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Abstract 
This research aims to provide intelligent tool to 
predict incubator Length of Stay (LOS) of infants 
which shall increase the utilization and management 
of infant incubators. The data sets of Egyptian 
Neonatal Network (EGNN) were employed and 
Oracle Data Miner (ODM) tool was used for the 
analysis and prediction of data. The obtained results 
indicated that data mining technique is an appropriate 
and sufficiently sensitive method to predict required 
LOS of premature and ill infant. 
 
Key words: Length of Stay, Data Mining, Regression, 
Incubator, Premature. 

1. Introduction 

Data Mining is the analysis of observational datasets 
to find unsuspected relationships and summarize data 
in novel ways that are both understandable and useful 
to the data owner. Data mining also can discover 
valuable and hidden knowledge from databases [1]. 
In healthcare, data mining is becoming increasingly 
popular, if not increasingly essential [2]. The 
healthcare environment is still ''information rich'' but 
''knowledge poor''. There is a wealth of data available 
within the healthcare systems. However, there is a 
lack of effective analysis tools to discover hidden 
relationships and trends in data [3].  

According to World Health Organisation (WHO) 30 
August 2011 | Geneva, newborn deaths, that is deaths 

in the first four weeks of life (neonatal period), today 
account for 41% of all child deaths before the age of 
five. The first week of life is the riskiest week for 
newborns, and yet many countries are only just 
beginning postnatal care programmes to reach 
mothers and babies at this critical time. Almost 99% 
of newborn deaths occur in the developing world. 
With a reduction of 1% per year, Africa has seen the 
slowest progress of any region in the world. Existing 
interventions can prevent two-thirds or more of these 
deaths if they reach those in need [4]. 

A neonatal intensive care unit, usually shortened 
NICU (pronounced "Nickyoo"), is a unit of a hospital 
specialising in the care of ill or premature newborn 
infants. Infants are cared for in incubators or "open 
warmers" [5]. Critical care providers are faced with 
resource shortages including beds to hold admitted 
patients.  This resource constraint is particularly 
important in specialized areas of the hospital, such as 
intensive care units (ICU) or step down units. An 
early and accurate prognosis of LOS may have 
organizational, economic, and medical implications. 
At times of reduced health care budgets, optimal 
resource planning, e.g. staff scheduling and early 
discharge policy, is vital [6]. Evaluating  LOS 
information is  a challenging task , but  is essential  
for the  operational  success  of  a  hospital.  Intensive  
care resources  in  particular  are  often  limited  and  
pose scheduling problems for  hospital  staff  and 
administrators. Predicting LOS is difficult and often 
only done retrospectively [2]. The main contributions 
of this paper are using data mining technique with 
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December 2010 and December 2011. Dead infants 
and Cases transferred to other hospitals before being 
discharged home were excluded. Infant's age ranged 
from 16 to 47 weeks and body weight ranged from 
700 g to 5000 g. Data were organized and stored in 
electronic format. Each studied factor was identified 

based on EGNN manual and prenatal specialists 
consulted as shown in [11] , [12]. Table 1 shows 
sample of those factors. Factors that were not 
included in previous research, Hintz et al [7], are 
marked with “N” in the column “Exist in Previous 
Research” of table 1 below.

 
Table 1: Sample Of Factors Studied In This Research  

# Factor name 

E
xi

st
 in

 P
re

vi
ou

s 
R

es
ea

rc
h 

 

Attribute 
name  

# Factor name 

E
xi

st
 in

 P
re

vi
ou

s 
R

es
ea

rc
h 

 

A
tt

ri
b

u
te

 n
am

e 

1 Admission number   Admission_no  11 
(RDS) Respiratory 
Distress Syndrome 

N RDS 

2 Gestational age   M_Age  12 
focal gestational 
perforation 

  FGP 

3 Birth Weight   Birth Weight 
 

13 
Cystic 
Periventricular 
Leukomalacia 

  Leukomalacia 

4 Prenatal Care N Prenatal_care 
 

14 
Hypoxic Ischemic 
Encephalopathy 
(HIE) 

N HIE 

5 Multiple Birth   Multiple_Birth 
 

15 
Patent Ductus 
Arteriosus (PDA) 

  PDA 

6 
Apgar 1Min __ __ 
Apgar 5 Min 

  
- Start_Apgar  
-End_Apgar  

16 Jaundice N Jaundice 

7 

Respiratory Support 
After Leaving 
Delivery 
Room(a,b,c,d,e,f) 

  
-

respiratory_sup
p_a/b/c/e 

 
17 Maxim.t.bilirubin N Maxim 

8 Steroids For CLD   Steroids 18 Procedures N Procedures 

9 
Indomethacin/Ibupr
ofen For PDA 
(Prophylactic) 

  Indomethacin1 
 

19 Length Of Stay   LOS 

10 Surgery   Surgery 
 

20 
Length of stay as 
category variable  

LOS_CAT 

 
 

3.b.2 Data cleaning 
In order to perform LOS prediction using ODM, the 
risk factors was represented in oracle database as 
attributes for the master table named TEST13_12 
with (admission_no) primary key. data acquired from 
the hospital tends to be incomplete, noisy and 
inconsistent. In this step, we attempt to fill on 
missing values, smooth out noise while identifying 
outliers, and correct inconsistencies in the data. 
Historical Data collected from EGNN forms were 

loaded into TEST13_12 table as data set using SQL 
developer release 3. 
     3. b.3 Data transformation 
The study sample was randomly split into a 
development sample (211 patients [70%]), 
and a validation sample (90 patients [30%]), data 
were discretized (that is, binned); numerical data 
binned into ranges of values(Quantile binning 
strategy), and categorical data divided into one bin 
for each of the values with highest distribution (TopN 
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            b.1.a Classifications model with Naïve 
Bayes algorithm 
Naïve Bayes looked at the historical data and 
calculated conditional probabilities for the target 
values by observing the frequency of attribute values 
and of combinations of attribute values [13]. 

The Bayes theorem states that 
Prob	ሺB	given	Aሻ	ൌ	Prob	ሺA	and	Bሻ/	Prob	ሺAሻ     (1)         

Where B represents target class (early, late) and A 
represents attribute value. 

The algorithm must count the number of cases where 
A and B occur together as a percentage of all cases 
(“pairwise” occurrences), and divide that by the 
number of cases where A occurs as a percentage of 
all cases (“singleton” occurrences). If these 
percentages are very small, they probably won’t 
contribute to the effectiveness of the model [12]. 

b.1.b Classifications model with Support Vector 
Machine algorithm  
Oracle Data Mining supports two kernels, Linear and 
Gaussian. Data records with N attributes can be 
thought of as points in N-dimensional space, and 
SVM attempts to separate the points into subsets with 
homogeneous target values; points are separated by 
hyperplanes in the linear case, and in the non-linear 
case (Gaussian) by non-linear separators. SVM finds 
the vectors that define the separators giving the 
widest separation of classes (the “support vectors”) 
[13]. SVMs belong to the general category of kernel 
methods. A kernel method is an algorithm that 
depends on the data only through dot-products. When 
this is the case, the dot product can be replaced by a 
kernel function which computes a dot product in 
some possibly high dimensional feature space [31]. 
The naive way of making a non-linear classifier out 
of a linear classifier is to map our data from the input 
space X to a feature space F using a non-linear 
function ϕ : X  →  F   In the space F the discriminant 
function is: 
݂ሺܺሻ ൌ ்ܹ∅ሺܺሻ ൅ ܾ         (2)                                              
Suppose the weight vector can be expressed as a 
linear combination of the training examples, i.e. 
W ൌ	∑ α୧	

୬
୧ୀଵ X୧		 	 	 	 					 (3) 

 

Then:   fሺXሻ ൌ ∑ α୧
୬
୧ୀଵ 	X୧

୘X ൅ b.           (4) 
In the feature space, F this expression takes the form: 

  ݂ሺݔሻ ൌ ෌ ሺ	∅	௜ߙ ௜ܺሻ்	∅ሺܺሻ ൅ ܾ
௡

௜ୀଵ
              (5) 

 
the kernel function  kሺx,	x0ሻ defined as                                       	
݇ሺܺ, ܺᇱሻ ൌ ∅	ሺܺሻ்	∅ሺܺᇱሻ                        (6) 

 
In terms of the kernel function the discriminant 
function is   ݂ሺܺሻ ൌ ∑ ,ሺܺ	݇	௜ߙ ௜ܺሻ ൅ ܾ௡

௜ୀଵ             (7) 
 
The widely used kernel is the Gaussian kernel 
defined by: 	kሺX,	X'ሻ	ൌ	exp	ሺ‐ɣ||X‐	X'||2ሻ              (8) 

 
Where ɣ is a parameter that controls the width of 
Gaussian [14]. In build activity, the kernel function 
was selected to be system determined, which allows 
the algorithm to select automatically the appropriate 
version of SVM to use. The active learning option 
was enabled.  
It is a methodology, internally implemented, that 
optimizes the selection of a subset of the support 
vectors which will maintain accuracy while 
enhancing the speed of the model [13]. 

            b.1.c Classifications  model with  logistic 
regression algorithm/(GLM) 
Generalized linear models (GLM) represent the 
theoretical foundation on which linear regression can 
be applied to the modeling of categorical response 
variables. Common types of generalized linear 
models include logistic regression and Poisson 
regression. Logistic regression models the probability 
of some event occurring as a linear function of a set 
of predictor variables [14]. This model was 
developed for the validation of our result. it was used 
by the previous research [7]. The reference target 
class was 'early' class. 
 

b.2 Predict LOS as Continuous Variable( the 
Number Of Days Spent At Incubator) 

2 predictive models were constructed using 
regression method with support vector machine and 
linear regression algorithm to predict the target 
variable (LOS). 

b.2.a Regression model with support vector 
machine algorithm 

SVM solves regression problems by defining an N-
dimensional “tube” around the data points, 
determining the vectors giving the widest separation 
[13].As the SVM setting in classification model, the 
kernel function was selected to be system 
determined, active learning was also enabled. 

b.2.b Linear regression model/(GLM) 
Regression analysis seeks to determine the values of 
parameters for a function that cause the function to 
best fit a set of data observations that you provide. 
The following equation expresses these relationships 
in symbols. It shows that regression is the process of 
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risk factor 
Pearson 

Correlation 
P 

Length (0.062) 0.279313541 

M_AGE 0.009 0.882436527 

Maxim .231** <0.01 

PREMATURITY .183** <0.01 

RDS .188** <0.01 
Respiratory 
_supp_a 

.113* 0.0496673 

Respiratory 
_supp_b 

.277** <0.01 

Respiratory 
_supp_c 

.298** <0.01 

Steroids .227** <0.01 

Surgery .189** <0.01 
**. Correlation is significant at the 0.01 level (2-
tailed). 
*. Correlation is significant at the 0.05 level (2-
tailed). 

Although attribute importance model had neglected 
some risk factors in its ranking, the statistical analysis 
showed strong correlation between LOS and these 
factors. Birth weight, prematurity, maxim (jaundice 
degree), surgery, and steroids were strongly 
correlated with LOS. RDS, prematurity, maxim, 
surgery were positively associated with LOS, while 
birth weight, gestational age were inversely 
associated with LOS. 

 

5. Module Evaluation                                                                

This work makes performance evaluation based on 
several criteria as shown in table 5, 6. Predictive 
confidence is a visual indication of the effectiveness 
of the model compared to a guess based on the 
distribution of target values in the build dataset [13]. 
If the model has a predictive confidence of 65.64% 
that means it is 65.64% better than naïve model. 
 The comparative tables (5,6) of predictive 
capabilities in case of algorithms used in our study 
and previous research’s algorithm presented by Hintz 
et al [7]. shows that: 

1-  In LOS  prediction models as categorical 
variable  

 In models that used naïve bayes and support vector 
machine classification algorithms, there was little 
difference in predictive confidence, overall accuracy 
and (Area Under Curve) AUC. However, total cost 

was less in SVM algorithm. On other hand, the 
logistic regression algorithm presented poor 
capabilities compared with our algorithms. 
 

2- in LOS prediction models as continuous 
variable 

The SVM regression algorithm presented higher 
capability than linear regression algorithm by means 
of lower error and higher predictive confidence. 
SVM are becoming increasingly popular in medicine 
[16]. It can emulate some traditional methods, such 
as linear regression and neural nets, but goes far 
beyond those methods in flexibility, scalability, and 
speed [13]. 

Overall, the predictive validity of the research models 
was very good to excellent, with point estimates for 
the AUC of the Receiver Operating Characteristic 
(ROC) curves ranging between 0.90 and 0.89. 

It was noticed that for algorithms used both in this 
research and previous researches, mentioned in 
related works sections, performance indicators were 
better in this research which deploys data mining 
techniques. This could be explained by 
[17]"Traditional statistical methods, in general, 
require a great deal of user interaction in order to 
validate the correctness of a model. As a result, 
statistical methods can be difficult to automate. 
Moreover, statistical methods typically do not scale 
well to very large data sets. Data mining methods are 
suitable for large data sets and can be more readily 
automated ". 

Table 5: Module – Performance Indicator Comparison For 
Categorical Variable 

Performance 
indicator 

support 
vector 

machine 
algorithm 

naïve 
bayes 

algorithm 

logistic 
regression 
algorithm

* 
Predictive 
confidence 

65.76% 65.64% 24.41% 

Average accuracy 0.828 0.828 0.622 
Overall accuracy 0.874 0.868 0.791 
Total cost 38 103.77 63 

Area under ROC 
curve 

0.894 0.907 0.791 

 *This algorithm was used by Hintz et al [7]. 
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Table 6: Module – Performance Indicator Comparison for 
Continuous Variable 

Performance Indicator 
support 
vector 

machine 

Linear 
regression* 

Predictive confidence 27.12% 12.99% 

Mean absolute error 8.09 12 

Root Mean Square Error 13.94 16.64 

     *This algorithm was  used by Hintz et al [7]. 
 
6.  Conclusion 

This research is based on data collected from 
Egyptian hospitals using EGGN forms. The majority 
of factors listed in EGNN forms are common with 
factors studied in previous research worldwide. 
However, some factors are reflecting the Egyptian 
environment; i.e. jaundice and maxim.t.bilirubin 
which were found to be highly impacting the LOS.  

In order to verify the obtained results, the simulation 
results are compared with the published data and give 
a good agreement with more comprehensive results 
as the module is trained by all cases went to the 
incubator. The obtained results are expected to be 
useful for determining the LOS especially in the 
Egyptian environment. In this paper the problem of 
inaccurate prognoses of infant LOS, which led to 
misuse of incubators, are discussed. The focus is on 
using different algorithms for intelligent and effective 
LOS prediction using data mining. For predicting 
LOS, the risk factors are listed and different data 
mining techniques were used.  

The outcome of predictive data mining technique on 
the same dataset reveals that support vector machine 
appears to be most effective in categorical los 
prediction  as it has the lowest cost, highest 
percentage of predictive confidence and accuracy, 
followed by naïve bayes (with a difference of less 
than 1% in predictive confidence) and logistic 
regression.  

It also appears to be most effective for predicting 
LOS as continuous variable compared to the linear 
regression model. Other methods like logistic 
regression and linear regression are not performing 
well. The results showed that, our data mining 
algorithm has realized a better prediction confidence 

and accuracy than the traditional statistical 
algorithms. The decision making for the length of 
stay has been improved and made more accurate. 
This provides the optimal and best incubator usage 
for the specific infant case. 
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