

Novel Software Reliability Estimation Model for Novel Software Reliability Estimation Model for Novel Software Reliability Estimation Model for Novel Software Reliability Estimation Model for AAAAltelteltelterrrring ing ing ing
Paradigms of Software EngineeringParadigms of Software EngineeringParadigms of Software EngineeringParadigms of Software Engineering

Ritika Wason1, P.Ahmed2 and M.Qasim Rafiq3

 1 Department of MCA, Institute of Information Technology and Management
Delhi, India

2 Department of Computer Science and Engineering, Sharda University

Greater Noida, Uttar Pradesh, India

3 Department of Computer Engineering, Aligarh Muslim University
Aligarh, India

Abstract

A number of different software engineering paradigms like
Component-Based Software Engineering (CBSE), Autonomic
Computing, Service-Oriented Computing (SOC), Fault-Tolerant
Computing and many others are being researched currently.
These paradigms denote a paradigm shift from the currently
mainstream object-oriented paradigm and are altering the way we
view, design, develop and exercise software. Though these
paradigms indicate a major shift in the way we design and code
software. However, we still rely on traditional reliability models
for estimating the reliability of any of the above systems. This
paper analyzes the underlying characteristics of these paradigms
and proposes a novel Finite Automata Based Reliability model as
a suitable model for estimating reliability of modern, complex,
distributed and critical software applications. We further outline
the basic framework for an intelligent, automata-based reliability
model that can be used for accurate estimation of system
reliability of software systems at any point in the software life
cycle.
Keywords: Software Reliability, Software Reliability Growth
Model (SRGM), Automata-Based Software Reliability Model,
Software Reliability Paradigm, Finite State Machine (FSM).

1. Introduction

The current prerogative of the software engineering
community is the production of dependable systems. A
huge amount of human and financial resources have been
devoted for the achievement of the same. The present
advancements in computer software can be classified into
three major categories, namely: Software Design
Paradigms, Software Design Implementation Paradigms
and Software Deployment. Software Deployment implies
installation of software at customer site, performing its
expected functionalities (deliver what the user expects)
error free, by what percentage and for how long? This
factor forms the basic idea of what is referred to as

software reliability, which can be defined as the probability
of failure-free software function for a specific period of
time in a specific environment.

The ubiquitous approach for software reliability modeling
is the posteriori, black box approach, which utilizes post-
implementation data regarding the interactions of the
software with its environment for estimating software
reliability. The inaccuracy of the above needs no proof as
despite numerous reliability estimation models available
and decades of ongoing research for better practices to
produce software with minimal failure the number and
degree of software failures continues to multiply. Software
engineering continues to confront unreliable or failure
prone software. Hence, we can say that software reliability
will continue to bug developers as long as we continue to
produce unreliable software.

Software Reliability Research has gained momentum in the
recent decades due to the increasing penetration of
software-based utilities and the increasing demand for
reliable software in almost every human endeavor. It has
been observed that effective software measurement can
play an important role in risk management during software
development [17], which being a human-centric task is
very much prone to errors. Therefore, the software testing
and error handling processes are being increasingly
supplemented by different formal verification techniques
like model checking [9], [10], finite state machines [18],
[21], [23], state based models [5], operational profiles etc
[17].

This paper presents the advances and current paradigms in
software reliability estimation and suggests a new
framework that can help estimate reliability of any
software system at any phase of its life accurately. The
remainder of this paper is organized as follows. Section 2
discusses the current scenario of software engineering by

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 92

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

highlighting the new paradigms that promise reliable
software systems. Section 3 analyzes the various issues and
factors impeding software reliability. Section 4 proposes a
new intelligent, self-learning paradigm for accurate
reliability estimation of state-based software systems.
Section 5 discusses the need and scope of the proposed
model.

2. Software Engineering: Current Scenario

Software Engineering is an adolescent field. Numerous
paradigms for problem solving and software development
have evolved over a period of time driven by the
increasing complexity of software systems. A solid
foundation for all these new paradigms is grounded in the
fact that all of them offer the promise of delivering reliable
software applications with their own engineering processes
and techniques. The major domains of modern research in
software reliability estimation in the present times worth
mentioning can be classified into those of fault tolerant
systems [8], self-healing systems [19], [24], component-
based architectural models [22], state-based models [5],
[15] and model-based development [10] as depicted in
Figure 1 below:

Figure 1: Current Software Engineering Paradigms

The fact that technical systems shall not work correctly or
fail due to human or system errors during any phase of the
software life cycle is well-known. A major dilemma for
these systems is accurate reliability prediction, fault
diagnosis and repair. With increasing complexity,
heterogeneity and size of real-time software applications
the reliability and maintainability (especially recovery
from failure) issue of software systems has gained more
importance. As a result the current research movement is
directed towards achieving Autonomic or Self-Healing
systems capable of managing themselves automatically
without any human intervention [4], [6], [24]. The IBM
autonomic computing initiative envisions a self-managing

system which can self-configure, self-optimize, self-heal,
and self-protect [4]. Autonomic systems attempt to
automate the management of hardware, software and
network infrastructures, hence alleviating the need of
human intervention, thus reducing operational
expenditures on software and increasing dependability,
security and adaptability of software resources to varying
workloads [6]. A great deal of research is being carried out
independently as well as by IT giants like IBM to stimulate
autonomic capabilities in their software products like
IBMs WebSphere Virtual Enterprise, Oracle 11g etc to
name a few.

A relatively naive domain with a far-sighted mission,
autonomic systems can be broadly classified into two main
categories namely Autonomic Computing and Autonomic
Networking [4]. However, the realization of the underlying
purpose of this paradigm lies in the merging of these two
domains to give rise to a new model of Autonomic
Systems. The research community is still uncertain about
the future of this technique and many researchers reject it
as a futuristic academic vision with no real application.
However, this claim can be rejected considering the fact
that many large IT giants like IBM, HP and Oracle have
and are investing hundreds and millions of dollars to bring
autonomic capabilities to many of their products. Though a
complete autonomic system does not exist yet, autonomic
technologies have already become a vital part of many
important systems today.

Another simultaneous research endeavour is the domain of
Self-Healing Systems [19], [24]. Self-Healing Systems
attempt to heal themselves in order to recover from faults
and regain normative performance levels independently
without any human intervention [24]. Notable researches
have been done for Self-Healing or Survivable systems
under the domain of Fault Tolerant or Recovery Oriented
Computing [8]. Many different architectural models have
also been suggested to realize a self-healing system that
can recover from abnormal (“unhealthy”) state and return
to the normative (“healthy”) state it was before disruption.
A detailed literature review and a classification based on
similarities and relationships of self-healing systems have
also been conducted [24]. Though most of the research on
self-healing systems is still in infancy, [24] examines some
prospective application areas for such systems.

For monitoring the self-CHOP properties of Autonomic or
Self-Healing systems utilization of Aspect Oriented
Programming (AOP) has been suggested as an alternative
[7]. Such systems hold the key to the future as they can
help realize our problem domain of realizing a self-
learning system that can distinguish between a correct and
an incorrect or failure state and once if in failure state can
easily learn to retreat to a correct state [25].

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 93

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Although autonomic computing is being projected as a
paradigm that can help achieve reliable systems by
eliminating human intervention, the various components
for realizing such a system requires the effective interplay
of many other design models. Some approaches have
already been proposed to address the requirements of
specific autonomic components, however Model-Driven
Development is one comprehensive approach that deals
with all areas of autonomic computing that relate to system
dependability improvement: Self-configuring, Self-
improving and Self-protecting. Model checking approach
has been popularly used for property verification of
systems [10]. The approach defines a system using a
mathematical model, expressing the properties one wishes
to prove for the system in a formal language and then
verifies whether the model satisfies the formal property.
Invented almost twenty-five years ago, the approach is
fully automatic and has gained wide acceptance and is
increasingly being used in commercial research and
development units. The size of model increases
exponentially in the number of variables or sub-models,
preventing scalable automation. Model checking formal
verification technique also find a number of applications
like representation of programs in high-level programming
languages, probabilistic or stochastic systems. The
technique has already become a part of wide variety of
commercial products like that of Microsoft. One of the
most significant characteristic of the model-driven
approach is that network components (e.g. nodes, channels
and traffic) are not monitored randomly [10]. Rather they
are monitored based upon the predicted reliability or
security provided by the models. For example, the
components that are predicted to have lower dependability
at any given point in time are monitored more intensively
than highly reliable components. Furthermore, the
dependability is not static. As time passes a component
that may initially be highly reliable could become more
prone to failure. Therefore, the monitoring frequency of
that component should be adapted accordingly over time.
Failure correlations should also be integrated into the
monitoring decision [8]. The major advantage of the
model-driven design model is the fact that it provides for a
reactive, event-driven healing mechanism along with a
proactive, predictive technique to prevent failures before
they occur. The reason behind the current emphasis on
model-based reliability estimation methods is the fact that
many researchers have unanimously accepted the fact that
formal models aid in constructing software in a dependable
manner [9],[10]. Such models help describe desired
services precisely and compose them together consistently.

Traditional system-level reliability estimation techniques
where the reliability of the application is estimated for the
complete system as a whole are not suitable for most

component-based applications as it does not consider
compositional properties of systems and do not
accommodate the reliability growth of individual
components [22]. Hence, several reliability estimation
techniques have been proposed to assess the reliability of
component-based software. Approaches for random
generation of faults in components using a programmatic
procedure that returns the inter-failure arrival time of a
given component have also been proposed [16]. The total
number of failures is calculated for the application under
simulation and its reliability estimation using a control
flow graph for a program. Program Dependency Graphs
and Fault Propagation Analysis for analytical reliability
estimation of component-based applications have also been
suggested [22]. However the approach is code-based as it
generates dependency graphs from source code, which may
not be available for off-the-shelf components. Most of the
reliability estimation techniques for component-based
software are path-based hence assuming independent
component failure and thus providing a pessimistic
estimate of system reliability.

In today’s world, a complex system consists of many
components any of which can fail or degrade. A
performance analysis, assuming that all components are in
perfect working conditions, may not be a good indicator of
system’s performance in practice. However, if probabilities
are assigned to various operating or non-operating modes
of the components, a more general analysis taking into
account both performance and reliability aspects may be
carried out [5]. This problem can be solved using different
formalisms like Markov, semi-Markov reward models like
(stochastic) Petri net models, process algebra models or
systems of independent components. Independent
component approach has also been suggested to represent
the system by a set of independent components to model
large communication networks [5]. By treating a system as
a collection C= {c1, …, cn} of n independent, non-
interacting components each of which can occupy a certain
number of states (modes) with a given probability. Global
state space is the Cartesian product of the component state
sets and the probability of a global state is the product of
the probabilities of the corresponding component states.
The technique provides an improved estimate for bounding
the expectations of a measure over the state space of a
system composed of a large number of independent
components with an arbitrary number of modes, when the
values of the measure are known only on a subset of the
state space. The technique has also been verified on two
example applications as well as proved mathematically.

In times of increasing software complexity, popularity of
component-based systems in handling diverse and critical

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 94

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

applications needs to be thoroughly evaluated. Sharma and
Trivedi, [4] propose an architecture-based unified
hierarchical model for software performance, reliability,
security and cache behavior prediction using Discrete time
Markov Chains (DTMC) to model various subsystems and
components.
A novel layered formal model to realize a strategy for
service realization typically for large scale software
development was proposed in [2]. The formal model better
known as Service Oriented Computing (SOC) has its
basics in Service Oriented Architecture (SOA) which
originated from component-based design and Hoare’s logic
[20]. The model is implemented as a two-layered
approach, the top one for service deployment and the
bottom one for service realization. However, the main
advantage of scenario oriented design is the fact that its
design is logically decoupled from any service caller (loose
coupling) and hence can be easily implemented by
different clients.

Many real-time applications are safety-critical; hence they
are often constructed as fault tolerant systems [8], [9].
There are several works considering fault tolerant behavior
of real-time applications [8].

In current scenario, software development does not follow
the software engineering paradigm [9]. While there are
reasonably well-defined software components, the
developer has no way to analyze the quality, dependability
and reliability of a composite design in terms of its
individual parts. The ability to calculate the reliability of a
software system in the early hours of its development, e.g.,
during architectural design, can help to improve the
system’s quality in a cost-effective manner. Recent work in
assessing system reliability is motivated by the fact that
building reliable software systems requires understanding
reliability at the architectural level. All these approaches
acknowledge that individual component reliabilities have a
significant impact on system reliability. However, almost
all of them invariably assume that the reliabilities of the
individual components in a system are known. It however
remains unclear how the individual component reliabilities
are assumed? The real challenge in realizing a truly
dependable autonomic system lies in weaving together the
best ideas from each of the above discussed models into a
cohesive and complete system and building new ideas into
the system.

Though all the above models promise reliable, intelligent,
fault-tolerant systems, complete realization of any software
with all such characteristics requires a close interplay of all
these models in a well-defined manner using a strong
theoretical automata-based reliability model that can be
mathematically verified and has its roots in state-based
approach.

The main reason for suggesting an automata-based
reliability model as the model for accurate reliability
estimations and self-learning failure conditions is
motivated by the fact that a Finite State Machine is a
mathematically defined object that can provide structured
and precise understanding of what is going on in systems
represented as complex state machines. The major
advantage of this formal model for software system
representation is the fact that any system can be easily
represented as a control flow graph consisting of a number
of states and transitions which may further result in some
particular states. Petri nets and Finite Automata have also
been few of the earliest models used for program analysis
and verification techniques including seminal work by
Robert Floyd, Tony Hoare and Edsger Dijkstra [1], [20].

Many different formal design models have also been
adopted to ensure good quality software (which can heal
themselves from system faults) which is more reliable as
compared to counterpart software systems designed and
developed using traditional formal design techniques.
From the ever increasing set of new formal design
techniques, finite state machine (FSM) based techniques
that treat the software as a finite state machine and then try
to handle all states software can acquire during its life as
valid and invalid states, have succeeded in achieving
sufficiently reliable systems in many varied domains.
FSM-based models and its numerous extensions have
found extensive use in designing and testing different kinds
of systems.

The advantage of the ongoing work at the international
platform is the fact that it is not carrying reliability
research in one particular domain but instead has well-
acknowledged the scenario that extremely wide variability
of allegedly identical components under supposedly
identical environmental and operating conditions. Keeping
in view the above fact the researchers in the international
community have identified different promising domains
that can help in giving accurate reliability estimates of
different software systems designed and built under
differing operating conditions. Most of these models like
fault-tolerant systems, self-healing systems, model-based
software have succeeded in providing accurate reliability
estimates for different software systems. However a
generalised, self-learning, fault-tolerant model that can be
uniformly applied to varied real-time software systems is
still a far-fetched dream that shall require combination of
different models discussed above.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 95

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

3. Critical Factors and Issues Challenging
Software Reliability Modeling Science

Faults in a system are inevitable. Software developers
spend about 80% of system development costs on
identifying and correcting system faults. These faults may
be the result of wrong practices during any phase of
software design and development, but may eventually
propagate into failure and may have severe consequences.
In traditional system design methodologies, the developer
generally works on a specification of the expected
behavior, hence ending up generating erroneous code
which shall eventually fail at some instance.
Ever-increasing complexity of modern engineering
products and systems further ensures that system failure
may not always be a result of component part failure [26].
Many other factors may also influence system failure rate,
like:
i) Failure of individual software elements.
ii) Failure due to human factors/ operating documentation.
iii) Failure due to environmental factors
iv) Common mode failure, where redundancy is defeated
by factors common to replicated units.
A combination of one or more of the above factors
combined with factors like failure rate, probability of
occurrence, time etc work on almost all software systems
under test and operation, hence leading to inaccuracy of
software reliability predictions and estimates done using
the traditional models and techniques [25].

The common underlying assumption of the popular
reliability estimation models is that software failures occur
randomly in time. However the assumption has never been
verified quantitatively and the defective, inaccurate
estimates of these models need no proof. Further another
important issue that affects reliability of current software
systems is the fact that the overall system reliability is a
composite of individual component reliabilities which may
be hardware as well as software components and whose
reliabilities may be affected by their operational profiles as
well as user interactions. As a result, estimation of system
reliability at any point in software life cycle is interplay of
many factors as well as components of the software. Hence
traditional reliability estimation techniques fail to
accurately estimate system reliability or even component
reliability as they overlook many of the above factors.

The pace of the introduction of new paradigms in Software
Engineering and an examination of the underlying aim of
paradigms discussed in Section 2 indicates that reliable
software systems are no longer a flexible alternative. The
Software Industry is now striving for a completely reliable
software system that can function as expected irrespective
of the operating conditions. To achieve such systems, the
software industry is mending its way of designing and

implementing software by adopting new paradigms for
software development. However, with improved practices
of software development what is also required is a generic
model for estimating reliability of a software system during
any phase of the system’s life. The traditional reliability
models with their unrealistic assumptions fail to fulfill the
above requirement. Hence, we propose a new automata-
based framework for reliability estimation in the next
Section. This framework with its mathematical foundations
in automata- theory shall provide a sound framework for
the development of an intelligent, generic software
reliability estimation model that will estimate system
reliability taking into account the system structure.

4. Proposed Framework

Many different Software Reliability Growth Models
(SRGMs) and practices have been proposed time and again
by different researchers [6], [7], [8], [9], [15], [16], [18],
[22]. All these available reliability estimation models have
attempted to predict reliability of software without any
regard to its internal structure. The reliability estimation
measures are all based on the assumption that reliability is
the absence of failures from a system. Contrastingly, they
quantify reliability using some kind of failure data (brute
force). Further, we can classify the current reliability
estimation techniques as either a priori technique (build the
software right) or a posteriori techniques (right the
wrongs). Much of the current practice today is in a
posteriori techniques. We build software that’s not very
good and through brute force, debug it into correctness [4].
By shifting some of the balance towards a priori efforts; we
can go a long way towards correcting some of the most
serious problems.

None of the paradigms discussed in Section 2 can
individually suffice to provide the breakthrough that the
field of software engineering requires today. But if all of
them are taken seriously and we succeed in combining
them, we may be able to realize major advances in terms of
achieving a generalized model for accurate reliability
estimation of software systems.

We now propose an automata-based formal reliability
model which besides being used for reliability predictions
can act as a self-learning model that can handle failure
conditions in real time. The proposed model has its basis in
network reliability estimation studies [5] and software
reliability estimation models for component-based
software systems [22].

We hypothesize that a state-based approach for software
representation can be used to represent all software along
with its component systems. This state-based software

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 96

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

system representation shall be based on an examination of
the internal software structure to identify the states of
software system during its operation.

To validate the above hypothesis, we further propose the
development of a formal model that can help in guiding
and monitoring the design and implementation of software
to control system reliability at any point in its life. This
formal model can achieve the above objective in different
stages as depicted in Figure 2 below:

Figure 2: Proposed stages for software reliability
modelling

The proposed model in Figure 2 shall first analyze a
software system with respect to its internal structure to
identify the different states software can acquire during its
life cycle (Stage 1). Further in Stage 2 the model shall
learn the different system transitions that can lead to each
of the identified state. Once this knowledge about a
software system is acquired the model in Stage 3 shall
identify which user inputs or actions may result in an
incorrect system state or the failure state. All this
information will then be utilized by this model to estimate
system reliability to estimate the reliability of its
component parts (Stage 4). The proposed model shall be
an intelligent, self-learning software reliability model that
can easily detect its error state, register the particular state
and the transition that led to such a state in its memory and
never repeat the transition that leads to the particular error
state.

The above stages for the proposed framework can be
realized as a software reliability estimation model depicted
in Figure 3. The model initiates monitoring a software
system by parsing it into its component sub-systems which
can further be represented as a cluster of inter-connected
nodes (State-based Software Representation Phase). After
representation the framework should be able to compute all
possible independent paths through the system and also
accumulate knowledge regarding which transitions could
lead to undesirable failure states (Knowledge-Acquisition

Phase). In its knowledge implementation phase the
framework should be able to utilize its accumulated
knowledge to ensure operationally reliable software at any
point of the software life cycle.

Figure 3: Phases of Automata-Based Software Reliability
Model

The working of the proposed model can be understood
with the depiction in Figure 4. If each individually
compilable software component can be represented as a
cluster of nodes. Further, if each node in the cluster
marked as the Learning Cluster is achievable from the
initial node. Then each of these nodes may finally result in
either a correct node or error node. If each such correct
and failure node is assigned a probability, then the
reliability of the whole cluster can be defined as the sum of
probabilities of the correct nodes.

Figure 4: Representation of a Software Block/
Component / Module as a set of distinct states

Further if the whole system is represented as a combination
of such integrating and interacting clusters then the
reliability of the whole system can also be calculated based
on the individual component reliabilities of each of these
clusters. The above model treats software as a finite state
machine and hence the proposed design is simple and easy
to understand. The actual software implementation of this
model is being worked out at the time of this writing.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 97

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

5. Conclusion

An effective observation from this study is the fact that
software engineering in the present times is no longer a
static science that accommodates current real-time
software complexities and demands using traditional
software life cycle models. The study establishes the fact
that only a formal automata-based reliability model can be
successful in providing accurate reliability estimates for
next-generation autonomic, component-based, fault-
tolerant, self-healing, service-oriented systems. However,
to realize such a model we require an effective monitoring
as well as self-learning model that can learn different states
acquired by system components during its life and then
apply this knowledge for estimating system reliability at
any point on its life or for recovering from a fault.

References

[1] K.M.S. Faqih, “What is Hampering the Performance of

Software Reliability Models? A Literature Review”,In
International MultiConference of Engineers and
Computer Scientists, 2009.

[2] W.T. Tsai, “Service-Oriented System Engineering: A
New Paradigm”, In IEEE International Workshop on
Service-Oriented System Engineering, 2005.

[3] V.S. Sharma, and K.S Trivedi, “Quantifying software
performance, reliability and security: An Architecture-
Based Approach”, The Journal of Systems and
Software, 2007, vol 80, pp. 493-509.

[4] Y.S. Dai, T. Marshall, and X. Guan,” Autonomic and
Dependable Systems: Moving Towards a Model-
Driven Approach”, Journal of Computer Science,
2006.

[5] J. Bowles, “A Model for Assessing Computer Network
Reliability”, IEEE Proceedings, 1989.

[6] H. Chan, and T. Chieu, “An approach to monitor
application states for self-managing (autonomic)
systems”, in 18th Annual ACM SIGPLAN Conf. on
Object-Oriented Programming, Systems, Languages
and Applications, 2003, pp. 312-313.

[7] Y.S. Dai, M. Xie and K.L. Poh, “Markov renewal
models for correlated software failures of multiple
types”, IEEE Transactions on Reliability, 2005, Vol.
54, pp. 100-106.

[8] L. Waszniowski, J. Krakora, and Z. Hanzalek, “Case
Study on Distributed and Fault Tolerant System
Modeling based on Timed Automata”, The Journal of
Systems and Software, 2009, Vol. 82 pp. 1678-1694.

[9] B. Yang, X. Li, M. Xie and F. Tan, “A generic data-
driven software reliability model with model mining
technique”, Reliability Engineering and System
Safety, 2010, Vol. 95, pp. 671-678.

[10] M. Huth, “Some current topics in model checking”,
Intl. Journal Software Tools Technology Transfer,
2007, Vol 9, pp. 25-36.

[11] B. Littlewood, “How to measure Software Reliability
and How Not To”, IEEE Transactions on Reliability,
1879, Vol. 28, No. 2, pp. 103-110.

[12] B. Littlewood, “MTBF is meaningless in software
reliability”, (letter) IEEE Trans. Reliability, vol R-24,
1975, pp. 82.

[13] B. Littlewood, “Theories of Software Reliability:
How Good Are They and How Can They Be
Improved?”, IEEE Transactions on Software
Engineering, SE 6, 1980, pp.489-500.

[14] A.L Goel, “Software Reliability Models:
Assumptions, Limitations and Applicability”, IEEE
Transactions on Software Engineering, vol SE11, No.
12, 1985, pp.1411-1423.

[15] Juncao Li, “An Automata Theoretic Approach to
Hardware/Software Co verification”, Ph.D. thesis,
Portland State University, 2010.

[16] S. Gokhale, “Accurate Reliability Prediction Based on
Software Structure”, http:// www.engr.uconn. edu/
~ssg/ cse300/ 397-232.pdf.

[17] N. Fenton, P. Krause, and M. Neil, “Software
Measurement: Uncertainty and Causal Modeling”,
IEEE Software, 2002, vol. 19(4), pp. 116-122.

[18] T.Carmely, “Using Finite State Machines to Design
Software”, Embedded Systems Design, July 2010,
vol.23, Ed.6

[19] D. Ghosh et. al, “Self-Healing Systems- Survey and
Synthesis”, Decision Support Systems, 2007, vol.42,
pp. 2164-2185.

[20] C.A.R Hoare, “An Axiomatic Basis for Computer
Programming”, Communications of the ACM, 1969,
vol 12(10), pp. 576-583.

[21] T.S Chow, “Testing software design modeled by finite
state machines”, IEEE Transactions on Software
Engineering, 1978, vol.4 (3), pp. 178-187.

[22] R.H Reusnner, H.W Schmidt, and I.H Poernomo,
“Reliability prediction for component-based software
architectures”, The Journal of Systems and Software,
2003, vol. 66, pp. 241-252.

[23] T.Carmely, “ Using Finite State Machines to Design
Software”, Embedded Systems Design, Vol.23, No.6,
2009.

[24] Ghosh et al., “Self-Healing Systems- Survey and
Synthesis”, Decision Support Systems, vol. 42, 2007,
pp. 2164-2185.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 98

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

[25] A.I. Maniu, “Reliability and its Quantitative
Measures”, Informatica Economica, vol.14, 2010, pp.
7-12.

[26] D.J Smith, “Reliability, Maintainability and Risk”,
Butterworth-Heinemann.

Ritika Wason is a Ph.D Computer Science scholar in Sharda
University. She received her M.Phil (Computer Science) in 2009
and MCA in 2008. She is an Assistant Professor with Institute of
Information Technology and Management since 2008 and a Life-
Member of Computer Society of India. Authored three books on
Software Testing and another on .NET. She also has many
national and international research papers to her credit.

Dr. P.Ahmed is a Professor and Head of the Computer Science
and Engineering Department at School of Engineering and
Technology, Sharda University, India. He received his Ph.D from
Concordia University, Montreal, Quebec, Canada in 1986 and has
also been a senior software designer at PHILIPS/MICOM,
Montreal, Canada; research fellow (MRI Imaging) at Montreal
Neurological Institute, McGill University, Canada and visiting
scientist, Centre for Pattern Recognition and Machine Intelligence
(CENPARMI), Montreal, Canada. His research interests include
Pattern Recognition, Machine Intelligence, Neural Network, Shape
Descriptors, Visual Programming and Programming by
Demonstration (Software Engineering) and Intelligent Systems.
The research has a strong empirical focus resulting into many
papers published in international journals and conference
proceedings. He is also a lifetime member of Computer Society of
India and member IEEE Computer Society (USA). He has also
been an associate editor of the Computer Journal of the King
Saud University, Riyadh, Saudi Arabia.

Dr. M. Qasim Rafiq is a Professor and Head of Computer
Engineering Department at Aligarh Muslim University, India.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 99

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

