

Abstract—this paper presents a new method for scheduling of

symmetric multiprocessing (SMP) architecture based on process
behavior. The method takes advantage of process behavior, which
includes system calls to create groups of similar processes using
machine-learning techniques like clustering or classification, and then
makes process distribution decisions based on classification or
clustering groups. The new method is divided into three stages: the
first phase is collecting data about process and defining subset of data
is to be used in further processing. The second phase is using data
collected in classification or clustering to create
classification/clustering models by applying common techniques
similar to those used in machine learning, such as a decision tree for
classification or EM for clustering. System training classification
should be done in this phase, and after that, classification or
clustering models should be applied on a running system to find out
in which group each process belongs. The third phase is using
process groups as a parameter of scheduling on SMP (sympatric
Multi Processor) systems when doing distribution over multi-
processor cores. Another advantage can be achieved by letting the
end user train the system to classify a specific type of process and
assign it to a specific process core, targeting real-time response or
performance gain. The new method increases process performance
and decreases response time based on different kinds of distribution.

Keywords: Scheduling Algorithm, Symmetric Multi Processors
Architecture, Processor Behavior, Processor Behavior Classification.

I. INTRODUCTION
Computer systems play an important role in modern

life: from work to entertainment, they make things easier,
faster, and more enjoyable. Computer System consists of
system software and hardware. While hardware serves an
important role in a computer system, but the system cannot do
any work without the system software and specially the
operating system.

One of the main goals of operating systems is to provide a
fair share of resources among different types of programs
running on the same machine. One of the main resources
which operating systems try to allocate in an efficient way is
the time of Central Processing Unit (CPU). The operating

system tries to schedule programs and allocate CPU based on
different scheduling algorithms; some of these algorithms are
priority-based algorithms, where the highest priority program
will run before the lowest priority program for a definite
period of time. There is a different mechanism to avoid
starvation like decreasing the priority of program that uses the
allocated time.

Priority algorithms have many advantages: it is easy to
change the process priority by the user or by the operating
system itself [1]. While priority scheduling is very successful
on a single-CPU system, it achieves the same result on a
multiple-CPU system with a little modification to the old
scheduling algorithm. Modern operating systems now support
a multi-CPU system, including Symmetric Multiprocessor
(SMP) [2].

 Symmetric Multiprocessor (SMP) architecture is
dominating home PCs and servers. It offers high performance
with minimal cost, because it uses a single shared memory.
When SMP architecture applies to cores, each one is treated as
a separate processor: they are connected together using buses
and crossbar switches, switches that connect multiple inputs to
multiple outputs in a matrix manner. Examples of systems that
use SMP architecture are as follows: Intel’s Xeon, Pentium D,
Core Duo, Core 2 Duo, AMD’s Athlon64 X2, Quad FX or
Opteron 200 and 2000 series, Sun Microsystems UltraSPARC,
Fujitsu SPARC64 III SGI MIPS, Intel Itanium, Hewlett
Packard PA-RISC, Hewlett-Packard DEC Alpha, IBM
POWER, and Apple Computer PowerPC [3].

Modern Operating provides support of SMP Architecture:
Linux, for example, starts from kernel 2.6 and treats each core
as a separate processor, maintaining a running queue for each
one. Once processed, an instance of a computer program in
execution is created and it is added to one of these queues
while waiting to be executed. Kernel will choose the next task
to run from the queue based on the priority attached to each
process [4].

 Preemptive Priority Scheduling is used on Windows [5],
Linux [6], Solaris [7], and BSD [8] Operating systems. It
classifies each process based on priority; the scheduler
chooses the process with the highest priority to run next after
another process is finished, blocked, waiting for system call,

Scheduling Model for Symmetric Multiprocessing
Architecture Based on Process Behavior

Ali Mousa Alrahahleh1, Hussein H. Owaied2

 1 Department of Computer Science, Middle East University
Amman, Jordan

2 Department of Computer Science, Middle East University
Amman, Jordan

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 77

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

or preempted by the scheduler because it takes all time
quantum.

There are different types of priority scheduling. One of
these types, which are used by Solaris, is a multi-level
feedback queue [9]. Each queue contains processes with the
same priority; if there are processes that are waiting in the
high priority queue, the scheduler chooses and runs these
processes. If not, the scheduler checks each queue from the
highest-priority queue to the lowest one for processes to run. If
one of these queues contains multiple processes, the multi-
level scheduler runs each one of them in round-robin manner,
providing fair sharing for processes that share the same
priority level.

 One of notable issues solved by priority scheduling is
starvation, and the priority scheduler avoids starvation by
degrading the priority of processes that take too much time
executing on the same processer. Most modern operating
systems distribute processes on different cores based on the
load assigned for each instance/core [10]. It applies the same
uni-processer scheduling algorithm on each core. While this
may provide good results in some cases, it may be better to
group processes that share some characteristics or behaviors
and assign them to one of these cores.

II. PROPOSED METHODOLOGY
Classification of processes can be done based on the

memory requested, the type of I/O operating performed
(which can be tracked through a requested system call), CPU
usage, and many other criteria by monitoring real-life
processes such as database, web browser, word document, and
other applications used on desktop or servers; one can provide
grouping for each criterion. If a specific combination of these
groups is assigned to one processer, it should provide highly-
optimized scheduling and efficient use of each core while
maintaining load balancing when there are no processes that
match the criteria used for classification.

Because the solution space is very large, one can use
genetic algorithms to achieve the best number of combinations
(solutions), and then apply one of them. There is a lack of
policies or rules in open source operating systems FreeBSD,
Linux, and Solaris which are used to classify processes
dynamically-based on their behavior, therefore the
methodology is based on:

• The identification of processes’ behavior
• The classification of the processes’ behavior
• The distribution of the processes’ behavior to the

associated processors
The proposed methodology for the system presented as seen

in Fig.1 can be sub-divided into four main sections, collecting
information related to the subject of research. This information
includes any information that assists in classification and
making decisions: the second phase is pre-processing collected
information to make it usable and clean it from any noise,
classification or clustering comes in the third place to identify
any possible patterns between data, and the final phase is
experimenting and comparing results of previous phases to
find out if the goals of research can be achieved. This

methodology achieves a good distribution of processes based
on their behaviors. Achieving a smart operating system which
can make a high level decision without much help from the
end user involves the same process in any machine learning
solution with little modification. These phases will be
explained in next section in detail, the following sections
describe proposed work phases.

Fig. 1 Proposed the Steps for Scheduling on SMP Systems

A. Collecting Information
There are many tools for collecting information about

processes in operating system such as Ktrace, Strace, Dtrace.
While every one of these tools has advantages and
disadvantages, each one is known to be working with a set of
operating systems. For example, Strace only works for Linux
operating system [11] and Ktrace only works on FreeBSD and
early Mac OS [12].

Strace is a Linux tool used to collect information about
processes in general; Strace should be attached to processes
before the process starts. It provides a run time list of system
calls occurred during process operation or execution. Strace
affects the performance of running process, and has hard-to-
process output if compared to other monitoring tools. Strace
output includes the system call name and its parameter; output
is similar to normal function call in C programming language
[13].

While Strace provides useful information, it doesn’t meet
the requirements of this research because of the following
disadvantages:

1. It is only supported under Linux, making any

programs that have Strace dependent and not

portable to other operating systems.

2. It doesn’t provide formatting options, making

output processing a long and hard task, unlike

other tools, which provide a good support for

data processing like aggregation.

Collecting Information

Preprocessing Data

Classification and Clustering

Process Distribution

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 78

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

3. It must be attached to a process before it starts. It

is hard to attach every program to Strace and if

that is possible, it may take a long time to change

all the current scripts or executables to append

Strace to the environment of execution.

4. It affects program performance, making it

unusable for Benchmarking [14], and it may

affect the result of research.

5. It generates a single output for each process,

introducing a lot of files, and decreasing system

performance by flooding desk queues.

Ktrace is another system tool used to collect information
about processes; it is only supported under FreeBSD and Mac
OS until version 10.5. Unlike Strace, it is much faster and it
produces its output in a special format, which is not readable
by humans, and the output needs another tool called Kdump to
convert it to a readable format [15].

While Ktrace is lighter and faster than Strace, it still has the
following disadvantages:

1. It should be attached on each individual process.
2. It produces a lot of files, which means a lot of

processing work.
3. Aggregation is not supported, which is useful for

large data analysis.
4. It is only supported by FreeBSD and early versions

of Mac OS X.

To cover these issues, a framework called Dtrace has been

developed by Solaris OS development team and has been
ported to other operating systems such as FreeBSD, Mac OS
X, and NetBSD. This framework provides comprehensive
dynamic tracing for processes on the running system. Besides
tracking processes, it provides a complete overview of running
system internals such as scheduling activity, file systems, and
network usage.

Dtrace is an open source project, which makes it easier to

be adapted and integrated with any operating system. Dtrace
framework has very good analysis support by providing
augmentation and aggregation functions such as summations,
averages, and counts; these functions are very helpful for
collecting data and tracking processes over a period of time. It
also has good support for timed tracking (start and end script
based on user configuration). Another important advantage of
Dtrace is that a user of Dtrace has complete control over the
script output, which means very little post-processing [16].

When combining augmentation functions with output
formatting functions, useful statistics can be gathered and
analyzed. It provides a complete overview of the system, as
well as help in finding bottlenecks. For example, a Dtrace
script of one line: “io:::start { printf("%d %s

%d",pid,execname,args[0]->b_bcount); }” can print disk
transaction live with transaction size and the requester process
name. Another sample of Dtrace script: “syscall::open*:entry
{ printf("%s %s",execname,copyinstr(arg0)); }” lists all
opened files by running programs.

Because of all the previously-listed advantages, Dtrace is a
useful tool to do most of the research related to operating
system performance. It can do all the work starting from data
collection and ending with most pre-processing work, while
being light on the host system.

Dtrace works using a concept called probes, in which is a
simple function call is distributed over a program in special
places where users are expected to track. To make Dtrace
work on a host operating system, there should be a special
function call on each monitored point. Dtrace can also work
for user programs, not only system program; these functions
are light on the running system and don’t seem to have a
heavy affect on system performance.

Dtrace also provides virtualization of data, like data
quantization, which make data readable by humans and easy
to analyze, as seen in Fig. 2.

lint

value ------------- Distribution ------------- count

65536 |@@@@@@@@@@@@@@@@@@@ 74

131072 |@@@@@@@@@@@@@@@ 59

262144 |@@@ 14

acomp

value ------------- Distribution ------------- count

8192 |@@@@@@@@@@@@ 840

16384 |@@@@@@@@@@@ 750

131072 |@@@@@@ 446

524288 | 0

Fig. 2: A Quantization Output Shows System Call Time on Running

System

Because of the previously listed advantages, Dtrace have

been used in this research as a main source of data. Dtrace has
been used for: -

1. Timely and accurate data collection, which reduces

the collected sample size and provides periodical data

samples.

2. Collect system calls statistical data, which is one of

the main targets of this research. System calls inherit

its importance from being the only way to request

operation or dates from the hardware or operating

system. It gives information about resource

consumption, I/O operation, and network usage.

System calls may vary from one operating system to

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 79

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

another, which means sample data collected for one

operating system is not necessarily the same as other

operating systems, making the training data for one

operating system only suitable to that system or a

similar system.

Only the following data is going to be collected about
system call:

1- System call name

2- Number of calls

3- Caller name

Using a small set of data makes the data collected minimal
and easy to parse, which can provide fast decision-making.
This data is high-level enough to make training data not over
fit (only suitable for decision-making on the same training set
or similar data).

The Dtrace script handles the preprocessing of data, placing
each piece of collected information in one column.

Dtrace has been used outside the machine learning process
to find out if there is any easy visually-identified pattern or
any enhancement that can be made to Dtrace script to make
data more accurate by increasing or decreasing the scope of
collected data.

B. Data Preprocessing

Most preprocessing is handled by Dtrace, but data should be
converted to a special file format called ARFF which
classifiers can parse. This format imposes a special naming
convention for each column; any volition of these rules may
result in process failure, as this is beyond the capability of
Dtrace and any addition to fixing these issues may affect the
generic modular design of the final program.

ARFF is a special file format developed by the Machine
Learning Project at the Department of Computer Science of
The University of Waikato. It is used to describe elements that
share common definitions or attributes. ARFF files has two
sections: one for meta data like attribute names, types of
attributes, names of relation (as seen in Fig. 3), and another
one for data – data should conform to the description in meta
section.

% 1. Title: Iris Plants Database

%

% 2. Sources:

% (a) Creator: R.A. Fisher

% (b) Donor: Michael Marshall

(MARSHALL%PLU@io.arc.nasa.gov)

% (c) Date: July, 1988

%

@RELATION iris

@ATTRIBUTE sepallength NUMERIC

@ATTRIBUTE sepalwidth NUMERIC

@ATTRIBUTE petallength NUMERIC

@ATTRIBUTE petalwidth NUMERIC

@ATTRIBUTE class {Iris-setosa,Iris-versicolor,Iris-

virginica}

Fig. 3: Sample ARFF Header

ARFF is useful for representing different types of data like
numeric, string, enumeration, and special data format
(Example: date); this makes it fit to represent data collected in
different contexts and is used as an input for machine learning
processes [17]. ARFF data sections contain comma-separated
data; each column is mapped to a definition found in the
header as seen in Fig. 4.

@DATA

5.1,3.5,1.4,0.2,Iris-setosa

5.0,3.6,1.4,0.2,Iris-setosa

4.6,3.4,1.4,0.3,Iris-setosa

5.0,3.4,1.5,0.2,Iris-setosa

4.9,3.1,1.5,0.1,Iris-setosa

Fig. 4: Sample ARFF Data

There are many text processing libraries and tools for text

processing: one of these tools is AWK. AWK is a special
utility developed specially for text processing/extraction; a
simple AWK script can extract useful information from text
files or standard inputs and export information in other
formats. This may take a lot of time if done in a traditional
complied programming language like C or C++. AWK
processes a text file by sequentially finding patterns defined in
AWK script files and triggers corresponding actions if there
are any. An action can be a mathematical notion like addition,
subtraction, etc.; or it can be a normal text substitution where
the results are printed directly to a screen unless redirected to a
normal file [18].

AWK script can take a raw data produced by a program like
Dtrace and transform it to a valid ARFF file. AWK can be
found on most of Unix and Unix-like operating systems, such
as Linux, FreeBSD, OpenBSD, NetBSD, Mac OS X, and
Solaris, making AWK scrip portable over a wide variety of
operating systems.

While AWK script provides a simple and fast way to
process data, it can be replaced in the future with flex. Flex is
a program which takes a pattern/action definition file similar
to the one used in AWK script and generates self-contained C
language files that can be compiled to a native executable
capable of processing input and producing the desired output
[19].

C. Classifications and Clustering
There are two regularly-used methods for extracting

knowledge from data: classification and clustering. Both of
them try to find a pattern in data and group data according to
these patterns, and each one of them provides different results

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 80

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

when applied and has a different set of algorithms; only the
algorithm related to the research is going to be discussed here.

Classification tries to assign a set of elements to correct
groups based on training data. Training data is a sample of
data collected from same environment where the machine
learning is going to be conducted and has correct groups or
predicted value assigned to each element. The classifier tries
to build a model based on training data which will be used in
further classification.

Classification is a supervised learning technique, where
there is a clear vision of groups and elements that belong to
them, and which provides great control over the classification
output such as a group’s number and group element’s
specification, but it prevents identifying any new unrevealed
pattern in data.

The decision tree is one of the used techniques in
classification: it creates a hierarchical tree model or graph
which consists of nodes and edges. Each node contains a rule
used in branching: where there is any entry in question to
other nodes, the leaf of edges is determines the final decision.
A sample decision tree looks like figure 3-9 [20][21].

J48 is one of the decision tree algorithms that are fully
implemented in WEKA. It builds a model based on attributes
of training data that helps in predicting values. J48 algorithm
has good accuracy and it is fast enough to be used in critical
operating. J48 will be used in this research to classify
processes based on system call types and counts [21].

Clustering is the process of identifying similar elements,
which can be grouped together. Clustering is an unsupervised
learning technique where the number of clusters and their
location is unknown before conduction the clustering process,
which means less control on the output of clustering.
However, it provides a ready-to-use solution when there is a
need to identify patterns in data while these patterns are not
visible and there is not enough information to build a
classification model for the classifier [22].

Clustering has many algorithms; one of the known
algorithms is simple EM clustering and Weka has a good
support for EM clustering. It will be used in this research as a
replacement for classification when there are no predefined
groups.

D. Process Distribution
After building the classification/clustering model, which

can be used to predict new elements groups, these groups will
assist the scheduler in decision-making.

Different kinds of distribution based on user preferences or
system usage can be made: for example, if the user needs real-
time processes to run on a separate processor for maximum
response time, a system can be trained to identify these
processes and allocate them to a separate processor. System
usage can affect the process distribution: for example, a
system can start at 50-50% for two process groups, and if the
load or response time is increased, the operating system can
make adjustments to the distribution to stabilize the system
again.

Bounding processes or a group of processes to one

processor can be done using a user land command like
“cpuset” in FreeBSD and Linux. This tool helps in setting
process affinity to one or more processors.

In the future, the entire scheduling process should be
integrated with the kernel because other parameters can
incorporate into scheduling process. These parameters include
system load, waiting time, and utilization, which is not
accessible in user land.

E. Benchmarking and Measuring Results
Benchmarking is “to take a measurement against a

reference point.” [23]. This helps identify any possible
improvement in software and hardware.

Measuring utilization and response time can be indirectly
represented by benchmarking processes throw by comparing
benchmarking before and after applying the new scheduling
technique. Different kinds of open source benchmarking tools
can be found, UNIX bench is an example of advance
benchmark tools. UNIX bench provides a comprehensive set
of benchmarks engineered too quickly and accurately measure
processor and operating system performance. Designed to
make benchmarks easy to run and easy to understand, UNIX
bench takes the guesswork out of producing robust and
reliable benchmark results. UNIX bench has many advantages
over other tools, these are:

1. UNIX bench benchmark is multi-core aware.
2. UNIX bench is cross-platform running on FreeBSD,

Linux, and Mac.
3. UNIX bench returns overall scores compiled from

all tests.
4. UNIX bench tries to test different kinds of

algorithms on operating systems and reports back
the result as a score; these scores can be compared
to find out if there are any improvements that have
been made after doing modifications to scheduling
in an operating system.

5. UNIX bench score is result of comparisons between
systems in question and SPARCstation 20-61
performance. For example, if the score is 10, then
the machine in question is 10 times faster than
SPARCstation 20-61. This helps in comparison
and makes the result of benchmark more readable.

UNIX bench does the following test by defaults as listed on
the UnixBench website [24]:

• Dhrystone is a test developed by Reinhold Weicker
in 1984. This benchmark is a good indicator of the
computer's performance. It focuses on string
manipulation, with zero floating-point operations.
Hardware and software design, compiler and linker
options, code optimization, cache memory, wait
states, and integer data types have a strong
influence on Dhrystone.

• Whetstone: This test focuses on speed and
efficiency of floating-point operations. This test
does a set of operations typically performed in
scientific applications which include a wide variety
of C functions like sin, cosine, square root, exp,

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 81

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

and log. They are used as well as integer and
floating-point math operations, array accesses,
conditional branches, and procedure calls. This test
measures both integers and floating-point
arithmetic.

• Execl Throughput: This test measures the number of
execl calls that can be performed per second. Execl
is function call to replace the current process
image with a new process image. It is only a front-
end for the function “execve ()”.

• File Copy: This measures the rate at which data can
be transferred from one file to another, using
various buffer sizes. The file read, write, and copy
tests capture the number of characters that can be
written, read, and copied in a specified time (the
default is 10 seconds).

• Pipe Throughput: A pipe is the simplest form of
communication between processes. Pipe
throughput calculates the number of times a
process can write 512 bytes to a pipe and read
them back per second. The pipe throughput test has
no real counterpart in real-world programming.

• Pipe-Based Context Switching: This test measures
the number of times two processes can exchange
an increasing integer through a pipe. The pipe-
based context-switching test is more like a real-
world application. The test program spawns a child
process with which it carries on a bi-directional
pipe conversation.

• Process Creation: This test measures the number of
times a process can fork and reap a child that
immediately exits. Process creation refers to
actually creating process control blocks and
memory allocations for new processes, so this
applies directly to memory bandwidth. Typically,
this benchmark would be used to compare various
implementations of operating system process
creation calls.

• Shell Scripts: The Shell Scripts Test measures the
number of times per minute a process can start and
reap a set of one, two, four, and eight concurrent
copies of shell scripts where the shell script applies
a series of transformation to a data file.

• System Call Overhead: This estimates the cost of
entering and leaving the operating system kernel,
i.e. the overhead for performing a system call. It
consists of a simple program repeatedly calling the
getpid (which returns the process id of the calling
process) system call. The time to execute such
calls is used to estimate the cost of entering and
exiting the kernel.

GTKPerf is another benchmarking tool to test desktop
widgets; this tool tries to create different kinds of controller-
like scroll bars, tabs, selection menus, and drawing, and it
helps in testing UI (interactive programs). Comparing results
should give an indirect overview of interactive operating
system response time.

III. RESULT
Benchmark provides a measurement of improvement after

applying the new scheduling policy; in these sections, two
types of benchmark are going to be conducted. Unix Bench is
used to measure a wide variety of performance metrics and
GTKPerf is used to measure interactive application
performance.

A. Benchmark for string and mathematical operation

This benchmark focuses on string and mathematical
manipulation as seen in Fig. 5; it emulates operations done in
compiler and linkers, and it also measures the efficiency of
cache memory.

Fig. 5: Benchmark for Whetstone and Dhrystone 2 (More is better).

B. Benchmark for File Operation
The second graph (Fig. 6) shows benchmark for file

operation with different buffer sizes; it measures the data rate
when copying from one file to another and the number of
characters that can be written to the file system per second.

 Fig. 6: 1 Benchmark for File Operation with Different- Buffer
Size (More is Better)

C. Benchmark of Process Intercommunication
The third benchmark is for inter-process communication

using pipes; it measures the number of time processes can
write to pipe and read from it per second, and it also tests the
speed of communication as seen in Fig. 7.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 82

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 7: Benchmark for Pipes Inter-process Communication

D. Process Creation and Image Replacement
This benchmark measures the process creation and image

replacement rate, which means the number of time processes,
can be created and that an image gets replaced with another
process within specific time range as seen in fig. 8.

Fig. 8: Benchmark Process Creation and Image Replacement.

E. Shell Script Execution

It measures shell script execution time; these shell scripts
do a common file transformation: first, it tests a single shell
script, and after that, it tests eight concurrent shell scripts as
seen in fig 9.

Fig. 9: Benchmark Process Creation and Image Replacement.

F. System Call Overhead

This measures system call overhead by calling the same
system calls multiple times within a defined period of time
and counts the number of calls, which indicates overhead to
enter and leave the kernel as seen fig. 10.

Fig. 10: System Call Overhead.

G. Interactive Application Benchmark

Interactive benchmark tools try to create a

different kind of user interaction component like

menus, compo boxes, listings, graphical drawings,

as well as stimulating user action on these

components to measure response time.

GTKperf Tool was used to create benchmarking

graphs seen in fig. 11.

Fig. 11: Interactivity Benchmarks (Less is Better).

IV. CONCLUSION AND FUTURE WORKS

A. Conclusion
Process has a lot of feature or attributes that can be tracked

or logged, and used in further processing. System calls are a
good high-level process behavior, and it used in this research
to collect information about processes. Tools like Dtrace
supports live tracking of process. Aggregating the tracked
information and output them in readable format with low
overhead on host systems.

Classification and clustering can be implemented in user
land, and the distribution of processes can be done from user

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 83

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

land, while this implementation has limitation because not all
the scheduling data are available.

Classification and clustering can be applied on different
kind of processes, and give good result in grouping processes,
based on similarity or based on user training data.

A fair scheduling of classified process groups achieves a
good result in process performance, while it has drawbacks
when it is comes to inter-process communication especially
pipes, because processes that are communicating using pipes
are allocated to different processors core.

A fair scheduling of clustered process groups achieves
similar result to classification, while it has same draw backs
when in it comes to inter-process communication.

A fair scheduling clustering or classification has poor
handling of fast process creation; reducing classification and
clustering time or decreasing time between each run can do a
fix. Interactivity benchmark achieve the same result for
normal, clustering, and classification with different in seconds.

B. Future works

The research can be improved in the future through the

Implementation of the process as part of scheduler, and use
data available to scheduler as parameter to process
distribution. Also assign Inter-communicating processes to
same processor, reducing the communication over head.

REFERENCES

[1] Haldar, S., & Aravind, A. A. (2010). Operating systems. Pearson Hall.
[2] Tanenbaum, A. S., & Woodhull, A. S. (2009). Operating Systems Design
and Implementation. Pearson Prentice-Hall.
[3] Choi, L. (2007). Advances in computer systems architecture. Seoul,
Korea: Choi, Lynn; Paek, Yunheung; Cho, Sangyeun.
[4] Bradford, E., & Mauget, L. (2002). Linux and Windows Interoperability
Guide. Prentice Hall Professional.
[5] Hailperin, M. (2007). Operating Systems And Middleware: Supporting
Controlled Interaction. Max Hailperin.
[6] Love, R. (2007). Linux system programming. O'Reilly Media.
[7] Crowley, C. P. (1997). Operating systems: a design-oriented approach.
Irwin.
[8] McKusick. M. K., Neville-Neil G. V. (2004). The Design and
Implementation of the FreeBSD Operating System. Addison-Wesley
Professional.
[9] Rodriguez, C. S., Fischer, G., & Smolski, S. (2005). The Linux kernel
primer: a top-down approach for x86 and PowerPC architectures. Prentice
Hall Professional.
[10] Douglas, S., & Douglas, K. (2004). Linux Timesaving Techniques For
Dummies. Wily.
[11] Robbins, A. (1999). Larger Cover UNIX in a Nutshell, 3rd Edition.
O'Reilly Media.
[12] Jepson, B., & Rothman, E. E. (2005). Mac OS X Tiger For Unix Geeks.
O'Reilly Media.
[13] Fusco, J. (2007). The Linux Programmer's Toolbox. Prentice Hall.
[14] Cheney, S. (1998). Benchmarking. ASTD .
[15] Foster, J. C. (2005). Buffer Overflow Attacks: Detect, Exploit, Prevent.
Syngress.
[16] Mauro, J., & Gregg, B. (2011). DTrace: Dynamic Tracing in Oracle
Solaris, Mac OS X and FreeBSD. Prentice Hall.
[17] Witten, I. H., Frank, E., & Hall, M. A. (2011). Data Mining: Practical
Machine Learning Tools and Techniques. Elsevier.
[18] Dougherty, D., & Robbins, A. (1997). Sed & awk. O'Reilly Media.
[19] Levine, J. (2009). Flex & Bison. O'Reilly.

[20] Rokach, L., & Maimon, O. Z. (2008). Data mining with decision trees:
theroy and applications. World scientific.
[21] Lin, T. Y., Xie, Y., & Wasilewska, A. (2008). Data mining: foundations
and practice. Springer.
[22] Janert, P. K. (2010). Data Analysis with Open Source Tools. O'Reilly
Media.
[23] Cheney, S. (1998). Benchmarking. ASTD.
[24] byte-unixbench. (2012, 5 8). byte-unixbench. Retrieved 5 8, 2012, from
code.google.com: http://code.google.com/p/byte-unixbench/

Authors

Ali Mousa Alrahahleh is an M.Sc Student in the Dept. of Computer
Science, faculty of information technology, at the Middle East University.

Hussein H. Owaied is the faculty member and supervisor of the

student in the department of Computer Science, Faculty of Information
Technology at the Middle East University. Dr. Owaied is the
corresponding author can be reached at the address: Dr. Hussein H.
Owaied, Department of Computer Science, Faculty of Information
Technology, Middle East University P.O.Box 383 Amman 11831 Jordan.
Email: howaied@meu.edu.jo

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 84

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

