed a new
algorithm called RASA. RASA uses the advantages of
both Min_min, Max_min algorithm. To achieve this,
RASA firstly estimate the completion time of the tasks on
each of the available resources, and then applies the
Max_min and Min_min algorithms alternatively.
Experimental results show that RASA is better in
comparison with both Min_min and Max_min algorithms
within grid environments.
 Wang et al. [10] have presented a genetic-algorithm
based approach to dispatch and schedule subtasks within
grid environments. Subtasks are produced from
decomposition of tasks in grid manager and they should
be scheduled appropriately. The genetic algorithm based
approach separates the matching and scheduling
representations and provides independence between the
chromosome structure and the details of the
communication subsystems. Furthermore, the algorithm
considers the overlap existing among all computations
and communications that obey subtask precedence
constraints. The simulation task presented in [10] for
small-sized problems shows that the genetic algorithm
based approach can found the optimal solution for these
types of problems. [5] [14] also presented genetic based
approach to find the optimal schedule. In [16], authors
proposed a solution based upon CPU queue length as the
load optimization criteria.

3. System Model

We have proposed a model in which grid sites are
clustered into regional grids around a set of meta-
schedulers in terms of network transfer delay and meta-
schedulers are organized in a fully decentralized fashion
as shown in Fig. 1.

 Meta-Scheduler
Task Submission

Region-1

Meta-Scheduler

Region-2

 Meta-Scheduler

Region-3

Task Submission

User

Grid Site

User

User

Fig. 1 Decentralized Grid Model.

The user will submit their tasks to the meta-scheduler
which select feasible resources from its region for these
tasks and finally generate task-to-resource mapping using
Enhanced Genetic Algorithm.

4. Proposed Algorithm

The main objective of proposed algorithm is to achieve
maximum resource utilization and a well-balanced load
among all resources. To achieve this objective, it will
consider Makespan value which represents the latest
completion time when all tasks involved are considered
together instead of looking for an earliest completion time
for each task individually.
 The EGA is designed based on the standard GAs. The
method requires an encoding scheme which can represent
all legal solutions to the optimization problem. Any
particular solution is uniquely represented by a particular
chromosome (or schedule). Chromosomes are
manipulated in various ways by applying two genetic
operators until the termination condition is met. In order
for this manipulation to proceed in the right direction, a
quality function called fitness function, is required. In this
section we present an in-depth discussion on EGA by
enumerating several major points involved. The notations
used in the description of EGA are illustrated in Table 1.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 261

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Table 1: Notations Used

Notation Meaning

m No. of Tasks
n No. of Resources
S No. of schedules
I No. of iterations

etc(i, j) Estimated time of completion of
Task i on Resource j

M_Span(i) Make span of ith schedule
B_Time(i, j) Busy time of ith resource during jth

schedule
R(i,j,k,t) ith Resource during jth schedule will

run kth task for time t units
Ut(i, j) Utilization value of ith resource

during jth schedule
A_Ut(i) Average resource utilization value of

ith schedule
Load(i, S) Determine the number of tasks

allocated to resource i in schedule S
A_Task(i, j) Allocate a new task as ith entry in

resource j
T_Task(i, j) Transfer task from resource i to

resource j
Entry(i, j) ith entry of jth schedule

Size(i) Size of ith schedule

4.1 Encoding Mechanism (Generation of
Population)
The population is generated consisting of S schedules in
which 1st and 2nd schedules are generated using optimal
strategies and remaining schedules on random basis. The
generation of any schedule deploys a coding scheme
satisfying following properties:

i) Size(i) = m for 1≤ i ≤ S
ii) Entry (i, k) = <Ti, Rj, etc (Ti, Rj)> for

1≤ i ≤ m, 1≤ k ≤ S, 1≤ j ≤ n
Let these schedules are denoted as S1, S2, …, SS.

4.2 Fitness Function
The main objective is to get task assignments that will
achieve well balanced load among all resources. The
fitness function will measure the performance of
schedules in relation to above said objective. To achieve
maximum load balance, we first introduce the concept of
average resource utilization. The average resource
utilization is defined as the sum of all resources
utilization divided by total number of resources. So,
expected utilization of each resource based upon task
assignment is calculated. This can be achieved by
dividing the completion time of last task at each resource
by the makespan. For each schedule Sj, calculate the busy
time of all resources, makespan, utilization value of all
resources and average utilization value as:
B_Time (i, j) = maxt{R (i, j, k, t)}
 for 1≤ i ≤ n, 1≤ j ≤ S, 1≤ k ≤ m

M_Span (j) = max {B_Time (i, j)}

Ut (i, j) = B_Time (i, j)/M_Span (j)
 n
A_Ut (j) = ∑ Ut (i, j)/n
 i=1

 Now arrange the schedules according to decreasing value
of fitness function (A_Ut) to obtain new population S11,
S21, …, SS1 i.e. A_Ut (S11) ≥A_Ut (S21) ≥A_Ut (S31) ≥
……..≥A_Ut (SS1).

4.3 Genetic Operators
Specialized crossover and mutation operators are
developed for use with three-tuple coding scheme. The
working of these operators is described below.

Crossover Operator: A single cross over operator is
applied on existing population using following steps:

A) Generate a new population consisting of S schedules
out of which second half schedules OSS/2+1, OSS/2+2, …,
OSS are created as given below.

 OSk = S(k-S/2)1 for S/2+1 ≤ k ≤ S
B) Generate remaining schedules in the following

manner:
 a) Select randomly any two resources Ri and Rj which

will act as base of crossover.
 b) Apply following computations using the base values:
 i) Start with the first schedule S11 containing entries

of the form <Tk, Rj , etc(Tk, Rj)>, on interchanging
resources Ri, Rj in all entries of schedule we get:

 Tuple before crossover: < T1, Ri, etc (T1, Ri)>,
 < T2, Rj, etc (T2, Rj)>
 Tuple after crossover: < T1, Rj, etc (T1, Rj)>,
 < T2, Ri, etc (T2, Ri)>
 ii) The above step (i) is repeated for schedules S21,….,

SS/21 to obtain next S/2 schedules represented as
COS1 ,COS2 ,…,COSS/2 i.e.

 Schedules before crossover: S11, S21, …, SS/21
 Schedules after crossover: COS1 , …,COSS/2

Mutation Operator: This operator is modified to
balance load among various resources in term of
ensuring that busy time of each resource in a given
schedule approaches to make span of schedule i.e.

 B_Time (i, j) ≈ M_Span (j) i є (1, 2,…, n) and
 j є (COS1 , COS2 ,…, COSS/2)
Consider the population consisting of S/2 schedules
COS1, COS2 …COSS/2 generated after implementation of
crossover operator.
i) Start with the first schedule COS1 having entries of the

form <Tk, Rj , etc(Tk, Rj)> and perform following steps:

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 262

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

 a) Calculate load of each resource and allocated tasks in
 a schedule in following manner:
 Load (j, COS1) = Count (<Tk, Rj , etc(Tk, Rj)> where
 1 ≤ j ≤ n, <Tk, Rj , etc(Tk, Rj)> є COS1
 And Count (*) is a function which counts the

tuples having second entry as Rj
 A_Task (i, j) = k iff <Tk, Rj , etc(Tk, Rj)> є COS1
 for 1 ≤ i ≤ Load (j, COS1)

b) Find resources Rmin, Rmax having minimum and
maximum load.

 Rmin = min {Load (j, COS1)}
 1 ≤ j ≤ n

 Rmax= max {Load (j, COS1)}
 1 ≤ j ≤ n
c) Transfer a task from Rmax to Rmin so that a portion of
load gets balanced.

 T_Task (Rmax , Rmin) = A_Task (Load (Rmax, COS1), Rmax)
d) New load values and task assignment at imbalance
resources are:

 At Rmin: Load (Rmin, COS1) = Load (Rmin, COS1) + 1
 A_Task (Load (Rmin, COS1), Rmin) =

A_Task (Load (Rmax, COS1), Rmax)
 At Rmax: Load (Rmax, COS1) = Load (Rmax, COS1) – 1
e) Repeat steps b) to d) until the load is balanced.

ii) The above step (i) is repeated for schedules
COS2,…,COSS/2 to obtain new S/2 schedules.

 Schedules before mutation: COS1 , COS2 …COSS/2
 Schedules after mutation: OS1, OS2 …OSS/2
The schedules generated after implementation of mutation
operator are combined with OSS/2+1, OSS/2+2 …OSS to
produce a new population of S schedule OS1, OS2
,…,OSS. Find fitness value of each schedule OSj and then
arrange these schedules of current population according to
decreasing value of fitness function. After applying
crossover and mutation operators I number of times, the
final population comprising of S schedules is generated.

5. Experimental Results
In this section, we present some experiments that have
been carried out to test the efficiency and effectiveness of
proposed algorithm. The functional code is implemented
using simulator built in C language on an Intel core 2
duo, 2 GHz window based laptop. The performance of
EGA is tested on two datasets which differ from one
another on the basis of expected completion time of tasks
i.e. DS1 (ETC varies from 100 to 200 units) and DS2 (ETC
varies from 100 to 500 units). The following assumptions
are devised for simulation model:
i) Tasks are mutually independent i.e. there is no
precedence constraint between tasks.
ii) Tasks are computationally intensive and
communications overhead are negligible.

iii) Each resource has different computational capability
i.e. heterogeneous environment.
In order to determine whether EGA can search a near
optimal schedule for a large number of tasks or resources,
the simulation was performed in three scenarios.

5.1 Scenario 1 (Effect of load in terms of tasks on
average resource utilization)

 The number of tasks is varied from 25 to 300 while
keeping other simulation parameters as: n=30, S=40,
I=500. The average results of execution of the algorithms
on different data sets are demonstrated in Table 2, Fig. 2
and Fig. 3.

Table 2: Average Resource utilization on different datasets under scenario 1

0.6

0.7

0.8

0.9

1

25 45 60 90 100 200 300

Number of Tasks

Av
g.

 R
es

ou
rc

e
Ut

ili
za

tio
n

EGA
Max_min
Min_min

Fig. 2 Effect of load variation on DS1.

No.
of

Tasks

DS 1 DS 2

EGA
Max_
min

Min_
min EGA

Max_
min

Min_
min

25 .8091 .7818 .659 0.7785 0.6786 0.62
45 .9143 .7712 .7238 0.7927 0.6885 0.5656
60 .9655 .808 .8528 0.8906 0.7992 0.6979
90 .9823 .8333 .8771 0.9477 0.8861 0.7363
100 .9674 .8919 .8024 0.9272 0.887 0.7862
200 .9670 .9366 .8973 0.9383 0.9173 0.839
300 .9718 .9471 .9423 0.9634 0.9502 0.8934

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 263

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

0.5

0.6

0.7

0.8

0.9

1

25 45 60 90 100 200 300

Number of Tasks

A
vg

. R
es

ou
rc

e
U

til
iz

at
io

n

EGA
Max_min
Min_min

Fig. 3 Effect of load variation on DS 2.

5.2 Scenario 2 (Effect of scalability on average
resource utilization)
The number of resources is varied from 10 to 40 while
keeping other simulation parameters as: m=200, S=40,
I=500. The average results of execution of the algorithms on
different data sets are demonstrated in Table 3, Fig. 4 and
Fig. 5.

Table 3: Average Resource utilization on different datasets under scenario 2

0.8

0.82
0.84

0.86
0.88

0.9

0.92
0.94

0.96
0.98

1

10 15 20 25 30 35 40

Number of Resources

Av
g.

 R
es

ou
rc

e
Ut

ili
za

tio
n

EGA
Max_min
Min_min

Fig.4 Effect of scalability on DS 1.

0.8

0.82
0.84

0.86
0.88

0.9

0.92
0.94

0.96
0.98

1

10 15 20 25 30 35 40

Number of Resources
A

vg
. R

es
ou

rc
e

U
til

iz
at

io
n

EGA
Max_min
Min_min

 Fig. 5 Effect of scalability on DS 2.

5.3 Scenario 3 (Effect of load and scalability on
average resource utilization)

The number of tasks is varied from 15 to 200 and resources
are varied from 5 to 45 while keeping other simulation
parameters as: S=40, I=500. The average results of
execution of the algorithms on four different data sets are
demonstrated in Table 4, Fig. 6 and Fig. 7.

Table 4: Average Resource utilization on different datasets under scenario 3

No.
of

Reso
urces

DS 1 DS 2

EGA
Max_
min

Min_
min EGA

Max_
min

Min_
min

10 .9885 .9767 .971 .99 .9855 .9423

15 .9844 .965 .938 .98 .9725 .9413
20 .9864 .9517 .9533 .961 .9546 .8811

25 .9858 .9557 .9255 .9719 .9491 .8715

30 .9670 .9366 .8973 .9383 .9173 .8391
35 .9734 .9062 .9277 .9368 .911 .8575

40 .9780 .9004 .8733 .9302 .9184 .843

No. of
Resou
rces

No.
of

Tasks

DS 1 DS 2

EGA
Max_
min

Min_
min EGA

Max_
min

Min_
min

5 15 0.9867 0.8917 0.8683 0.9823 0.8549 0.7522

5 25 0.97 0.9443 0.8738 0.9588 0.8932 0.8611

10 30 0.987 0.9067 0.9143 0.9375 0.8431 0.7528

10 50 0.9857 0.9169 0.9276 0.9667 0.9303 0.8183

15 45 0.9754 0.827 0.8133 0.9439 0.8486 0.7801

15 75 0.9738 0.9035 0.9138 0.9504 0.8873 0.8053

20 60 0.9756 0.8466 0.8722 0.9432 0.8642 0.7532

20 100 0.9895 0.919 0.8746 0.95 0.9089 0.8486

25 150 0.9814 0.928 0.9261 0.9557 0.9363 0.8874

45 200 0.9581 0.9115 0.8732 0.9133 0.8863 0.8324

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 264

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

0.8
0.82
0.84
0.86
0.88
0.9

0.92
0.94
0.96
0.98

1

15 25 30 50 45 75 60 100 150 200

5 5 10 10 15 15 20 20 25 45

Number of Tasks and Resources

Av
g.

 R
es

ou
rc

e
Ut

ili
za

tio
n

EGA
Max_min
Min_min

Fig. 6 Effect of load and scalability on DS 1.

0.7

0.75

0.8

0.85

0.9

0.95

1

15 25 30 50 45 75 60 100 150 200

5 5 10 10 15 15 20 20 25 45

Number of Tasks and Resources

Av
g.

 R
es

ou
rc

e
Ut

ili
za

tio
n

EGA
Max_min
Min_min

 Fig. 7 Effect of load and scalability on DS 2.

6. Conclusions
Load balancing leads to achieve minimum waiting time,
improves the response time and resource utilization rate.
The problem of load balancing in grid environment is
directly related to allocation of tasks among
computational resources available in the system. In this
paper we have proposed a genetic based algorithm for
load balancing across resources for computational
intensive tasks on grid environments. From the simulation
results, it is concluded that the proposed algorithm has
been effective under various load conditions and in terms
of scalability.

References
[1] H. Shan, L. Oliker, and R. Biswas, "Job Super scheduler

Architecture and Performance in Computational Grid
Environments", Proceeding of ACM/IEEE Conference on
Supercomputing, 2003, pp. 44-48.

[2] Yu-kwong, and Lap-sun., "A new fuzzy-decision based load
balancing system for distributed object computing", Journal
of Parallel and Distributed Computing, Vol. 64, No. 2,
2004, pp. 238-253.

[3] Xio Qin, and Hong Jeong, "Improving Effective Bandwidth
of Networks on Clusters using Balancing for
Communication-Intensive", Proceeding of 24th IEEE Intern
Computing and Communications Conference (IPCCC 2005),
2005, pp.27-34.

[4] A.Y.Zomaya, and Y.H.The, "Observations on using genetic
algorithms for dynamic load-balancing", IEEE Transactions
on Parallel and Distributed Systems, Vol.12, No. 9, 2001,
pp. 899-912.

[5] Reza Entezari-Maleki, and Alo Movaghar, "A Genetic
Algorithm to Increase the Throughput of the Computational
Grids", International Journal of Grid and Distributed
Computing, Vol. 4, No. 2, 2011, pp.11-24.

[6] A. Armstrong, D.Hensgen, and T. Kidd, "The relative
performance of various mapping algorithms in independent
of sizable variances in runtime predictions", Proceeding of
7th IEEE Heterogeneous Computing workshop (HCW’98),
1998, pp. 79-87.

[7] X.He, X.H. Sun, and G.V. Laszewski, "QoS Guided
Min_min Heuristic for Grid Task Scheduling", Journal of
Computer Science and Technology, Vol. 18, 2003, pp. 442-
451.

[8] S. Parsa, and R. Entezari-Maleki, "RASA: A New Grid Task
Scheduling Algorithm", International Journal of Digital
Content Technology and its Applications, Vol. 3, 2009, pp.
91-99.

[9] M. Maheswaran, S. Ali, and H.J. Siegel, and D. Hensgen,
and R.F. Freund, "Dynamic Mapping of a Class of
Independent Tasks onto Heterogeneous Computing
Systems", Journal of Parallel and Distributed Computing,
Vol. 59, 1999, pp. 107-131.

[10] L. Wang, H.J. Siegel, V.P. Roychowdhury, and A.A.
Maciejewski, "Task Matching and Scheduling in
Heterogeneous Computing Environments Using a Genetic-
Based Approach", Journal of Parallel and Distributed
Computing, Vol. 47, 1997, pp. 1-15.

[11] E.U. Munir, J. Li, and S. Shi, "QoS Sufferage Heuristic for
Independent Task Scheduling in Grid", Information
Technology Journal, Vol. 6, 2007, pp. 1166-1170.

[12] L. Mohammad Khanli, and M. Analoui, "Resource
Scheduling in Desktop Grid by Grid-JQA", Proceeding of 3rd
International Conference on Grid and Pervasive Computing,
2008, pp.63-68.

[13] L. Mohammad Khanli, and M. Analoui, "Grid_JQA: A QoS
Guided Scheduling Algorithm for Grid Computing",
Proceeding of 6th International Symposium on Parallel and
Distributed Computing, 2007, pp. 242-249.

 [14] Jingyi Ma, "A Novel Heuristic Genetic Load Balancing
Algorithm in Grid Computing", Proceeding of 2nd

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 265

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

International Conference on Intelligent Human-Machine
Systems and Cybernetics, 2010, pp. 166-169.

 [15] Manpreet Singh, and P.K.Suri, "An Efficient Decentralized
Load Balancing Algorithm for Grid", Proceeding of 2nd IEEE
International Conference on Advanced Computing, 2010, pp.
10-13.

 [16] Manpreet Singh, Sandip Kumar Goyal, and Vishal Gupta,
"An Adaptive Load Balancing Algorithm for Computational
Grid", Journal of Engineering and Technology, Vol. 1, No.
2, 2011, pp. 70-73.

Sandip Kumar Goyal received his B.Tech., M.Tech. from
Kurukshetra University, Kurukshetra, India and is currently enrolled
as a Ph.D. scholar in the department of Computer Science and
Engineering at M.M.University, Haryana, India. He is presently
serving as Assoc. Professor in Computer Engineering Department of
M.M. Engineering College, Mullana, Ambala. He is in teaching since
2000. He has published 8 research papers in International and
National journals and conferences. He has supervised several
M.Tech. Dissertations. His research area is Load balancing
Methodologies in distributed environment.

Dr. Manpreet Singh received his B. Tech., M.Tech. and Ph.D. from
Kurukshetra University, Kurukshetra, India. He is presently serving as
Professor and Head, Computer Science and Engineering Department
of M. M. Engineering College, Mullana, Ambala. He has about 13
years of experience in teaching and research. He has published 30
research papers in International and National journals and
conferences. His current research interest includes Grid Computing,
Cloud Computing, Distributed Databases, and MANETs.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 266

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

