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Abstract 
The performance of a computer network can be enhanced 
by increasing number of servers, upgrading the hardware, 
and gaining additional bandwidth but this solution require 
the huge amount to invest. In contrast to increasing the 
bandwidth and hardware resources, network traffic 
modeling play a significant role in enhancing the network 
performance. As the emphasis of telecommunication 
service providers shifted towards the high-speed networks 
providing integrated services at a prescribed Quality of 
Service (QoS), the role of accurate traffic models in 
network design and network simulation becomes ever 
more crucial. We analyze a traffic volume time series of 
internet requests made to a workstation. This series 
exhibits a long-range dependence and self-similarity in 
large time scale and exhibits multifractal in small time 
scale. In this paper, for this time series, we proposed 
Generalized Autoregressive Conditional Heteroscedastic, 
(GARCH) model, and practical techniques for model 
fitting, Markov Chain Monte Carlo simulation and 
forecasting issues are demonstrated. The proposed model 
provides us simple and accurate approach for simulating 
internet data traffic patterns. 
 
Keywords: GARCH, Simulation, forecasting, MCMC, network 
traffic, load. 

1. Introduction 

In the early 1990s, two seminal papers [1] and [2] showed 
that traffic traces captured on both LANs and WANs 
exhibit Long Range Dependence (LRD) properties, and 
self-similar characteristics at different time scales. Those 
discoveries spurred a significant research effort to 
understand data traffic in packet networks in general, and 
in the Internet in particular. A number of attempts were 
made to develop models for LRD data traffic. Looking at 
packet traffic as a superposition of source–destination 
traffic flows, simple ON/OFF models were proposed as a 

first way to mimic LRD properties [3] and [4]. The 
statistical analysis of real traffic traces, due to the 
significant amount of collected data and of research 
projects, gave new impulse to traffic modeling. Among the 
numerous generic LRD models proposed in the literature, 
Fractional Brownian Motion (FBM) received a lot of 
attention, since its Gaussian nature helps in the study of 
the queuing behavior [5] and [6]. However, this model 
presents a restrictive correlation structure that fails to 
capture the short-term correlation of real traffic and its rich 
scaling behavior. Therefore, many research efforts were 
devoted to Multifractal models [7], whose attractiveness is 
due to their rich scale-invariance properties. Wavelet 
decomposition has been widely used as a natural approach 
to study scale invariance, but only recently they were 
introduced in the field of data networks. There are many 
examples of measurement-based traffic models, which try 
to fit the LRD properties of real traffic [8] and [9]. These 
models are computationally very efficient, but they are 
complex and difficult to tune, due to the lack of a mapping 
between the traffic parameters and the model coefficients. 
FARIMA models [10] are widely used in video trace 
modeling, and can be used to generate LRD sequences. 
These models are derived by filtering white Gaussian 
noise, and capture both the short and the long period 
correlations of traffic. However, the models are quite 
complex, and their structure makes it very hard to 
understand the relationship among the filter coefficients 
and the real traffic data.  
 
On the other hand, threshold autoregressive (TAR) model 
[11] is proposed for the traffic exhibited non-stationary 
and non-linear behavior. In [11] the authors have 
developed the first network measurement system which 
integrate prediction and they have also proposed running 
multiple predictors simultaneously and forecasting one 
which exhibiting the smallest prediction error produced on 
its measurements. Another significant prediction research 
work has been introduced in [12], which analyzed the 
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prospects for multi-step prediction of network traffic using 
ARMA and MMPP models. Their analysis is based on 
continuous time ARMA and MMPP models driven by 
Gaussian noise sources. Making the assumption that such 
models are appropriate, they have developed analytic 
expressions on how far into the future prediction is 
possible before errors would exceed a bound, and they also 
showed how traffic aggregation and smoothing 
monotonically can help to increase prediction accuracy. 
Apart from the above mentioned model-based prediction 
schemes, [13] has reported that non-model-based 
prediction provides better prediction than model-based 
prediction as long as the traffic have long range 
dependence or self-similar. However, the authors only 
compared their non-model-based prediction model with 
the FARIMA and FBM models. Both of these two models 
cannot capture traffic bursty very well and this bursty 
characteristic effects traffic prediction accuracy. 
 
In this paper, time series model for data set that is related 
to this problem is developed. The data set is the volume in 
bytes of internet server access requests, aggregated over 
half-hour time intervals. The series exhibit strong non-
stationary behavior as shown in fig 2(a). We apply 
Autoregressive Integrated Moving Average with 
Generalized Auto Regressive Conditional Heteroscedastic 
model. In the ARIMA model the variance is constant; 
therefore these models cannot capture such characteristics 
well. Due to this reason we introduced conditional 
variance model in which variance varies over time. This 
model can capture the required effects. The data is 
described in section two. Section three introduces the 
conditional mean and conditional variance model along 
with parameter estimation used in this work, fitting of the 
model is discussed in section four. Markov chain Monte 
Carlo (MCMC) simulation and prediction schemes are 
demonstrated in section five and six. 

2. Data and its statistical features 

The time series that we used here in this study represents 
volume of hypertext transfer protocol (HTTP) (Internet) 
requests to the World Wide Web server in the Computer 
Science Department at the University of Calgary, for the 
period from 12:00 A.M., Saturday, February 11th, 1995, to 
the end of Wednesday, October 11th, 1995. Total request 
volumes in bytes in successive 30-minutes intervals were 
aggregated to form a time series. The behavior of the 
internet requests presents many challenges, the key one 
being, non-stationary behavior. Which means the 
statistical properties of network load is changing from time 
to time (see Figure 1b).  We can make the stationary signal 
using differencing, filtering, or by smoothing. The 
autocorrelation and partial autocorrelations of the data 

clues the underlying structure for the model to be 
proposed.  After the preliminary model is available, its 
parameters need to be estimated from the measured data. 
Finally comparison of the performance measures of the 
original and the simulated signal using the proposed model 
needs to be done.  
 

 
Fig. 1 Stationary and non-stationary time series (left to right) 

3. The model 

3.1 Conditional mean model 

Autoregressive integrated moving average model assumes 
that errors having constant variance, whenever this 
variance changes from time to time this model is 
inappropriate.  We used this model with the combination 
of Generalized Auto Regressive Conditional Variance 
Model. We call this combination as conditional mean and 
conditional variance model. This model can be represented 
by following mathematical expressions. 
 
A stochastic model that can be extremely useful in the 
representation of certain practically occurring series is the 
autoregressive model. In this model the current value of 
the process is expressed as a finite, linear aggregate of 

previous values of the process and a shock tε  

 

     tptpttt ZZZZ εφφφ ++++= −−− ...2211  (1) 

 
If we express autoregressive operator of order p as 

p
p BBBB φφφφ −−−−= ...1)( 2

21 then model 1 can 

be expressed in its short form as  
 

 ttZB εφ =)(     (2) 

 
Another kind of model, of great practical importance in the 
representation of observed time series, is the finite moving 
average process in which the series depends over a finite 

number q of previous shocks st 'ε  

 

  qtqttttZ −−− −−−−= εθεθεθε ...2211   (3) 
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The moving average operator of order q is 
q

q BBBB θθθθ −−−−= ...1)( 2
21 then model 3 can 

be simplified as  
   

 tt BZ εθ )(=     (4) 

 
Many empirical time series behave as though they had no 
fixed mean. Even so, they exhibit homogeneity in the 
sense that apart from local level, or perhaps local level and 
trend, one part of the series behaves much like any other 
part. Models that describe such homogeneous non-
stationary behavior can be obtained by supposing some 
suitable difference of the process to be stationary. Hence 

important class of model for which the thd  difference is a 
stationary mixed autoregressive moving average process is 
described in equation 5 below. These models are called 
Autoregressive Integrated Moving Average ARIMA 
process of order ),,( qdp .  

 

    ∑ ∑
= =

−− ++∇=∇
p

i

q

j
jtjtit

d
it

d ZZ
1 1

)( εθεφ  (5) 

 

tt
d BZB εθφ )()( =∇    (6) 

 
In model 5 or 6 it is assumed that the shocks or 
innovations are normally distributed with zero mean and 

constant variance 2
εσ , however the series in question is 

much typical and the this assumption is not valid for it. We 
need another technique which model the volatility in the 
data appropriately. 
 
 

3.2 Conditional variance model 

 The conditional variance of innovations, 2
tσ  is defines as  

   

  2)( ttVar σε =  

 
The general GARCH(R, M) model for the conditional 
variance of innovations is  
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When we combine the two models (5) and (7) together the 
resulting model is  
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3.2 Parameter Estimation 

The first step in fitting the above specified model is 
estimation of parameters. Generally there are '' p  

parameters pφφφφ ...,,,, 321 related with autoregressive 

process ''q  parameters qθθθθ ...,,,, 321 related with 

moving average process for the differencing there is one 
parameter ''d . The conditional variance model (7) has 

)1( ++ MR parameters which are

MR AAAGGG ...,,,,...,,,, 2121κ . Hence the total 

number of parameters related with conditional mean and 
conditional variance model (8) is )2( ++++ MRqp . 

Figure 2(b) shows that the series is non-stationary hence 
first we have to make it stationary by estimating the 

parameter d. Stationarity ensures that early values of tε  

have little influence on the current value of the series. It 

also ensures that setting a few values of tε to zero at the 

beginning of a series does not affect the predictions very 
much, provided the series is moderately long. Using the 
estimation method in [14], the differenced parameter d can 
be estimated and tested by autocorrelation function. 
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Fig. 2(a) 

 
Fig. 2(b) 

 
Fig. 2(c) 

 
Fig. 2(d) 

Fig. 2 (a) logarithms of HTTP request volume plus one, aggregated in 
half-hour time units first 4 weeks data (b) their autocorrelations. 2(c) 
autocorrelations after differencing (d) partial autocorrelations after 

differencing 

In the autoregressive moving average model the mean is 
conditionally changed but the variance remains fixed. 
Using the autocorrelation and partial autocorrelation 
functions [14] of the differenced series we can determine 

the parameters si 'φ  and sj 'θ . From the characteristics of 

the Autocorrelation function, it describes the correlation 
between the current states of the time series with the past. 
The order of moving average “q” can be determine using 
ACF. The partial autocorrelations PACF can be used to 
find the order of the auto regression “p”. Table 1 
summarizes the possibilities. 
 
The initial parameter estimates of conditional mean model 
are estimated by three step method outlined in [15]. At 
first, we estimate the autoregressive coefficients by 
computing the sample autocovariance matrix and solving 
the Yule-Walker equations. Then using these estimated 
coefficients, we filter the observed series to obtain a pure 
moving average process. Finally, we compute the 
autocovariance sequence of the moving average process, 
and use it to iteratively estimate the moving average 
coefficients. This last step provides an estimation of the 
unconditional variance of the innovations. The method of 
estimation for the parameters in conditional mean and 
conditional variance model is described in [16]. 

Table 1: Summary of Model Identification 

Function ACF PACF 
MA(q) Function drops off 

to 0 after lag q 
Function tails off 
exponentially 

AR(p) Function tails off 
exponentially 

Function drops off 
to 0 after lag q 

ARMA(p,q) Function tails off 
exponentially 

Function tails off 
exponentially 

Noise 0 0 

4. Model Fitting 

The time series that we used here in this study represents 
volume of hypertext transfer protocol (HTTP) (Internet) 
requests to the World Wide Web server in the Computer 
Science Department at the University of Calgary, for the 
period from 12:00 a.m., Saturday, February 11th, 1995, to 
the end of Wednesday, October 11th, 1995. Total request 
volumes in bytes in successive 30-minutes intervals were 
aggregated to form a time series. Figure 2(a) illustrates the 
logarithms of the 1st week series after adding 1. The graph 
of autocorrelation of the actual data (figure 2b) shows that 
the series is non-stationary and differencing is required. In 
figure 2(c) the autocorrelations and in figure 2(d) the 
partial autocorrelations are represented after taking the 
first difference of the actual series. Figure 2(c) and 2(d) 
suggest that p=1 and q=1. For the different values of R and 
M we fit model (7), we found that the suitable values are 
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R=1 and M=1. Finally ARIMA(1,1,1)/GARCH(1,1) model 
is determined to predict the HTTP request series. We fit 
the conditional mean and conditional variance model (8) to 
HTTP requests data described above. The estimated 
coefficients are given in Table 2. 
 
Results in table 2 shows that constant term in the 
conditional mean model is insignificant and its t-Statistic 
is low. We can ignore this constant in the model. Table 3 
represents the estimated results after ignoring C (constant 
term). Observe that there is a very slight difference in both 
results. 
 

Table 2: Estimated parameters including C in conditional mean model 

Parameter Estimates S. E. t-statistic 
C 4.8684 104.93 0.0464 

1φ  0.35992   0.007494 48.02 

1θ  -0.97658 0.00065359 -1494 

κ  9.7283e+010 1.0392e-006 200.9 

1G  0.73164 0.00076786 952.8 

1A  0.19268 0.0018513 104.7 

 
Finally the fitted model is 
 

11 97662.035991.0 −− −+= tttt yy εε  (9) 

 
2

1
2

1
2 19273.073163.0107.9 −− ++= ttt e εσσ  

Table 3: Estimated parameters without C in conditional mean model 

Parameter Estimates S. E. t-statistic 

1φ  0.35991   0.0050621 71.09 

1θ  -0.97662 0.00063085 -1548.09 

κ  9.7283e+010 1.3806e-014 230.90 

1G  0.73163 0.00062131 1177.55 

1A  0.19273 0.0018166 106.09 

 
5. Monte Carlo Simulations 
 
The word simulation, refer to any analytical method meant 
to imitate a real-life system, especially when other 
analyses are too mathematically complex or too difficult to 
reproduce.  

Monte Carlo (MC) simulations are stochastic techniques, 
meaning they are based on the use of random numbers and 
probability statistics to investigate problems. Strictly 
speaking, to call something a "Monte Carlo" experiment, 

all you need to do is use random numbers to solve the 
problem. 

Algorithm ),( nBurnnSimulatorTrafficSim   

 
[This algorithm simulate model (9) and simulate ySim  

for conditional mean model and 2Simσ for conditional 

variance model. The inputs are nSim that represent the 

number of simulation required and nBurn which 
represent the number of observations to be omitted for the 
burn in period] 
 

Step1: set k=1, Initialize kySim  and 2
kσ  using some 

appropriate values [probably the mean and 
variance of given series] 

 
Setp2:  replace k by k+1 
 

Step3: generate a random number from N(0, 2
1−kσ ) and 

store it into 1−kε  

Step4:  replace 2
kσ  with  

2
1

2
1 19273.073163.0107.9 −− ++ kke εσ  

 

Step5:  replace kySim  with  

11 97662.035991.0 −− −+ kkkySim εε  

[repeat step 2-5 up to nSimk ≤ ] 
 
Step6:  repeat for k=1, 2, 3… ( nSim - nBurn ) 

     If 0≤kySim  then 

 replace kySim  with zero 

     [end of  if structure]  
 

Step7:  replace 2Simσ  with the series 2σ  

Step8: [delete first nBurnobservations from kySim ] 

 
Figure 3 shows the simulated series with their conditional 
variances. 
 
 
6. Predictions 
 
Consider the conditional mean model of first order 
 

 tt BZB εθφ )1()1( −=∇−  
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Fig. 3(a)  

 
Fig. 3(b) 

 
Fig. 3(c) 

 
Fig. 3(d) 

Fig. 3 (a) Logarithms of simulated observations (b) actual versus fitted 
HTTP requests (c) simulated innovations (d) simulated conditional 

standard deviations. 

 

This model in difference equation form is  
 

1121)1( −−−− −+−+= tttttt ZZZ εθεφφ   (10) 

 
One step-ahead forecast is  
 

tttt ZZZ θεφφ −−+= −1)1()1(
)

   (11) 

 
stepsl − ahead forecast will for the conditional mean 

model will be. 
 

)2()1()1()( −−−+= lZlZlZ ttt

)))
φφ   (12) 

where 1>l  

 
Independently from the conditional mean, we can forecast 
the conditional variance. In the simple GARCH(1, 1) case, 
the optimal l-step-ahead forecast of the conditional 

variance, i.e. 2
|tlt+σ)  given by: 

 
       2

|11
2

|11
2

| tlttlttlt AG −+−++ ++= εσκσ)   (13) 
 

 
Fig. 4(a) 

 
Fig. 4(b) 

Fig. 4 (a) actual versus mean forecast (b) volatility forecast of HTTP 
requests 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 282

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



 

 

Figure 4(b) shows that conditional standard deviation 
forecast approaches the unconditional standard deviation 

of tε  which is given by 

 

∑∑
==

−−
=

M

j
j

R

i
i AG

11

1

κσ    (14) 

Table 4: Comparison of conditional mean conditional variance with 
seasonal autoregressive moving average model 

 Our model SARIMA model 
2R  0.473 0.315 

AIC 30.12 30.4 
BIC 30.13 32.2 

 
 We compared the proposed model with seasonal 
auotoregressive moving average model and found that 
proposed model gives better results. Table 4 gives the 
comparative results of the two models. 
  

7. Conclusions 
 
We applied ARIMA(1, 1, 1) with GARCH(1, 1) model on 
HTTP requests series. The method is relatively straight 
forward to implement and capture both the effects found in 
the series due to conditional mean and conditional 
variance. It shows that non-linear time series model can be 
used to forecast better than the classical linear time series 
models, even the linear time series model can also behave 
self-similarity. This model has the capability to capture 
volatility found in variances.  
 
We compare the results of conditional mean and 
conditional variance model with the seasonal 
autoregressive moving average model and found that the 
proposed model gives better results. We cannot generalize 
these results for the other network series because due to 
the different topologies of computer network, the behavior 
of the traffic will be different. We are still working in this 
field and trying to find out the models that can perform 
better than the one used in this work.  
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