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Abstract 
Association rule analysis is the task of discovering 
association rules that occur frequently in a given 
transaction data set. Its task is to find certain relationships 
among a set of data (itemset) in the database. It has two 
measurements: Support and confidence values. 
Confidence value is a measure of rule’s strength, while 
support value corresponds to statistical significance. 
Traditional association rule mining techniques employ 
predefined support and confidence values. However, 
specifying minimum support value of the mined rules in 
advance often leads to either too many or too few rules, 
which negatively impacts the performance of the overall 
system. In this paper, it is proposed to replace the 
Apriori’s user-defined minimum support threshold with a 
more meaningful aggregate function based on Central 
Limit Theorem (CLT). The paper also proposes a new 
function, MinAbsSup with bit mapping, which calculates a 
custom minimum support for each item set based on the 
probability of collision chance of its items. Furthermore, a 
modification for Apriori algorithm to accommodate this 
function is proposed. Experiments on large set of data 
bases have been conducted to validate the proposed 
framework. The achieved results show that there is a 
remarkable improvement in the overall performance of the 
system in terms of run time, the number of generated rules, 
and number of frequent items used. 
Keywords: Data Mining, Association Rule Mining, 
Apriori algorithm, minimum support, minimum 
confidence. 

1. Introduction 

Association rule mining is interested in finding frequent 
rules that define relations between unrelated frequent 
items in databases, and it has two main measurements: 
support and confidence values. The frequent itemset is 

defined as the itemset that have support value greater than 
or equal to a minimum threshold support value, and 
frequent rules as the rules that have confidence value 
greater than or equal to minimum threshold confidence 
value. These threshold values are traditionally assumed to 
be available for mining frequent itemsets. Association 
Rule Mining is all about finding all rules whose support 
and confidence exceed the threshold, minimum support 
and minimum confidence values.  

Association rule mining proceeds on two main 
steps.  The first step is to find all itemsets with adequate 
supports and the second step is to generate association 
rules by combining these frequent (or) large itemsets [1-
3]. 
 
In the traditional association rules mining [4-5], minimum 
support threshold and minimum confidence threshold 
values are assumed to be available for mining frequent 
itemsets, which is hard to be set without specific 
knowledge; users have difficulties in setting the support 
threshold to obtain their required results. Setting the 
support threshold too large, would produce only a small 
number of rules or even no rules to conclude. In that case, 
a smaller threshold value should be guessed (imposed) to 
do the mining again, which may or may not give a better 
result, as by setting the threshold too small, too many 
results would be produced for the users, too many results 
would require not only very long time for computation but 
also for screening  these rules. That would explain the 
need to develop an algorithm to generate a minimum 
support, and minimum confidence values depending on 
the datasets in the databases. 
To use association rule mining without support threshold 
[6-9], another constraint such as similarity or confidence 
pruning is usually introduced. However, the coincidental 
itemset problem had not been directly considered by any 
of these researches. There are some researches that are 
relevant to the coincidental itemset problem, and proposed 
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an additional measure [10] in order to improve the 
support-confidence framework. 
 
Initially, association rules mining was proposed for market 
basket analysis. Given a set of transactions D, association 
rule mining finds the complete set of association rules 
whose support is greater than a user-defined minimum 
support threshold (min-sup) and confidence greater than a 
user-defined minimum confidence threshold (min-conf). 
The following is a formal statement of association rule 
mining for transaction databases. Let I = {i1, i2.  . . im} be 
the universe of items. A set X,I of items is called an 
itemset. A transaction t = (TID, X) is a tuple where TID is 
a unique transaction ID and X is an itemset.  
A transaction database D is a set of transactions. The 
count of an itemset X in D, denoted by count(X), is the 
number of transactions in D containing X. The support of 
an itemset X in D, denoted by supp(X), is the proportion of 
transactions in D that contain X. The rule X → Y holds in 
the transaction set D with confidence c where c = conf(X 
→ Y) and conf(X → Y) = supp (X υ Y) / supp(X). The 
dominant theme in traditional association mining is the 
discovery of positive association rules in frequently 
occurring itemsets. 
 
The continuation of this paper is as follows: section 2 
presents the most related work to the theme of this paper. 
Section 3 introduces the Apriori algorithm. Section 4 
presents Apriori inverse algorithm. Section 5 presents the 
enhanced Apriori algorithm. Sections 6 and 7 demonstrate 
the conducted experiments and discussions. Section 8 
concludes the paper. 

2. Background 

A lot of association rule algorithms have been developed 
in the last decades [11-13], which can be classified into 
two categories: (1) breadth-first search (BFS) or 
candidate-generation-and-test approach such as Apriori 
[14], (2) depth-first search (DFS) or pattern-growth 
approach [15- 18].  With BFS the support values of all (k - 
1) itemsets are determined before counting the support 
values of the k-itemsets. In contrast, DFS recursively 
descends following the tree structure defined above. 
 
Each of the algorithms is characterized by its strategy to a) 
traverse the search space and b) determine the support 
values of the itemsets as shown in figure 1. In addition an 
algorithm may employ specific optimizations for further 
speeding up. The most popular algorithm of this type is 
Apriori [16, 19] where the downward closure property of 
itemset support was introduced. Apriori makes an 
additional use of this property by pruning those candidates 
that have an infrequent subset before counting their 

supports. This optimization issue becomes possible 
because BFS ensures that the support values of all subsets 
of a candidate are known in advance.  Apriori counts all 
candidates of a cardinality k together in one scan over the 
database. The critical part is to look for the candidates in 
each of the transactions. For this purpose, the work in [16] 
introduces a so called hash-tree structure. The items in 
each transaction are used to descend in the hash-tree. 
Whenever they reach one of its leaves, they find a set of 
candidates having a common prefix that is contained in the 
transaction. Then these candidates are searched in the 
transaction that has been encoded as a bitmap [16]. In the 
case of success, the counter of the candidate in the tree is 
incremented. 

 

Figure 1: Systematization of the Algorithms 
 

Apriori Tid [16] is an extension of the basic Apriori 
approach. Instead of relying on the raw database, Apriori 
Tid internally represents each transaction by the current 
candidates it contains. The Apriori Tid algorithm has the 
additional property that the database is not used at all for 
counting the support of candidate itemsets after the first 
pass. Rather, an encoding of the candidate itemsets used in 
the previous pass is employed for this purpose. In later 
passes, the size of this encoding itemsets can become 
much smaller than the database, thus saving much reading 
effort.  

 
SETM algorithm [17] was motivated by the desire to use 
SQL to compute large itemsets, the candidate itemsets are 
generated on-the-fly during the pass as data is being read. 
Specially, after reading a transaction, it is determined 
which of the itemsets found large in the previous pass are 
present in the transaction. New candidate itemsets are 
generated by extending these large itemsets with other 
items in the transaction. However, the disadvantage is that 
this results in unnecessarily generating and counting too 
many candidate itemsets that turn out to be small. 
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DIC is a further variation of the Apriori-Algorithm 
[18, 19]. DIC softens the strict separation between 
counting and generating candidates. Whenever a candidate 
reaches min-supp; that is even when this candidate has not 
yet "seen" all transactions, DIC starts generating 
additional candidates based on it. For that purpose a 
prefix-tree is employed. In contrast to the hash-tree, each 
node - leaf node or inner node - of the prefix-tree is 
assigned to exactly one candidate respectively frequent 
itemset. In contrast to the usage of a hash-tree that means 
whenever we reach a node we can be sure that the itemset 
associated with this node is contained in the transaction. 
Furthermore interlocking support determination and 
candidate generation decreases the number of database 
scans. 

 
The Partition-Algorithm [20, 21] uses set intersections to 
determine support values. As mentioned above Apriori 
determines the support values of all (k - 1) candidates 
before counting the k-candidates. The problem is that 
partition of course wants to use the Tid-lists of the 
frequent (k - 1) itemsets to generate the Tid-lists of the k-
candidates. Obviously the size of those intermediate 
results easily grows beyond the physical memory 
limitations of common machines. To overcome this 
Partition, it splits the database into several chunks that are 
treated independently. The size of each chunk is chosen in 
such a way that all intermediate Tid-lists fit into main 
memory. After determining the frequent itemsets for each 
database chunk, an extra scan is necessary to ensure that 
the locally frequent itemsets are also globally frequent. 
 
Counting occurrences assumes candidate sets of a 
reasonable size. For each of those candidate sets, a 
database scan is performed. Apriori that relies on BFS 
scans the database once for every candidate size k. When 
using DFS the candidate sets consist only of the itemsets 
of one of the nodes of the tree. Obviously, scanning the 
database for every node would results in tremendous 
overhead. The simple combination of DFS with counting 
occurrences is therefore of no practical relevance.  
 
In [22] a fundamentally new approach called FP- growth 
was introduced. In a preprocessing step, FP- growth 
derives a highly condensed representation of the 
transaction data, so called FP- tree. The generation of the 
FP- tree is done by counting occurrences and DFS. In 
contrast to former DFS - approaches, FP-growth does not 
follow the nodes of the tree, but directly descends to some 
part of the itemsets in the search space. In a second step 
FP- growth uses the FP-tree to derive the support values of 
all frequent itemsets. 
 

In [23] the algorithm ECLAT is introduced, that combines 
DFS with Tid-list intersections. When using DFS it 
suffices to keep the Tid-lists on the path from the root 
down to the class currently investigated in memory. That 
is, splitting the database as done by Partition is no longer 
needed. ECLAT employs an optimization called "fast 
intersections". Whenever two Tid-lists are intersected then 
the only interest is in the resulting Tid-list if its cardinality 
reaches min-supp. In other words, each intersection should 
be broken off as soon as it is sure that it will not achieve 
this threshold. ECLAT originally generates only frequent 
itemsets of size > 3. ECLAT had been modified to mine 
also the frequent 1 and 2 itemsets by calling it on the class 
that contains the 1 itemsets together with their Tid-lists as 
mentioned in [23]. 
 
In addition, in [23] algorithms that mine only the maximal 
frequent itemsets are introduced, e.g. Max-ECLAT. An 
itemset X is maximal frequent if for every frequent itemset 

Y X   Y  Y = X holds. These algorithms were not 
considered because although it is straight forward to 
derive the set of all frequent itemsets from the maximal 
frequent itemsets, this does not hold for the corresponding 
support values. Without those, it is not able to derive rule 
confidences and therefore not generating association rules. 
In the following sections, Apriori and Apriori Inverse 
algorithms will be focused for qualitative comparative 
study.  
 
3.  Apriori Algorithm 
 
The most influential algorithm Apriori [7, 15, 16, 19], 
generates the k-candidate by combining two frequent (k-1) 
itemsets. The Apriori algorithm employs a bottom-up, 
breadth-first searching that generates all frequent itemsets, 
which is feasible with sparse datasets such as market-
basket data, where the frequent patterns are very short.  
 
However, the performance of these algorithms degrades 
incredibly in some application domains such as genome 
data where there are many, long frequent patterns, because 
they perform as many passes over the database as the 
length of the longest frequent pattern. This incurs high I/O 
overload for iteratively scanning large database. 
The Apriori algorithm needs scanning the whole data set 
and examine the itemsets multiple of times, which is very 
time consuming process. 
 
The algorithm Apriori 
L1= {large1- itemset}; 
For (k=2; Lk -1 ≠ φ; k + + ) 
{ 
Ck=Apriori (Lk-1); 
For all transactions t ϵ D 
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{ 
Ct=subset (Ck,t); 
For all candidates c ϵ Ct 

c.count++; 
Lk = {c ϵ Ck | c.count >= minsup} 
} 
Return ( Uk Lk ) 

} 
 

Lk: Set of large k-itemsets (those with minimum support). 
Each member of this set has two fields: (1) itemset, and 
(2) support count. Ck: Set of candidate k-itemsets 
(potential large itemsets). Each member of this set has two 
fields: (1) itemset and (2) support count. 
 
The Apriori-gen function takes as an argument Lk-1, the set 
of all large (k-1) itemsets. It returns a superset of the set of 
all large k-itemsets. First, in the join step, Lk-1 joins with 
Lk-1 to obtain a superset of the final set of candidates Ck. 
The union p U q of itemset p, q U Lk-1 is inserted in Ck if 
they share k-2 first items. 
For a transaction set {1: A, C, D; 2: B, C, E; 3: A, B, C, E; 
4: B, E}, itemsets and its corresponding support count will 
be as follows:  
{A: 2; B: 3; C: 3; D: 1; E: 3}. Assume Minimum support = 
50% which equivalent to support count =2. By pruning the 
infrequent then frequent itemsets and their corresponding 
support count are {A: 2; B: 3; C: 3; E: 3}. 

    

4.  Apriori Inverse 
 
The Apriori-Inverse algorithm [24] is based on a level-
wise search. On the first pass through the database, an 
inverted index is built using the unique items as keys and 
the transaction IDs as data. At this point, the support of 
each unique item (1- itemsets) in the database is available 
as the length of each data chain. 
 
To generate k-itemsets under max-sup, the (k – 1) itemsets 
are extended in precisely the same manner as Apriori to 
generate candidate k- itemsets. That is, a (k – 1) itemset i1 
is turned into a k itemset by finding another  
(k – 1) itemset i2 that has a matching prefix of size (k – 2), 
and attaching the last item of i1 to i2. For example, the 3 - 
itemsets {1, 3, 4} and {1, 3, 6} can be extended to form 
the 4 - itemset {1, 3, 4, 6}, but {1, 3, 4} and {1, 2, 5} will 
not produce a 4 - itemset due to their prefixes failing to 
match at the second item. 
 
These candidates then are checked against the inverted 
index to ensure that they at least meet a minimum absolute 
support requirement and are pruned if they do not, (the 
length of the intersection of a data chain in the inverted 

index provides support for a k-itemset with k larger than 
1).  
The process continues until no candidate itemsets can be 
generated, and then association rules are formed in the 
usual way.  
It should be clear that Apriori-Inverse finds all perfectly 
sporadic rules, since we have simply inverted the 
downward-closure principle of the Apriori algorithm; 
rather than all subsets of rules being over min-sup, all 
subsets are under max-sup. Since making a candidate 
itemset longer cannot increase its support, all extensions 
are viable except those that fall under the minimum 
absolute support requirement. Those exceptions are 
pruned out and are not used to extend itemsets in the next 
round. For example, let D be {{1, 2, 3, 4}, {1, 3, 5}, {1, 3, 
5, 7}, {1, 6, 8}, {2, 3, 4, 6}, {3, 6, 7, 8},{3, 6, 8}, {6, 9}}. 
The Idx from D where {item:[tid-list]} is {{1:[1, 2, 3, 4]}, 
{2: [1, 5]}, {3:[1, 2, 3, 5, 6, 7]}, {4: [1, 5]}, {5: [2, 3]}, 
{6: [4, 6, 7, 8]}, {7:[3, 6]}, {8:[4, 6, 7]}, {9:[8]}}. Given a 
maximum support of 25% and supposing that the 
minimum absolute support value is 2, S1 will be 
 {2, 4, 5, 7}. Items below the minimum absolute support 
value would not be considered for extension. Thus, item 9, 
which had the support of 1, was pruned out. The itemsets 
then are extended to {{2, 4}, {2, 5}, {2, 7}, {4, 5}, {4, 7}, 
{5, 7}}, but S2 only contains itemset {2, 4}, because the 
other itemsets have support below the minimum absolute 
support value and so are pruned out. 
 
Because we are dealing with candidate itemsets with low 
support, the chance that an itemset appears due to noise or 
just by coincidence is higher than for candidate itemsets 
with higher support. Itemsets that occur within the 
database due to coincidence do not add any meaningful 
information and, therefore, should not be considered when 
we are searching for rare itemsets using Apriori-Inverse. 
The minimum absolute support value is used to filter out 
these candidate items. The value varies for different 
candidates; the minimum absolute support value for items 
that have a higher support is generally higher. The 
minimum absolute support value is dependent solely on 
the support of the individual items. 

 
4.1 Minimum Absolute Support Value 

 
When searching for rare itemsets, two circumstances are 
considered: occurrences of itemsets due to some non-
random process that is generating them or occurrences of 
itemsets by coincidence. It is important to determine this, 
as itemsets that have a low support but high confidence 
that seem interesting may be occurring by chance and 
should be considered as noise. 
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Clearly, it makes sense only to consider candidate itemsets 
that appear together more often than coincidence. 
Coincidence is defined in this manner: for N transactions 
in which antecedent A occurs in a transactions and 
consequent B occurs in b transactions, the probability that 
A and B will occur together exactly c times by chance can 
be calculated. It is referred to this as probability of 
collision chance Pcc. It can be calculated using equation 
(1). The probability that A and B will occur together 
exactly c times is: 
 

      (1)

  
This equation is the usual calculation for exact probability 
of a 2×2 contingency table. Now, we want the least 
number of collisions above which Pcc is smaller than 
some small value p (usually 0.001). This is: 

         (2) 
This formula amounts to invert the usual sense of Fisher’s 
exact test [25]. Usually a 2×2 contingency table is 
provided and a p-value calculated; however, here we are 
providing two of the four values and a p-value and 
calculating the minimum value to complete the table.  
 
5.  Enhanced Apriori Algorithm 
 
Here we developed an algorithm that converts the database 
into array of zeros and ones, bitmap. Calculate the support 
value for each element, and then the minimum support 
(min-supp) value. Minimum support value is calculated 
based on aggregation functions, Simple Mean, Mean 
Square Error, and Standard Deviation. Infrequent items 
are the items that have low support value that lies on the 
extra small region defined by Standard Deviation 
parameter.  
After pruning elements (non-frequent items) which have 
support value below the min-supp value, we use frequent 
items to generate rules, and then calculate the confidence 
value for each rule, and the minimum confidence (min-
conf) value. Minimum confidence value is calculated 
based on Simple Mean, Mean Square Error, and Standard 
Deviation. Prune rules which have confidence below the 
min-conf. (pruning non-frequent rules). Again, generate 
next pass rules, combining frequent rules with frequent 
items. The algorithm is illustrated in the flowchart shown 
in Figure2; Figure 3 illustrates calculating elements 

support count for every single item in the database, while 
Figure 4 illustrates the function that calculates minimum 
support threshold value. 

  
Figure2. The proposed enhanced Apriori Algorithm 

Deterministic-function pruning based enhanced 
Apriori algorithm 
Input: Transaction database D 
Output: Non-coincidental frequent itemsets 
For all transactions t ϵ D 
{ 
Ct=subset (C1, t); 
For all candidates c ϵ Ct 

c.count++ 
} 
L1= Min_sup(C1); 
For (k=2; Lk -1 ≠ φ;k + + ) 
{ 
Ck=Apriori (Lk-1); 
For all transactions t ϵ D 
{ 
Ct=subset (Ck,t); 
For all candidates c ϵ Ct 

c.count++ 
Lk = {MinSup(Ck)} 
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} 
Return (Uk Lk ) 
} 

 

Figure3. Calculating Element Support Count 
 

 
Figure4. Calculating Minimum Support Threshold Value 

6.  Experiments and Discussion  
For an example of a basket market database of 9 
transactions shown in Table 1 [8] is repeated for the sake 
of qualitative comparison. 
 

Table 1: Basket Market Dataset 

 
Turning it into an array of zeros and ones would 
produce Table 2. 

Tid Items 
1 Book- CD - Video 
2 CD – Game 
3 CD- DVD 
4 Book – CD – Game 
5 Book – DVD 
6 CD- DVD 
7 Book – DVD 
8 Book – CD – DVD 
9 Book – CD – Video – DVD 
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Table 2: Bit Map 

 
Applying the Algorithm on the previous bitmap would 
give the results shown in Table 3. 

Table 3: Illustrative Example Result 

 
 
 

 
 
 
 
 
 
 
 

Tid book CD Video Game DVD 
1 1 1 1 0 0 
2 0 1 0 1 0 
3 0 1 0 0 1 
4 1 1 0 1 0 
5 1 0 0 0 1 
6 0 1 0 0 1 
7 1 0 0 0 1 
8 1 1 1 0 1 
9 1 1 0 0 1 

1 1 1 0 0 
0 1 0 1 0 
0 1 0 0 1 
1 1 0 1 0 
1 0 0 0 1 
0 1 0 0 1 
1 0 0 0 1 
1 1 1 0 1 
1 1 0 0 1 

Sup count 6 7 2 2 6 
Min support 2.191681084 

Status frequ
ent 

frequ
ent 

Non 
freque

nt 

Non
frequ
ent 

Frequ
ent 
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By pruning non frequent itemsets: 
After pruning non frequent items as shown in Table 4, 
then combining frequent elements to produce 2-itemset on 
the first iteration, and then find out Min-confidence to 
determine frequent/Non-frequent rules. 
 

Table 4: Frequent Bit Itemsets 

 
Combining frequent Itemsets to generate rules as follow 
and shown in Table 5. 
 

Table 5: Rules Generation of frequent Items 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
We can conclude three rules of the 1st iteration which are: 

- Rule#1: 66.667% of transactions that contains 
Book also contains CD. 

- Rule#2: 66.667% of transactions that contains 
Book also contains DVD. 

- Rule#3: 57% of transactions that contains CD 
also contain DVD. 

 
 
On the 2nd iteration: 

 A single rule produced that 50% of transactions 
that contain Book-CD also contain DVD 
 
Based on the achieved results as shown in Table 6, the 
developed algorithm is faster than Apriori as it reduced the 
number of frequent itemsets, number of rules to be 
checked by iteration, and number of iterations. 
 

Table 6: Comparative study between the developed and Apriori 
algorithms 

 
Apriori 

(min supp = 0, 
Min conf= 50%) 

Developed 
Algorithm 

No of frequent 
items 5 3 

No of rules to 
be checked 1st

iteration 
10 3 

No of 
successful 
rules on the 
1st iteration 

4 
(video>>DVD ‘ 
Week Rule’) 

3 

No of rules to 
be checked 2nd

iteration 
7 1 

(Conf = 50%) 

No of 
successful 

rules on the 2nd

iteration 

3 
(2 week rules 

’book-
CD>video’) 

-- 

No of rules to 
be checked 3rd

iteration 
3 -- 

No of 
successful 
rules on the 
3rd iteration 

1 
(book-CD-

video>>DVD) 
conf100% 

-- 

Total rule no. 8 4 

 
Also, an Apriori may produce huge number of rules which 
are redundant rules and considered to be week rules; in 
our illustrated example the Apriori produced rules such as: 

 Video >> DVD (conf 50%) 
 Book-video >> DVD (conf 50%) 
 CD-Video >> DVD (conf 50%) 

Which are week, uninteresting rules. 
 
7. Discretizing continuous valued attributes based on 
probability of collision: 

Tid book CD DVD 
1 1 1 0 
2 0 1 0 
3 0 1 1 
4 1 0 0 
5 1 1 1 
6 0 1 1 
7 1 0 1 
8 1 1 1 
9 1 1 1 

Book – 
CD 

DVD - 
Book 

CD – 
DVD 

1 0 0 
0 0 0 
0 0 1 
1 0 0 
0 1 0 
0 0 1 
0 1 0 
1 1 1 
1 1 1 

Rule 
Confidenc

e 
0.67 0.67 0.57 

Min 
Confidenc

e 
0.57 

Status Frequent frequent Frequent 
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Furthermore, we compared the performance of the 
proposed MinAbsSup function, Probability of collision, 
and the standard Apriori algorithm with bitmapping 
technique and probability of collision on dataset from the 
UCI Machine Learning Repository [25]. 
Lenses database: Database for fitting contact lenses, with 
multivariate characteristics, and categorical attributes. It 
has four attributes (Age, Prescription, Astigmatic, and 
Tear Production Rate) with no missing data, and 24 
instant. The data set is shown below in Table 7. 
 

Table 7: Lenses Data Base 

 
T‐ID Age Prescription Astegmatic Tear Rate Lenses

1 Young Myope  No Reduced No Lense

2 Young Myope  No Normal Soft Lense

3 Young Myope  Yes Reduced No Lense

4 Young Myope  Yes Normal Hard Lense

5 Young hypermetrope No Reduced No Lense

6 Young hypermetrope No Normal Soft Lense

7 Young hypermetrope Yes Reduced No Lense

8 Young hypermetrope Yes Normal Hard Lense

9 pre-presbyopic Myope  No Reduced No Lense

10 pre-presbyopic Myope  No Normal Soft Lense

11 pre-presbyopic Myope  Yes Reduced No Lense

12 pre-presbyopic Myope  Yes Normal Hard Lense

13 pre-presbyopic hypermetrope No Reduced No Lense

14 pre-presbyopic hypermetrope No Normal Soft Lense

15 pre-presbyopic hypermetrope Yes Reduced No Lense

16 pre-presbyopic hypermetrope Yes Normal No Lense

17 presbyopic Myope  No Reduced No Lense

18 presbyopic Myope  No Normal No Lense

19 presbyopic Myope  Yes Reduced No Lense

20 presbyopic Myope  Yes Normal Hard Lense

21 presbyopic hypermetrope No Reduced No Lense

22 presbyopic hypermetrope No Normal Soft Lense

23 presbyopic hypermetrope Yes Reduced No Lense

24 presbyopic hypermetrope Yes Normal No Lense  
 

 
Coding the four attributes has been done as follows: 

1. Age of the patient: (1) young, (2) pre-presbyopic, 
(3) presbyopic  
2. Spectacle prescription: (1) myope, (2) 
hypermetrope  
3. Astigmatic: (1) no, (2) yes  
4. Tear production rate: (1) reduced, (2) normal 
 

Table 8: Lenses Database Bitmapping 

 
1 2 3 1 2 1 2 1 2 1 2 3

1 1 0 0 1 0 1 0 1 0 0 0 1

2 1 0 0 1 0 1 0 0 1 0 1 0

3 1 0 0 1 0 0 1 1 0 0 0 1

4 1 0 0 1 0 0 1 0 1 1 0 0

5 1 0 0 0 1 1 0 1 0 0 0 1

6 1 0 0 0 1 1 0 0 1 0 1 0

7 1 0 0 0 1 0 1 1 0 0 0 1

8 1 0 0 0 1 0 1 0 1 1 0 0

9 0 1 0 1 0 1 0 1 0 0 0 1

10 0 1 0 1 0 1 0 0 1 0 1 0

11 0 1 0 1 0 0 1 1 0 0 0 1

12 0 1 0 1 0 0 1 0 1 1 0 0

13 0 1 0 0 1 1 0 1 0 0 0 1

14 0 1 0 0 1 1 0 0 1 0 1 0

15 0 1 0 0 1 0 1 1 0 0 0 1

16 0 1 0 0 1 0 1 0 1 0 0 1

17 0 0 1 1 0 1 0 1 0 0 0 1

18 0 0 1 1 0 1 0 0 1 0 0 1

19 0 0 1 1 0 0 1 1 0 0 0 1

20 0 0 1 1 0 0 1 0 1 1 0 0

21 0 0 1 0 1 1 0 1 0 0 0 1

22 0 0 1 0 1 1 0 0 1 0 1 0

23 0 0 1 0 1 0 1 1 0 0 0 1

24 0 0 1 0 1 0 1 0 1 0 0 1

Lenses
T‐ID

Age Prescription Astegmatic Tear Rate

 
And: Lenses fitting 
1: the patient should be fitted with hard contact lenses,  
2: the patient should be fitted with soft contact lenses,  
3: the patient should not be fitted with contact lenses.  

Data set can be discretized and converted to simpler form 
to increase the speed of data processing by bitmapping as 
shown in Table 8.  
When Apriori with MinAbsSup is compared against 
Apriori, the reduction in the number of rules (with all 
possible consequent lengths) generated is drastic. The 
reduction ranges from a factor of 15 to 60809, depending 
on the particular dataset. By setting the arbitrary threshold 
too low, we may be flooded with many trivial rules. We 
would need wade through the rules to find those that may 
be of some interest. However setting the support too high, 
we may miss out useful rules. To take the Lenses dataset 
as an example, normal Apriori finds 83 rules. The list 
below shows a subset of the rules found using normal 
Apriori with its summation of probabilities of collision, 
and the Absolute Minimum Support value. We concentrate 
on this particular subset because they contain a similar 
consequent. The rest of the rules in the subset were not 
found as the itemsets could not be differentiated from 
noise. 

Based on bitmap and probability of collision, 
where N is the total number of transaction (N= 24), c is 
the number of particular times items A, and B occur 
together in the database, a is the number of times item A 
appears in the database (a = sup(A)), and b is the number 
of times item B appears in the database (b = sup(B)). Pcc –
refer to Equation (1) - represents the probability that A, 
and B occur together exactly c times. 
Addressing all different cases would produce sets of 
successful itemsets combination are produced supported 
by the summation of probabilities of collision, and the 
Absolute Minimum Support value. 
The achieved rules are listed below: 
 
{Age = 1} → {Perception = 1} 0.998, 7 
{Age = 1} → {Perception = 2} 0.998, 7 
{Age = 2} → {Perception = 1} 0.998, 7 
{Age = 2} → {Perception = 2} 0.998, 7 
{Age = 3} → {Perception = 1} 0.998, 7 
{Age = 3} → {Perception = 2} 0.998, 7 
{Age = 1} → {Astigmatic = 1} 0.998, 7 
{Age = 1} → {Astigmatic = 2} 0.998, 7 
{Age = 2} → {Astigmatic = 1} 0.998, 7 
{Age = 2} → {Astigmatic = 2} 0.998, 7 
{Age = 3} → {Astigmatic = 1} 0.998, 7 
{Age = 3} → {Astigmatic = 2} 0.998, 7 
{Age = 1} → {Tear Production Rate = 1} 0.998, 7 
{Age = 1} → {Tear Production Rate = 2} 0.998, 7 
{Age = 2} → {Tear Production Rate = 1} 0.998, 7 
{Age = 2} → {Tear Production Rate = 2} 0.998, 7 
{Age = 3} → {Tear Production Rate = 1} 0.998, 7 
{Age = 3} → {Tear Production Rate = 2} 0.998, 7 
{Spectacle prescription = 1} → {Astigmatic = 1} 0.998, 9 
{Spectacle prescription = 1} → {Astigmatic = 2} 0.998, 9 
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{Spectacle prescription = 2} → {Astigmatic = 1} 0.998, 9 
{Spectacle prescription = 2} → {Astigmatic = 2} 0.998, 9 
{Spectacle prescription = 2}  → {tear production rate = 3} 
0.998, 9 
{Spectacle prescription = 2}  → {tear production rate = 3} 
0.998, 9 
{Spectacle prescription = 2}  → {tear production rate = 3} 
0.998, 9 
{Spectacle prescription = 2}  → {tear production rate = 3} 
0.998, 9 
{Astigmatic = 1} → {tear production rate = 3} 0.998, 9 
{Astigmatic = 1} → {tear production rate = 3} 0.998, 9 
{Astigmatic = 1} → {tear production rate = 3}0.998, 9 
{Astigmatic = 1} → {tear production rate = 3} 0.998, 9 
{Spectacle prescription = 1} → {Lenses = 3} 0.9957, 10 
{Spectacle prescription = 2} → {Lenses = 3} 0.9957, 10 
{Astigmatic = 1} → {Lenses = 3} 0.9957, 10 
{Astigmatic = 2} → {Lenses = 3} 0.9957, 10 
{Tear production rate = 1} → {Lenses = 3} 0.9957, 10 
{Tear production rate = 2} → {Lenses = 3} 0.9957, 10 

By applying these rules with its significant 
MinAbsSup Value, we can prune all unnecessary and 
unsuccessful rules and obtain a few successful rules that 
really present valuable information in the database. From 
this particular grouping Apriori with MinAbsSup, it finds 
that [{ tear production rate = 1} → {Lenses = 3} 0.9957, 
10] is a successful Rule. 
 
 
8. Conclusions 
 
In this paper, we developed a function model which 
replaces user defined minimum support threshold value of 
standard Apriori. This function calculates a custom 
minimum support for each itemset based on the itemset’s 
statistics, CLT, preventing coincidental rules from being 
generated. The achieved simulated results showed that the 
proposed function efficiently finds minimum number of 
rules which are non-coincidental without using arbitrary 
support thresholds. 
Furthermore, on another approach this paper applied 
bitmapping technique into a statistical probability of 
collision algorithm proposed on Apriori-Inverse.  
The rules generated by normal Apriori should not be 
considered as the most compact set of rules. In order to 
obtain a compact set of rules, some forms of post-pruning 
method to eliminate trivial and redundant rules have been 
presented. The achieved results show that MinAbsSup 
applied with bitmapping reduces the time and space 
requirements. 
A custom minimum support for each itemset has been 
calculated based on the itemset’s probability of chance 
collision, preventing coincidental rules from being 
generated. MinAbsSup associated with bitmapping 

efficiently finds non-redundant rules which are non-
coincidental by setting a suitable threshold without using 
arbitrary support thresholds.  
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