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Abstract 
Dynamically adaptable distributed applications need to be composed 
in an expressive and modular fashion due to the complexity of these 

applications. This paper discusses the shortcomings of recent 

approaches to achieve this goal, in particular the aspect-oriented 

programming approaches. It addresses the requirements for consistent 
and modular dynamic adaptation of applications, while improving 

their modularity. Then, the Remote Role-Playing (RRP) concept is 

presented as a new promising programming technique, which aims at 

employing the separation of crosscutting concerns in distributed 
applications dynamically at runtime in a modular and consistent 

manner with high degree of expressivity. The paper introduces the 

DOT/J framework which implements the RRP. The feasibility of the 

DOT/J approach and its advantage over other approaches is 
demonstrated through a case study.  

Keywords: dynamically adaptable applications, distributed 

applications, distributed-AOP, remote role-playing, dynamic aspects 

weaving. 

1. Introduction  

The growing complexity of distributed applications, as well as 

changes in their execution environments, demands for 

applications that are more adaptable and easy to compose, 

evolve, and maintain. Currently, the demand for developing 

dynamically adaptable distributed applications is highly 

increased as the environments on which these applications 

execute become more mobile and changeable. Causes to this 

change might include variation in network bandwidth and 
network topology, and the desire to employ new algorithms in 

legacy applications. The dynamic adaptation of distributed 

application objects is the process of enabling these objects to 

change their behaviors dynamically at runtime as a response to 

changes in their execution environment. Lately, the Aspect-

Oriented Programming (AOP) [1] technique has been 

employed in distributed programming due to its prosperity to 

improve applications’ modularity. It allows separating those 

crosscutting concerns that are tangled and/or scattered in 

application code, and capturing them in aspects. For this 

purpose, several distributed AOP approaches like AWED [2], 

JAC [3], DJcutter [4], etc. have been developed. These 

approaches enable application objects to adapt through 

replacing their methods with new code segments called advices 

at specific points designated by remote pointcuts.  

From a perspective of the AOP, the dynamic adaptation of 

distributed applications imposes weaving aspects dynamically 
at runtime. The current distributed AOP models lack 

supporting for consistent dynamic aspects weaving [5]. This 

lack has emerged primarily from the necessity to weave aspects 

into distributed application objects atomically [6]. Besides, in 

these approaches there is no explicit representation of the 
context in which aspects are applied, which reduces their 

expressivity to specify in a clear and understandable manner 

how distributed applications can adapt and when? In addition, 

application developers do not have the proper mechanisms to 

control the effects of aspects on application objects 

dynamically; because most of these approaches do not allow 

aspect instances to be accessed explicitly.  
 
Object Teams [7], on the other hand, is a programming model 
that implements the collaboration-based (role-based) design [8, 
9, 10 and 11] for the object-oriented languages. It employs the 
AOP concepts to separate the collaborations that crosscut 
application core classes. Object Teams (OT for short) captures 
collaborations in modules called “teams”, and the participation 
of application objects inside these teams within modules called 
“roles.” A team module acts as the context in which roles are 
played by application objects. A specific role could be played 
by application objects (called base objects) of a specific class 
type through binding them through the “playedBy” 
relationship. Application developers can declare roles to 
comprise new functionalities, which are considered as 
extensions of the behavior of player objects. This allows the 
behavior of player objects to be changed, which is a key feature 
to achieve objects’ behavioral adaptation.  
 
This paper maps the fundamentals of the OT model to 
distributed environments. Through employing the expressive 
“playedBy” relationship in distributed computing, the 
expressivity of distributed application adaptation will be 
enhanced in the name of role-playing; because the “playedBy” 
relationship is readable and understandable without developers 
being familiar with the OT’s infrastructure. Thus, the 
modularity of distributed adaptable applications will be 
enhanced, and distributed aspects (roles) could be controlled 
and managed at runtime in a modular way. For example, 
aspects effects on base objects could be controlled by using 
specific constraints called guard predicates [12] at different 
abstraction levels. Furthermore, the applicability of aspects is 
governed by the dynamic activation and deactivation of team 
instances at runtime [7, 12]. 
 
This paper is organized as follows: in Section 2, a quick survey 
of the dynamic adaptation literature will be presented. In 
Section 3, the requirements of the dynamic adaptation of 
distributed application will be addressed. Section 4 introduces 
the Object Teams model and highlights its fundamental 
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features especially the expressive “playedBy” relationship. The 
Remote Role-Playing concept will be introduced in Section 5. 
Section 6 presents the DOT/J framework. A case study to 
demonstrate the RRP technique in dynamic adaptation of 
distributed applications will be established in Section 7.  In 
Section 8 the related works will be discussed, and Section 9 
concludes. 

2. A Brief Survey of the Dynamic Adaptation of 

Applications 

In general, adaptability of object-oriented applications is the 
ability of their objects to modify their behaviors and/or 
structures to adapt to changes in their execution environments. 
The adaptation of applications aims to empower them to obtain 
a desirable level of performance (or to enhance it) [13], or to 
improve the objects’ adequacy to execute new tasks and 
conform to new requirements. The dynamic adaptation of 
applications (or the runtime system evolution as denoted by 
Taylor et. al. [15]), on the other hand, is the capability of their 
objects to adapt at runtime without the need to re-engineer the 
source code of these objects or interrupt application execution. 
This definition of adaptation should be applicable for 
distributed applications as well. 

However, a more comprehensive definition for the behavioral 
adaptation of distributed application objects could be 
formulated as follows:  

“The dynamic adaptation of the distributed 
object Obj is its capability to adapt to changes in its 
execution environment by changing its behavior 
through replacing a specific functionality (i.e. 
method) with new one, satisfying the following 
conditions: 

 Adaptation must be performed dynamically at 
runtime. 

 Obj must keep its original functionality (i.e. its 
original behavior) and be able to reclaim it if the 
cause of adaptation has no longer applied. 

 Consistency of Obj and the entire application 
must be ensured before and after adaptation.” 

 
As denoted by Ben-Shaul et. al. [16], dynamic adaptation of 
applications should be considered at two levels: 
 

Adaptability of the individual application objects: at this 

level, adaptability means changing the behavior of application 

objects through providing them with new functionalities. 

These functionalities should empower them to behave 

differently. An interpretation of adaptation from this 

perspective is to modify the architecture of objects’ classes. 

This has been achieved in several approaches at different 

granularities of modification. That is, approaches like PROSE 

[17] can replace entire aspects with new ones at runtime. In 

iPOJO [18], Plain Old Java Object (POJO) components could 

be glued to base components through “handlers” to compose 

service-oriented applications. Others like HADAS [19] enable 

application components to perform the change through the 

meta-methods they inherit from the parent component of all 

HADAS components. Thus, new methods could be added and 

other existing methods could be removed at runtime from that 

component. 
 
In the distributed-AOP scope, approaches like DJcutter [4] 
(which extends AspectJ [14] with remote pointcuts and remote 
advice execution) support so-called inter-type declarations, 
which enable application developers to perform “internal 
structure modifications” like injecting new methods and fields 
into application target classes, and “compositional structure 
modifications” like defining new interfaces for the target class. 
Thus, the structure of target classes is modified. Though, this 
can cause several problems like field and methods ambiguities, 
especially when several aspects target the same base class. For 
example, inter-type declaring a public method in a specific 
target class can cause compile-time conflict if that class already 
implements a method with the same signature [20]. 
 
Other AOP approaches like Lasagne [6] and DandyJ [5] have 
introduced a dynamic structural adaptation of objects at 
runtime by using dynamic aspect weaving mechanisms, which 
allow developers to weave and unweave aspects from running 
applications [21]. Practically, problems of consistency of 
aspects and base objects could be occurred during aspects 
weaving and unweaving if aspects have inter-dependencies 
with each other. 
 
Aspects with Explicit Distribution (AWED) [2] is a distributed 
AOP language that extends JAsCo [22] (a dynamic AOP 
language tailored for the component-based models). AWED 
has proposed remote pointcuts definitions and a mechanism to 
execute advice codes at remote hosts. In this way, distributed 
application objects can change their behavior through 
executing new code segments, which are confined in constructs 
called hooks. A hook is a generic pointcut definition that could 
be reused to trap different base functionalities (methods). The 
advices of a specific hook are woven dynamically into 
application objects at runtime via connector constructs. A 
connecter can bind at runtime exactly a base method to a 
specific hook instance. This allows the dynamic adaptation of 
base objects in the sense new advices could be woven at 
runtime to replace the old base methods. In this regard, JAsCo 
enables application developers to create combination strategies 
to filter the list of applicable hooks at a specific point of 
execution, which is important to control, for example, 
adaptation priorities. This technique, however, might not be 
applicable in distributed applications due to the uncontrolled 
nature of distributed environments. For example, if a 
combination strategy in AWED is applied to remove the hook 
X from hooks list if the hook Y is already there, and to add X if 
Y does not exist, then a deformation in application 
functionality will occur if hook Y has been initiated at host H1 
but (due to congestion) not yet initiated at H2. In this case, the 
hook X will be initiated at H2 while Y is still applied at H1. A 
primary reason for this inconsistency is that AWED simulates 
remote advice executions by executing advices of local aspect 
copies deployed on each host.  
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Adaptability of application objects’ inter-relationship: 

adaptation at this level targets the contextual changes of 

application objects like adjusting objects’ locations due to 

migration over the network from one node to another. 

Therefore, the adaptation affects mainly the communication 

environment of the interacting objects and not the objects 

themselves (unless the contextual changes are part of the 

objects’ states). This research focuses on the first level.  

3. The Requirements of Dynamic Adaptation  

In adaptation of distributed applications, Fransisco et. al. [13] 

recommended that developers should consider, in addition to 

the implementation of distributed application functional 

behavior, some other underlying issues like monitoring of 

resources usage and application-specific interactions, specify 

which environment elements should be monitored, how to 

detect such environmental changes, and which software 

adaptations should be handled and when?  
 
In the scope of AOP, a key concept to achieve the dynamic 
adaptation of distributed applications is the dynamic weaving 
of aspects. Therefore, new essential requirements have 
emerged. These requirements include: 
 

 Atomicity. As defined by Truyen and Joosen [6], atomicity 
is the process of adding or removing the mutually 
dependent functionalities in an “all or nothing” fashion. 
That is, with application objects dispersed over different 
nodes, a specific aspect must be woven into all target 
objects at the same time. Otherwise, it must not be woven in 
any of them at all. Current distributed-AOP approaches lack 
constructs that support consistent and atomic weaving of 
aspects [5]. 

 Consistency. Here it means the consistency of individual 
distributed application objects and the entire application 
after dynamic adaptation has been applied. 

 Dynamicity. That is, distributed application objects must be 
able to adapt at runtime without stopping their execution. 

 Continuity. Application objects must be able to adapt by 
changing their behaviors even further. 

 Expressivity. Current AOP approaches have introduced 

“aspect” as the top-level unit of modularity to solve the 

problem of separation of crosscutting concerns. Thus, to 

exploit aspects in applications, developers pay most of their 

efforts in formulating pointcut expressions, and the way to 

glue the associated advice codes to base objects when 

joinpoints are matched. Thus, there is no clear relationship 

between aspects and application base objects could be 

designated especially when a single aspect affects several 

base objects in the name of reusability. This relationship is 

not clear due to lack of these approaches an explicit 

representation for the context where aspects are applied. 

From a dynamic adaptation perspective, this makes the 

process of expressing adaptation via aspects hard and/or 

incomprehensible.  

4. An Overview of the Object Teams Model 

The origin of the OT model could be ascribed to the 
collaboration-based design, which describes a methodology for 
decomposing object-oriented applications into a set of classes 
and a set of collaborations [11]. The diagram shown in Figure 1 
(a) illustrates how this design could be organized in a two- 
dimensional composition: in the vertical dimension application 
base classes, and collaborations in the horizontal dimension. 
The OT model benefits from the observation that 
collaborations are crosscutting application classes at specific 
parts of their behaviors. Then, it applies the AOP concepts to 
separate and modularize this “crosscutting” as follows: 
collaborations are captured in “team” modules, and the 
intersections between a specific collaboration and application 
classes are captured in “roles.” Consequently, the design of 
Collaboration1 shown in Figure 1 (a) could be redesigned in 
OT as shown in Figure 1 (b).  

4.1 Improving Applications’ Modularity 

The OT model presents a new concept for applications’ 

modularity via so-called role-playing. Let us take a simple 

example to demonstrate this in the context of applications 

adaptation. In Figure 2, Client class is a base class of a 

distributed application; it can send text messages to a specific 

server (not shown in the figure). Suppose that a simple 

encryption mechanism needs to be applied so that client objects 

encrypt their messages before they are sent. In the OT model, 

this could be represented as a role of Client class which it can 

play in a specific team; say EncryptionTeam. As shown in the 

figure, Client class is bound to the EncryptedClient role via 

the “playedBy” relationship. Note the high expressivity of this 

relationship. The EncryptionTeam team can declare attributes 

and methods. Likewise, the EncryptedClient role can declare 

 

T 
Collaboration1 

 
RoleA 

RoleB 

ClassA ClassB 

Collaboration1 

Collaboration2 

a b 

Fig. 1 A collaboration-based design in (a), and in (b) a representation 

of Collaboration1 in the OT model. 

 
T 

EncryptionTeam 

 

EncryptedClient  

Client 

-clientID: String 
.. 

+send(String s):void 
: 

playedBy  
{base when (<condition>)} 

R 

-counter: int 
.. 

callin send(String s):void 
-encrypt(String s): String 

-encryptors: List 
.. 

send  replace send;  
String getID()  get String clientID; 

callin 

callout 

off        on 

Fig. 2  A simple role-playing design in the OT model. 
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its own attributes and methods, which gives roles a kind of 

autonomy. This autonomy, though, is dominated in the OT 

model by the role confinement rule [12]; which states that roles 

could not be existed outside the boundaries of their enclosing 

team. Thus, the EncryptedClient role is drawn inside the 

EncryptionTeam team.  

 

The “playedBy” relationship involves two types of binding 

between a role and its base class, namely: the callin method 
binding and the callout method binding. A callin binding 

enables base object to call into role instance a specific method 

either after, before, or in replacement of a call to one of its 

methods. For example, the callin expression {send  replace 
send;}, shown in Figure 2 in the role class diagram, instructs a 

Client object to call the method send of the role instance it will 

be bound to instead of its original send method. This concept 

motivates adapting application objects through enabling them 

to play roles in teams. The role’s methods that are bound via 

replacement callin expressions are called callin methods, and 

must be designated by the keyword callin as shown in the 

figure. 

 

The other binding type is the callout binding which indicates 

that a role instance can declare a method (which is not 
available locally) by calling out to a method in its associated 

base object. In the OT model, three sub-types of callout 

bindings could be declared: a callout to a base method, a 

callout to get a specific field value (called field getter), and a 

callout to set a value of a specific base field (called field setter). 

For example, the callout expression {String getID()  get 
String clientID;} dispatches the calls made to the method getID 
on a role instance to get the current value of the clientID 

attribute of its base object. 

4.2 Constraining the Role-playing Process 

To control the process of role-playing and the effects of role’s 
callins on application base classes, OT has been equipped with 
two mechanisms to accomplish this task: 
 
Teams’ activation/deactivation: This mechanism indicates 

that the declared “playedBy” relationships in a specific team 

are considered applicable if, and only if, an instance of that 

team has been activated. Contrariwise, the role-playing 

process will not take place if the team instance is deactivated. 

In Figure 2, the team activation/deactivation process takes the 

shape of an On/Off switch. In practice, this facility describes 

how could developers control when application objects could 
adapt if, for example, the teams’ activation/deactivation status 

has been linked to the conditions of execution environment 

changes.  

Guard Predicates are conditional expressions that could be 

attached along the “playedBy” relationship, role methods, or 

callin and callout expressions. The idea is simple, yet 

powerful; if the “playedBy” relationship is augmented with a 

guard predicate expression (see Figure 2), then binding base 

objects and role instances will not take place in the team 

instance if the expression evaluates to “false”; even if the team 

instance found to be activated at the binding-time.  

 
If the guard predicate expression access any of base object’s 

fields or call any of its methods, then it is called base guard-

predicate. In this case, the keyword base is used as a 

placeholder for the bound base object. 

4.3 The OT/J Programming Language 

OT/J [12] is the programming language that implements the 

OT model in Java. Developers can use the keyword team to 
declare team classes. Roles, on the other hand, did not require a 

special keyword to declare them; rather, they are normal inner 

classes. In this way, any class or interface to be declared inside 

a specific team class is considered role.   

5. The Remote Role-Playing 

This section introduces a new programming concept called the 

Remote Role-Playing (RRP). The RRP aims at enabling 

objects of distributed applications to play different roles 

dynamically at runtime and remotely from any application 

node in a transparent fashion. This provides a modular and 

expressive mechanism for dynamic adaptation of distributed 

applications. For this purpose, the Distributed Object Teams 

for Java (DOT/J) [23] framework has been developed. The 

DOT/J framework implements the RRP concepts by extending 

the OT/J infrastructure with load-time transformation library 

and distributed runtime system. 

5.1 Why Remote Role-Playing? 

Consider that several client objects have been deployed on 
different network hosts. An encryption/decryption mechanism 

could to be represented as a role-playing process as discussed 

earlier. But, employing the “playedBy” relationship at the hosts 

on which client objects reside imposes the deployment of a 

copy of EncryptionTeam team instance at each of these hosts. 

This technique is adopted often by most distributed-AOP 

approaches. Anyway, the deployment of team instance copies 

in this way can cause the following problems: 

 

The activation and deactivation of team instance copies (and 
in general their states) must be synchronized at all nodes. In 

the context of dynamic aspect weaving, this is important so 

that client base objects can play roles atomically. That is, if the 

team copy deployed on host H1 has been activated first, then 

all other team copies must be activated simultaneously at an 

accurate time of execution. This may result in plain-text 

messages to be sent by other clients at different hosts if the 
team copies deployed on these hosts  have not yet activated 

(for some reasons like network congestion). Moreover, the 

encryption process (i.e. playing the EncryptedClient role) 

must be sparked after the decryption process has been ensured 

to be turned on, and not before. In addition, it will put extra 
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charges to preserve team copies consistent, which complicates 

the entire role-playing process.  

Re-Engineer Team classes. A small change to the team class 

imposes recompiling and redeploying new team copies on all 

hosts, which might lead to functionality violation if a new 

team copy has not been deployed at a specific host 

unintentionally.  

Fracture in Roles’ Inter-relationships. This problem could be 

encountered when a team class encloses two associated roles, 
which are played by two different base classes. Thus, this 

situation could not be employed in a distributed environment 

because instances of the first role will be bound to their base 

objects at a specific host, and the instances of the second role 

will be bound at another host (on which a team copy has been 

deployed).   

 

Therefore, the RRP aims at enabling the deployed client 

objects on all hosts to play the EncryptedClient role in the 

same way they would play it locally (i.e. preserving the 

semantics of the “playedBy” relationship). Practically, to 

overcome the aforementioned problems, a single team 

instance needs to be deployed. Thus, the activation and 

deactivation of that team instance will simultaneously affect 

the role-playing process. That is, roles will be played 

atomically by application base objects. 

5.2 The Requirements of RRP 

A deep look at the local “playedBy” relationship reveals that in 

order to enable a specific base object to play a role in a specific 

team instance, first that team instance should bind the base 

object to a role instance. In the binding process, role instance 

preserves an immutable reference to base object; thus role 

instance can issue callouts. To perform role’s callins from the 

base object, an immutable reference for the team instance 

must be maintained; because role instances could be accessed 

only by the enclosing team as the role confinement rule said. 

 

In case of separated base and team instances, only remote 

references could be used. This calls for reformulating role 

classes so that their instances can handle callouts via the 
remote references of remote base objects. Likewise, base and 

team objects should be taught how to perform role’s callins 

via remote references. Also, base guard predicates must be 

evaluated in team instances using bases’ remote references.  

 

From a perspective of dynamic adaptation, application base 

objects should be enabled to play new roles at runtime. 

Therefore, a mechanism to enable developers to employ new 

teams without interrupting application execution or violating 

base objects integrity is needed. Another mechanism is 

required to enable base objects to allocate the new employed 

teams properly, and to play new roles accurately. 

 

The current implementation of OT/J prevents base objects to 

play new roles at runtime. This is because OT/J weaves roles 

into application base classes at load-time, which results in a 

cohesive role-base link that could not be changed without 

reloading application classes in order to weave new roles. 

 

Finally, current OT/J version allows the binding of roles to 

base interfaces if and only if these roles declare only callout 

bindings [12]. But distributed objects of object-oriented 

distributed applications mainly represented by remote 

interfaces [24, 25]. Thus, binding roles to remote interfaces at 

the source code level will result in partial binding between 
their instances at runtime; hence behavioral adaptation 

becomes impossible. The next section will introduce the 

DOT/J framework [23], which fulfills the requirements of the 

RRP and resolves the obstacles mentioned above. 

6. The DOT/J Framework  

In the preliminary paper [23], DOT/J has been introduced as 

an extension to the OT/J language into distributed applications. 

This section re-introduces it as a realization of the RRP.  

6.1 Prerequisites  

A key concept to realize the RRP is to replace the local 

“playedBy” relationship, which binds local role and base 

classes, with a remote relationship that can bind remote role 

and base objects. This replacement includes the following: 

 Adapt application base objects to play roles remotely. That 
is, convert all application base classes, which are involved 
in RRP relationships, into RRP-ready classes. This 
conversion must not violate the original functionality of the 
objects (hereafter remote base objects) generated from these 
base classes (hereafter remote base classes). At the same 
time, it should allow remote base objects to play new roles 
dynamically. This means the RRP-ready conversion should 
be generic as much as possible in order to enable any 
(unanticipated) role to be played; hence, an accurate and 
continuous dynamic adaptation is achieved.  

 Adapt remote roles to be played remotely. This involves 
mainly replacing the local features of role-playing in these 
roles (hereafter remote roles) with remote features. More 
specifically, remote roles should hold remote references to 
their remote base objects, and issue callouts accurately via 
these references. 

 Adapt teams to facilitate the RRP. First, any team class that 
encloses at least one remote role, or the one which its 
instances need to be accessed remotely, is called remote 
team class. To enable remote base objects to execute the 
callins of their remote roles inside a remote team instance, 
an immutable remote reference for that team must be 
obtained by base objects. Before a remote base object can 
play roles, it should be first bound to role instance in a 
process called Lifting [12]; when a base object enters the 
boundaries of team, it is lifted to a corresponding role 
instance. But, since only remote references of remote base 
objects are available, remote team instances must be taught 
to handle the lifting process in different way. 
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DOT/J Framework 

:EncryptionTeam 
T 

R 

:EncryptedClient 
DOT/J Framework 

:Client 

DOT/J Transformation Layer (DTL) 

DOT/J Runtime System (DRS) 

RTBT RBBT RRBT 

DOTM GCM 

Fig. 3  The general structure of DOT/J framework. 

playedBy  

6.2 The DOT/J Infrastructure 

The diagram shown in Figure 3 demonstrates the general 

structure of the DOT/J framework. The DOT/J framework 

consists mainly of two sub-systems:  

 

The DOT/J Transformation Layer (DTL): is responsible for 

converting remote base and remote team classes (including 

remote roles) into “RRP-ready” classes. To perform this, the 

DTL extends the Object Teams Runtime Environment 
(OTRE) of OT/J by three load-time bytecode transformers. 

The first one called the Remote Base Bytecode Transformer 

(RBBT), which is dedicated to transform the bytecode of 

remote base classes. The second one is dedicated to transform 

the bytecode of remote team classes and called Remote Teams 

Bytecode Transformer (RTBT). The last one is the Remote 

Role Bytecode Transformer (RRBT), which transforms remote 

role classes. The transformation process “equips” each of 

remote base and team classes with the necessary toolkits that 

enable their objects to communicate and exercise the RRP 

activities at runtime. For example, the RBBT injects into each 

base method a trap to dispatch the calls of methods to the 

Methods Dispatcher (MsD). The MsD is a central call-by-

reflection method which receives the trapped calls of a 

specific base method and checks for any remote callin 

bindings associated to this base method.  

The DOT/J framework uses the Java-RMI middleware [24] to 
establish the communication between remote base and remote 

team objects. Therefore, the DTL transformers weave into the 

classes of these objects the required code which enables them 

to export as remote objects according to Java-RMI disciplines. 

 

The DOT/J Runtime System (DRS): helps remote base 

objects and remote team instances to join and establish the 

necessary remote communication before the RRP takes place. 

More precisely, it registers transparently and automatically all 

the remote references (called stubs) of remote team instances, 

besides other supportive and contextual information about 

roles like the declared remote callins. The DRS is responsible 

for replicating this information at every application node via a 

reliable mechanism. The DRS subsystem comprises a 

constitutive component called the Distributed Objects and 

Teams Manager (DOTM), which acts as a registry of remote 

team instances. A DOTM component must be executed at 

each application node. The DOTM can communicate with the 

remote base objects deployed on its local host. Thus, it can 

notify them with the registration of any new remote team 

instances. Also, it provides these base objects with the Remote 

Teams List (RTL), which includes all information required by 

these objects to spark the RRP process, upon their requests 

transparently. The DOTMs in a distributed application 

communicate with each other via the Group Communication 

Manager (GCM), which is using the JGroups system [30]; a 

reliable multicast groups communication system. The GCM 

establishes a communication protocol between DOTM 

components to replicate the RTL and keep the role-playing 

map consistent and up-to-date all the time. 

6.3 Mapping Application Classes to the DOT/J 
Framework 

In order to enable the DTL transformers to recognize which of 

application classes involved in RRP relationships, a simple 

XML-based language has been used to label these classes as 

remote classes. For example, the XML code shown in Figure 4 

(a) illustrates how the EncryptionTeam team and the 

EncryptedClient role could be labeled, respectively, as 

remote team and remote role classes. Likewise, Figure 4 (b) 

illustrates how Client base class could be labeled as remote 

base class. When application classes are loaded into the JVM 

for execution, the DTL reads the XML file and intercepts the 

loading of remote classes, and then transforms their bytecode.   

7. Case Study: Dynamic Encryption/Decryption 

in a Client/Server Messaging Application 

Consider the object-oriented client-server messaging 

application shown in Figure 5. Assume that client and server 

objects are using Java sockets to establish communication. 

Client objects can send their plain-text messages via the 

“send” method. A server object is created for each client in a 
separate thread to receive, process, and respond to the 

b 

Fig. 4  Labeling the EncryptionTeam team as remote team class in (a), 

and in (b) the Client class is labeled as remote base class. 

1. 

2. 

3. 

4. 

5. 

 

<DOTJ>  

     <RemoteTeam class=“a.b.c.EncryptionTeam“> 

 <RemoteRole name=”EncryptedClient”/> 

     </RemoteTeam> 

</DOTJ> 

 
1. 

2. 

3. 

 

     <RemoteBases> 

 <Base class=“x.y.z.Client“/> 

     </RemoteBases> 

 

a 

Client 

-clientID: String 
.. 

+connect(String h, int port):boolean 
+send(String s):void 

+receive(String s):void 
: 

Server 

-serverID: String 
.. 

+accept(): Socket 
+receive(String s):void 

+processMsg(String s):void 
: 

Fig. 5  A diagram of simple Client/Server messaging application. 
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messages sent by that client. After a while, and for security 

reasons, client and server objects need to apply a specific 

encryption/decryption mechanism. That is, a client object 

encrypts its messages before sending, and the dedicated server 

object must decrypt them before manipulation.  

 

The AOP technique proposes to represent encryption and 

decryption (and others like fragmentation/defragmentation 

[26]) as crosscutting concerns [6, 27]. But, the actual challenge 
is in the employment of this requirement (i.e. the 

encryption/decryption concern) in the application dynamically 

and consistently at client and server. As mentioned by 

Michihiro et al. [5] weaving aspects dynamically in an 

executing application is a complicated and error-prone with the 

current “dynamic-AOP” approaches; because aspects need to 

be woven into multiple hosts atomically. Other interoperability 

problems like the unintended aspect effects, the partial weaving 

of aspects and unknown aspect assumption [17] could be 

emerged if the current distributed-AOP approaches are used.  

 

To illustrate this issue, consider that the client-server 

application in Figure 5 has been deployed as shown in Figure 

6, in which three client objects have been deployed each at a 

separate host. The dashed rectangles represent the physical 

distribution of objects. In this case, the encryption concern 

must be woven into the three client objects atomically and in a 
consistent manner. Furthermore, client objects should not start 

encrypting their messages before the decryption concern has 

already been employed. Otherwise, the application 

functionality will be seriously deformed. This section 

demonstrates how these problems could be resolved by using 

the DOT/J approach; in particular the RRP.  

7.1 Modularize Application Adaptation in OT/J 

In OT/J, the adaptation of application objects could be 

represented via role-playing in very expressive fashion. As 

mentioned earlier, the encryption/decryption requirement could 

be expressed as roles of teams; see Figure 7. The figure shows 

the Client class playing the role EncryptedClient in the 

EncryptionTeam team. Likewise, the server base class plays 
the DecryptedServer role inside the DecryptionTeam team. 

The key concept in DOT/J is to enable the deployed client 

objects shown in Figure 6 to play their EncryptedClient role 

atomically; i.e. all clients play the role simultaneously or none 

at all. At the same time, the encryption concern must not be 

woven and “put to the service” before the weaving and 

employing of decryption concern has been verified. This could 

be achieved in DOT/J via two modular steps:  

 Declaring a Base Guard Predicate (BGP) at the “playedBy” 
relationship in the EncryptionTeam team that ensures the 
deployment (weaving) and activation (employment) of a 
team instance of type DecryptionTeam in the application. 
Thus, the BGP shown in Figure 7 has been declared. The 

method “isDecryptionTeamReady” will be called just 
before any of client objects start playing the role.   

 The DecryptionTeam team instance must be activated and 
deactivated by the EncryptionTeam team instance only. 
This means that when an instance of EncryptionTeam is 
activated, then the DecryptionTeam team instance (if it has 
been already deployed) will be activated. The same 
procedure will be applied in case of deactivation. This 
ensures that no message will be treated incorrectly by client 
and server objects.    

 
The BGP will constraint the applicability of playing the 

EncryptedClient role; hence it controls the encryption callin 

(the advice), and determines when client objects can adapt. 

That is, if the BGP expression has evaluated to “false,” then 

clients will not encrypt their messages. The callin declaration 

shown in the EncryptedClient role diagram of Figure 7 causes 

(when the encryption team instance is activated) all calls to the 

client object’s method “send” to be intercepted, and then 
dispatches the control flow (via the MsD), along with the 

message, to the “send” method of role instance. At this point, 
the role instance encrypts the “dispatched” message, and then 

returns the control flow to the base client to proceed sending 

the encrypted message via a base call. To illustrate this, Figure 

8 shows the implementation of the “send” callin method in the 

EncryptedClient role. At line 3, the message is encrypted, and 

then it will be sent via the original “send” method of the base 
object via the base-call in line 4.   

omar: Client 

servant:Server 

H4 

noor: Client 

H3 

H2 

ahmad:Client 
H1 

Fig. 6  Deploying client and server objects on a distributed environment. 

Client 

send(String):void 

 

 

processMsg(String):void 

1 

1 

EncryptionTeam 
T 

EncryptedClient 

callin send(String):void 

R 

send  replace send; 

DecryptionTeam 
T 

DecryptedClient 

callin processMsg(String):void 

R 

processMsg  replace processMsg; 

+isDecryptionTeamReady() 

base when 
 (isDecryptionTeamReady()) 

playedBy   

Server  

 

1 

1 

Fig. 7  Adapting the client-server messaging application through remote 

role-playing. 

1. 

2. 

3. 

4. 

5. 

 

callin void send(String s) 

{ 

   String new_s = encrypt(s); 

   base.send(new_s); 

} 

 
Fig. 8  The implementation of “send” callin method. 
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7.2 Execution Scenarios and Performance Analysis 

To verify and evaluate the dynamic adaptation of distributed 

applications by using the DOT/J framework, the distributed 

client/server application has been executed over a LAN 

network consists of two laptops; the first is “Sony-VAIO” with 

Intel® Core™2 Duo CPU 2.1GHz and is running Win7 Pro 

32-bit SP1. The other is “Toshiba-Satellite” with Pentium dual-

Core CPU 2.0 GHz and is running Win7 Pro 64-bit SP1. Both 

laptops have 4GB of RAM. The experiment has been 
implemented using OTDT v1.3.3 (which is augmented by the 

DOT/J subsystems) over Eclipse IDE v3.5.2 and Java 1.6.  
 
First, the overload of using DOT/J framework has been 
measured by executing the client-server application with the 
DOT/J (i.e. the application is running over the DOT/J 
framework) and without. In both cases, a client object has sent 
1000 messages to the server in a rate of 1message/100ms. The 
server application has been executed on the “Toshiba” laptop 
and the client application on the “Sony” laptop. The runtime 
values of this experiment have been recorded and represented 
in the charts shown in Figure 9. The average runtime value for 
sending the 1000 messages without using the DOT/J 
framework was 1.134ms, and with using the DOT/J framework 
was 1.882ms. This means that executing the application over 
the DOT/J framework adds – in the average – only 0.748ms as 
an overload at each sending call.   

7.3 A Dynamic Adaptation Scenario 

The actual dynamic adaptation experiment has been established 
as follows: on the “Sony” laptop, a client application is 
executed, and on the “Toshiba” laptop the server application. 
Before the client start sending its messages, a 

DecryptionTeam team instance has been deployed (in a 
separate application) on the “Toshiba” laptop. Then, a team 
instance of type EncryptionTeam is deployed on the “Sony” 
laptop (also in a separate application). After that, the client 
object starts sending 1000 messages in a rate of 1message/1ms 
(in order to evaluate the DOT/J framework in an intensive 
execution environment).  
 
All messages have been encrypted and then sent. When arrived 
to the server, they have been decrypted and processed properly 
as if they have not been encrypted. The runtime to perform a 
complete send-call (RTsend) is calculated as follows:  

RTsend = MsDtime + Enctime + Sendtime + Dectime + Processtime+ Acktime (1) 

Where: 
-MsDtime: is the time required to trap and dispatch the call 

of “send” method on client object to the Methods 
Dispatcher (MsD) and invoke the role’s callin. On the 
first call to base “send” method, this time includes the 
runtime required to grip the Remote Teams List (RTL) 
from the DOTM. 

-Enctime: is the time needed to encrypt the message in hand 
by the role instance. 

-Sendtime: is the time needed send the encrypted message to 
the server (via the base call in line 4 of Figure 8). 

-Dectime: is the time required to trap the “processMsg” 
method of server object and decrypt the received 
message. Again, this time includes the runtime required 
to fetch the RTL for the Server class from its local 

DOTM at the first call to “processMsg” method.  
-Processtime: is the time needed by server object to 

manipulate the message. 
-Acktime: the time required by client object to receive the 

server’s acknowledgment for each sent message. 

The runtime values of this experiment have been recorded and 
represented in the chart shown in Figure 10. The average 
runtime for sending the 1000 messages with the 
encryption/decryption mechanism is 7.04ms. This value 
indicates that the efficiency of DOT/J is higher than other 
recent distributed-AOP approaches like DandyJ [5], which has 
registered an average time of 49.6ms (a latency of 27ms 
between client and server nodes is included) for the same 
experiment. Regarding the development of experiment, it is 

Fig. 9  Executing the client-server messaging application to measure the 

overhead of using DOT/J framework: in (a) without DOT/J, and in (b) 

with using DOT/J. 

a 

b 

Fig. 10  Applying the dynamic adaptation of client-server messaging 

application in a delay time of 1ms. 
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clear that the application shown in Figure 7 is very readable. 
Besides, it requires implementing two teams and two roles; 
whereas in DandyJ, for example, more than six “dynamic 
aspects” are required to implement the same concerns. In 
AWED, for example, it is impossible to synchronize and 
control the employment of the encryption and decryption 
concerns as in DOT/J. Finally, DOT/J has the advantage of 
transparency over DandyJ, which uses explicit pointcut 
designators to determine the hosts on which joinpoints should 
be matched.  

8. Related Works 

In addition to the approaches discussed in Section 2, several 
approaches in the literature have been presented in the context 
of dynamic adaptation of applications. This section discusses 
some of them. A Two-Phased Aspect-Oriented (TPAO) 
solution to dynamic adaptation has been presented in [27]. The 
first phase (which takes place at the development time) 
identifies the points of adaptation in the application code. The 
second phase encompasses the activities concerning the actual 
adaptation, which includes: checking of adaptation’s conditions 
and adding or removing the code of adaptation. This phase 
takes place at runtime. Anyway, one of the major difficulties 
for achieving an AOP solution for dynamic adaptation is how 
to make the existing application adapt-ready, i.e. to extend 
application so that new functionalities can be loaded and 
unloaded at runtime dynamically. 
 
The problem of dynamic aspect weaving adopted in the TPAO 
approach is that old and new aspects could be overlapped 
during adaptation, which leads to unpredictable and/or 
undesirable behavior [28]. In DOT/J, the process of Remote 
Role-Playing (RRP) is controlled through the teams’ 
activation/deactivation mechanisms, which is governed by 
activation precedence mechanism as well. Thus, application 
objects will always play their roles in the accurate order; 
therefore, always adapt precisely. Furthermore, dynamic 
adaptation of distributed applications like the one discussed in 
this paper could not be implemented with this and alike 
approaches; because synchronous aspects employment is not 
supported.  
 
TRAP/J [29] is a software tool for enabling developers to add 
new adaptable behaviors to existing Java applications 
transparently without the need of their source code. It could be 
considered as an enhanced version of the TPAO approach. 
However, it operates in two phases as well. In the first phase, 
TRAP uses aspects to provide the necessary hooks to realize 
runtime re-composition of the application, and to produce 
adapt-ready program. At the second phase, new behaviors can 
be introduced via interfaces to the adaptable classes, which are 
wrapper versions of the original ones.   
 
The problem in TRAP/J and alike is that they cannot support 
the unanticipated adaptation of applications. That is, continuity 
of adaptation is not fulfilled. In addition, to enable the 
adaptation of applications by changing functionalities that are 
not considered previously, application execution must be 

interrupted, and phase one must be repeated. Moreover, 
TRAP/J support adaptation of single applications and not 
distributed applications. Furthermore, it is not clear if 
application consistency is guaranteed in TRAP/J; because no 
mechanism is mentioned for resolving aspects precedence 
during the weaving process. Finally, wrapping the original 
classes could break the application architecture, and restricts 
the approach capabilities. 
 
DyReS [26] is a Java-based framework for distributed dynamic 
AOP. It offers coordination support for distributed adaptation 
in aspect-oriented middleware. DyReS observes that 
coordinating the weaving and unweaving of multiple inter-
dependent aspects is verbose and error-prone task because 
structural integrity and global state consistency need to be 
ensured. However, DyReS does not support remote pointcuts, 
and the use of XML – to describe how to control aspects 
weaving – reduces the expressive power of the framework and 
decreases the degree of transparency with respect to dynamic 
adaptation. 
 
The using of XML description to control the dynamic weaving 
of aspects in DyReS cannot be installed during runtime [5]; 
rather, it must be installed statically on all nodes before the 
actual execution of application. The XML description of 
aspects weaving is used in DOT/J, however, only to map 
remote teams, roles, and base classes once to the framework. In 
fact, remote roles need to be mapped only on the node they 
were declared at. Furthermore, DOT/J does not require base-to-
role bindings in the XML description. Thus, DOT/J maintains 
transparent deployment and employment of remote roles. Also, 
in DOT/J, new remote team instances can enroll dynamically 
during application execution. Thus, it supports a true dynamic 
weaving and employment of roles without stopping application 
execution or reloading its classes. 

9. Conclusions  

This paper has presented the DOT/J framework, which is used 
to propose a new approach for realizing the dynamic adaptation 
of distributed applications in modular and expressive fashion. 
The key concept introduced is the Remote Role Playing (RRP), 
which exploits the features of the Object Teams model in the 
distributed computing. The paper has demonstrated how the 
RRP can improve the modularity of distributed adaptable 
applications. The dynamic weaving of aspects at runtime, 
which is adopted by current distributed-AOP approaches, could 
lead to consistency problems if aspects have not been woven 
atomically. In the DOT/J approach, application base objects 
either play the same role simultaneously or none at all. The 
results of the experiments developed in this research reveal a 
promising approach, which could enhance adaptable 
applications modularity and improves their composition 
expressivity. This makes them easy to evolve and adapt. 
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