

An Evolutionary Non-Linear Great Deluge Approach for Solving

Course Timetabling Problems

Joe Henry Obit1, Djamila Ouelhadj2, Dario Landa-Silva3 and Rayner Alfred 4

1 Labuan School of Informatics Science, Universiti Malaysia Sabah,

 87000 Labuan F.T, Malaysia

2 Department of Mathematics, University of Portsmouth,

 PO3 1HF, United Kingdom

3 School of Computer Science, (ASAP), University of Nottingham,

Jubilee Campus Wollaton Road Nottingham, NG8 1BB, United Kingdom

4 School of Engineering and Information Technology, Universiti Malaysia Sabah,

2073, 88999, Kota Kinabalu, Malaysia

Abstract
The aim of this paper is to extend our non-linear great deluge

algorithm into an evolutionary approach by incorporating a

population and a mutation operator to solve the university course

timetabling problems. This approach might be seen as a variation

of memetic algorithms. The popularity of evolutionary

computation approaches has increased and become an important

technique in solving complex combinatorial optimisation

problems. The proposed approach is an extension of a non-linear

great deluge algorithm in which evolutionary operators are

incorporated. First, we generate a population of feasible solutions

using a tailored process that incorporates heuristics for graph

colouring and assignment problems. The initialisation process is

capable of producing feasible solutions even for large and most

constrained problem instances. Then, the population of feasible

timetables is subject to a steady-state evolutionary process that

combines mutation and stochastic local search. We conducted

experiments to evaluate the performance of the proposed

algorithm and in particular, the contribution of the evolutionary

operators. The results showed the effectiveness of the

hybridisation between non-linear great deluge and evolutionary

operators in solving university course timetabling problems.

Keywords: Evolutionary Algorithm, Non-linear Great

Deluge and Course Timetabling.

1. Introduction

The central aim of this paper is to hybridise the non-linear

great deluge algorithm presented in our previous paper

[18] with the evolutionary approach by incorporating a

population and a mutation operator to solve the university

course timetabling problem. This technique might be seen

as a variation of memetic algorithms in particular as

presented in [1, 12, 21, 22]. The popularity of evolutionary

computation approaches has increased and become an

important technique in solving complex combinatorial

problems. They are powerful techniques and have been

applied to many complex problems e.g. the travelling

salesman problem [20,17,16], university exam timetabling

[10], and university course timetabling problems [11, 22,

21].

Finding good quality solutions for timetabling problems is

a very challenging task due to the combinatorial and highly

constrained nature of these problems [13]. In recent years,

several researchers have tackled the course timetabling

problem, particularly the set of 11 instances of course

timetabling problem proposed by Socha et al. [26]. Among

the algorithms proposed there are: MAX-MIN ant system

[26]; tabu search hyper-heuristic strategy [8]; evolutionary

algorithm, ant colony optimisation, iterated local search,

simulated annealing and tabu search [24]; fuzzy multiple

heuristic ordering [6]; variable neighbourhood search [3];

iterative improvement with composite neighbourhoods [2];

a graph-based hyper-heuristic [9] and a hybrid

evolutionary algorithm [1].

There are many versions of evolutionary algorithms that have

been discussed in the literature, however, there is a common

underlying idea that underpins the basic structure of these

algorithms [14], such as, and most of the evolutionary

algorithms are population-based meta-heuristics. These

algorithms maintain a population of solutions and conduct the

search process by simulating natural selection based on

Darwin's theory of survival of the fittest. This means that

only strong individual solutions will survive and participate in

the selection for reproduction before being subject to the

process of recombination and mutation. Sastry et al. [25]

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 1

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

explained various types of recombination and mutation

operators. Recombination is an operator which combines two

or more individuals from the mating pool in order to create

one or more new candidate solutions, whereas mutation is

usually designed to add more diverse solutions to increase the

chances of exploring large areas of the search space [25].

Mutation is only applied to one candidate solution and

produces one new solution. Even though crossover is one of

the main components in genetic algorithms and other

evolutionary algorithms, Moscato and Norman [20] and

Radcliff and Surry [23] have argued whether crossover

should be the main operator in Genetic Algorithms. It is

not an unusual practice that some papers present different

implementations of Evolutionary Algorithms in which

local search are used as a replacement for crossover. For

example, Ackley [5] proposed a genetic hill-climbing

approach in which the crossover operator only plays a

small role in the algorithm. In addition, according to Bäeck

et al. [7] the Evolutionary strategies community has

emphasised on mutation rather than crossover.

This paper proposes a two-stage hybrid meta-heuristic

approach to tackle course timetabling problems. The first

stage constructs feasible timetables while the second stage is

an improvement process that also operates within the feasible

region of the search space. The second stage is a combination

of non-linear great deluge [18] with evolutionary operators to

improve the quality of timetables.

The rest of this paper is organised as follow, in Section 2,

the subject problem and test instances are described.

Section 3 gives the description of the evolutionary non-

linear great deluge approach proposed for solving the

university course timetabling problems. Computational

experiments and results are presented in Section 4 and the

paper ends with a conclusion in Section 5.

2. University Course Timetabling

In general, university course timetabling is the process of

allocating, subject to predefined constraints, a set of

limited timeslots and rooms to courses, in such a way as to

achieve as close as possible a set of desirable objectives. In

timetabling problems, constraints are commonly divided

into hard and soft constraints. A timetable is said to be

feasible if no hard constraints are violated while soft

constraint may be violated but we try to minimise such

violation in order to increase the quality of the timetable.

In this work, we tackle the course timetabling problem

defined by Socha et al. [26] where there are: n events E = {

e1, e2, ..., en }, k timeslots T = { t1, t2, ..., tk } and m rooms R =

{ r1, r2, ... , rm } and a set S of students. Each room has a

limited capacity and a set F of features that might be

required by the events. Each student must attend a number

of events within E. The problem is to assign the n events to

the k timeslots and m rooms in such a way that all hard

constraints are satisfied and the violation of soft constraints

is minimised.

Hard Constraints. There are four in this problem:

 H1: a student cannot attend two events
 simultaneously.

 H2: only one event can be assigned per timeslot
 in each room.

 H3: the room capacity must not be exceeded at
 any time.

 H4: the room assigned to an event must have
 the features required by the event.

Soft Constraints. There are three:

 S1: students should not have exactly one event
 timetabled on a day.

 S2: students should not have to attend more
 than two consecutive events on a day.

 S3: students should not have to attend an event
 in the last timeslot of the day.

The benchmark data sets proposed by Socha et al. [26] are

split according to their size into 5 small, 5 medium and 1

large, as shown below :

Category Small Medium Large

Number of events n 100 400 400

Number of rooms m 5 10 10

Number of room features

|F|

5 5 10

Number of students |S| 80 200 400

Number of events per

student

20 20 20

Maximum students per

event

20 50 100

Approximation features

per room

3 3 5

Percent feature use 70 80 90

Table 1 Parameter values for the course timetabling problem categories

in the set by Socha, Knowles and Samples [26]. The last four rows

give some indication about the structure of the instances.

For all instances, k = 45 (9 hours in each of 5 days). It

should be noted that although a timetable with zero penalty

exists for each of these problem instances (the data sets

were generated starting from such a timetable [26]), so far

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 2

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

no heuristic method has found the ideal timetable for the

medium and large instances. Hence, these data sets are still

very challenging for most heuristic search algorithms.

2.1 Problem Formulation

The objective in this problem is to find a feasible solution

that minimises the violation of soft constraints. The

problem data sets described above (Socha et al. instances)

can be formalised as follows. Let X is the set of all

possible solutions, where each event has been assigned a

pair timeslot-room. Let A = {h1, h2, h3, h4} be the set of

all hard constraints. Let B = {s1, s2, s3} be the set of all

soft constraints for which violation should be minimised.

Let XX 
~

be the set of all feasible solutions that satisfy

the hard constraints in A. The cost function f(x) for both

problem data sets can be represented by this formulation.

Each solution x  X
~ is associated with a cost function

measuring the total violation of soft constraints in B. The

main objective of this problem is to search for an optimal

solution *x  X
~ , in this case an optimal solution is, if f(x*)

 f(x), x  X . The cost function f(x) measures the

quality of the feasible solution x  X by measuring the

violation of the total soft constraints given by:

f(x) = 



Ss

sxfsxfsxf)),(),(),((321

),(1 sxf : number of times a student s in

timetable x is assigned to the last timeslot of the

day.

),(2 sxf : number of times a student s in

 timetable x is assigned more than two

 consecutive classes. Every extra consecutive

 class will add 1 penalty point, for example

),(2 sxf = 1 if a student s has three consecutive

 classes and),(2 sxf : = 2 if the student s has

 four consecutive classes, and so on.

),(3 sxf : number of times a student s in timetable

x is assigned a single class on a day.),(3 sxf = 1

if student s has only 1 class in a day and if

student s has two days with only one class

),(3 sxf = 2.

3. Evolutionary Non-Linear Great Deluge

 Approach

As discussed in the introduction, crossover operator can be

replaced by local search. For example Ackley [5] used hill-

climbing as an operator instead of crossover after arguing that

crossover was not effective and played less dominant role.

Gorges-Schleuter [15] used local search as an operator in

evolutionary algorithms, and showed that it definitely

improves the quality of the solutions.

In this work, we propose to extend the single solution non-

linear great deluge approach to a population-based

evolutionary approach by incorporating tournament

selection, a mutation operator and a replacement strategy.

The motivation behind the introduction of evolutionary

operators into our great deluge algorithm comes from the

interest for striking a good balance between diversification

and intensification, which are the main strategic forces in

meta-heuristic approaches. Therefore, a good search

technique must balance these two forces in order to

achieve robustness and effectiveness in the search as well

as to help the search activity to find optimal or near

optimal solutions. Diversification is the ability to reach not

yet visited regions in the search space and it can be

achieved by disturbing some of the solutions using special

operators (in our case, we use mutation) when necessary.

Intensification is about exploiting the current search space

regions by using local search (non-linear great deluge in

our case) to obtain better quality of solutions.

Figure 2 shows the components of the proposed evolutionary

non-great deluge algorithm. It begins by generating an initial

population of solutions of size P which becomes the pool of

solutions. Then, a number of generations take place and in

each of them the algorithm works as follows. First,

tournament selection is used to choose 5 individuals at

random from the pool of solutions and the one with the best

fitness is selected (xt). With probability less or equal to 0.5, a

mutation operator is applied to xt while maintaining feasibility

and obtaining solution xm. The probability value was

determined by experimentation (If we apply the mutation too

high or too low, no much improvement can be found). Next,

the non-linear great deluge algorithm is applied to xm to

obtain an improved solution xi. Then, the worst solution in the

pool of solutions, xw (ties broken at random) is identified and

if xi is better than xw
 then xi replaces xw in the pool of

solutions. This evolutionary non-liner great deluge algorithm

is then executed for a pre-determined computation time

according to the size of the problem instance. Note that this is

a steady-state evolutionary approach that uses non-linear great

deluge for intensification and a mutation operator for

diversification. The following subsections describe each of

the algorithm components is more detail.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 3

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Figure 1:The Evolutionary Non-linear Great Deluge Algorithm.

3.1 Solution Representation

Each solution in the population uses a direct

representation, consisting of a chromosome with

information on what events or courses are assigned into a

pair of timeslot-room. In addition, the chromosome is also

used to keep information on forbidden assignments for a

particular timeslot and room. Figure 2 illustrates the direct

encoding of an individual solution used in the population.

ei is an event number i, i ϵ {1,...,n} where n is the number of

events that need to be scheduled in the available timeslot t,

t ϵ {1, k } where k is the number of available timeslots. For

example event e4 is assigned to timeslot 1 in room 1.

Figure 2: Solution Representation (direct encoding) of a Timetable where

events are assigned to pairs timeslot-room.

3.2 Initialisation of the Population

The initial population of solutions is generated using the

heuristic described in Algorithm 1. Two well-known graph

colouring heuristics are incorporated, Largest Degree (LD)

and Saturation Degree (SD). First, the events in the pool of

unscheduled events are sorted based on LD. After that, we

choose the event with the highest LD and calculate its SD.

In the first while loop, the initialisation heuristic attempts

to place all events into timeslots while avoiding conflicts.

In order to do that, the heuristic uses the SD criterion and a

list of rescheduled events to temporarily insert the

conflicting events. The heuristic tries to do this for a given

timeU but once that time has elapsed, all remaining

unscheduled events are inserted into random timeslots. If

by the end of the first while loop the solution is not yet

feasible, at least the penalty due to hard constraint

violations is already very low. In the second while loop,

the heuristic uses simple local search and tabu search to

achieve feasibility with two neighbourhood moves M1 and

M2. M1 selects one event at random and assigns it to a

feasible pair timeslot-room also chosen at random. M2

selects two events at random and swaps their timeslots and

rooms while ensuring feasibility is maintained. The local

search attempts to improve the solution but it also works as

a perturbation operator. The tabu search uses move M2

only, which selects only an event that violates the hard

constraints. The tabu search runs for a fixed number of

iterations tsmax. In our experiments, this initialisation

heuristic always finds a feasible solution for all the

problem instances considered.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 4

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

4.3 The Evolutionary Operator: Mutation

With a probability less or equal to 0.5 (p ≤ 0.5), the
mutation operator is applied to the solution selected
from the tournament (x

t
). The mutation operator selects

at random one out of three types of neighbourhood
moves in order to change the solution while maintaining
feasibility. These moves are described below.

1. Move M1. Selects one event at random and

assigns it to a feasible timeslot and room.

2. Move M2. Selects two events at random and

swaps their timeslots and rooms while ensuring

feasibility is maintained.

3. Move M3. Selects three events at random, then it

exchanges the position of the events at random

and ensuring feasibility is maintained.

5. Non-linear Great Deluge Algorithm

The non-linear great deluge algorithm is a modified

great deluge algorithm which incorporates a non-linear

decay rate. The motivation behind the use of a non-

linear decay rate and floating water level is to enhance

the feedback between the search activity and the water

level. Early in the search the algorithm is able to reduce

the penalty cost considerably and the gap between the

water level and the penalty cost is usually very large.

Therefore, the algorithm must prevent the cost function

to go back near to the water level and for this reason it

is important to reduce the gap between the water level

and the penalty cost. Later in the search, it becomes

more difficult to find the improvement moves. To

manage this situation, we float the water level to

prevent the algorithm becoming greedy. By floating the

water level the algorithm tries to diversify the search by

extending its search to a different region of the search

space. Therefore, at the early stage of the search this

algorithm performs more intensification and less

diversification. However, when the search gets stuck in

the local optima the algorithm begins to diversify the

search by floating the water level (increasing the water

level). The main weakness with the linear decay of the

water level is that the water level decreases too quick in

the later stages of the search. At the beginning, the

algorithm seems to produce several successful moves.

However when the search is in the middle or

approaching the end of the search and the water level

converges with the value of the current best solution,

most of the neighbourhood solutions are rejected and

this situation hinders the algorithm in diversifying the

search. Therefore, the algorithm suffers on its own

greediness by trapping itself in local optimum. In the

conventional great deluge approach, there is no

mechanism to help escaping local optima once

the water level and the best solution penalty cost

converge. The non-linear great deluge algorithm is

described in Algorithm 2.

5.1 Non-linear and Floating Water Level

 Decay

Consider a problem in which the goal is to find the solution

that minimises a given objective function. The distinctive

feature of the conventional great deluge Consider a problem

in which the goal is to find the solution that minimises a

given objective function. The distinctive feature of the

conventional great deluge algorithm is that when the

candidate solution S* is worse than the current solution S,

then S* replaces S depending on the current water level B.

The water level is initially set according to the quality of

the initial solution, that is, B > f(S) where f(S) denotes

the objective function value of the initial solution S . The

decay, i.e. the speed at which B decreases, is determined

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 5

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

by a linear function in the conventional great deluge

algorithm:

 B = B -  B where  B 


 (3.0)

The non-linear great deluge algorithm uses a non-linear

decay for decreasing the water level. The decay is given by

the following expression:

 B = B X  )(exp max])([min,
 (3.1)

The various parameters in Eq. (3.1) control the speed and

the shape of the water level decay rate. Parameter 

represents the minimum expected value corresponding to

the optimal solution. In this paper, we set  = 0 because

we want the water level to reach that value by the end of

the search. This is because we know that an optimal value

of zero is possible for the problem instances tackled in this

paper. If for a given minimisation problem we knew that

the minimum objective value that can be achieved is let's

say 100, then we would set  around that value. If there is

no previous knowledge on the minimum objective value

expected, then we suggest to tune  through preliminary

experimentation for the problem in hand. The role of the

parameters  , min and max (more specifically the

expression max])([min,exp ) is to control the speed of the

decay and hence the speed of the search process. A random

min and max are drawn from the uniform distribution

interval [min, max] and the min and mix are integer

numbers. By changing the value of these three parameters,

the water level goes down faster or slower. Therefore, the

lower the values of min and max, the faster the water level

goes down, and in consequence, the search quickly

achieves an improvement but it also gets stuck in local

optima very early. To escape from the local optima, the

algorithm needs to increase the water level.

In this paper, the value of the parameters in Eq. (3.1) were

determined by experimentation. We tested different

combination of parameter values (- and rnd [min, max])

and observe the effect of each combination in order to find

suitable parameters for given problem. Based on the

preliminary experiments, we now then assigned,  the

values of 5X
1010

, 5X
810

 and 5X
910

 for small, medium

and large instances respectively. As said before, the value

of  for all problem instances is  = 0. The values of

min and max in Eq. (3.1) are set according to the size of

the problem instance. For medium and large problems we

used min = 100000 and max = 300000. For small problems

we used min = 10000 and max = 20000. The parameter

values for small instance is only apply when the penalty

cost reach to 10 points. Therefore, it means that from the

first iteration the non-linear great deluge algorithm uses the

same parameters used for medium instances and changes

the parameters when it reaches the penalty cost to 10

points. The use of the non-linear decay rate is shown in

algorithm 2 below.

In addition to using a non-linear decay rate for the water

level B, we also allow B to go up when its value is about to

converge with the penalty cost of the candidate solution

S*. This occurs when range  1 in Algorithm 2 (range is

the difference between the water level and the penalty

cost). We increase the water level B by a random number

within the interval [
minB ,

maxB]. All the parameter values in

[
minB ,

maxB] were identified by experimentation. For small

problem instances the interval used was [2, 5]. For the

large problem instance the interval used was [1,3]. For

medium problem instances, we first check if the penalty of

the best solution so far)(bestSf is lower than a parameter

lowf . If this is the case, then we use [1,4] as the interval

[
minB ,

maxB]. Otherwise, we assume that the best solution

so far seems to be stuck in local optima ()(bestSf >

lowf) so we make B = B + 2. The concept of floating water

level might be similar to reheating concept in simulated

annealing, however in simulated annealing to reheat the

temperature, it uses the geometric reheating method. In our

method we increase the water level at random. In addition,

acceptance in simulated annealing uses probability while

great deluge does not employ probability. Full details of

this strategy to control the water level decay rate in the

modified great deluge are shown in Algorithm 2.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 6

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

The behaviour of the proposed Algorithm 2 can be

illustrated in Figure 3. From the outset, the water level is

equal to the current penalty cost. When the search progress

the current penalty cost is improving as shown by the blue

line. The water level decreases quickly to prevent a huge

gap between the water level and the current penalty cost.

As shown in the figure, when the water level and current

penalty cost is about the converge the algorithm then float

the water level as shown by the up and down red line.

 Fig. 3 Non-Linear Great Deluge Behaviour.

 Fig. 4 Comparison between linear (Eq. 1) and non-linear

 (Eq. 2) decay rates and illustration of the effect of

 parameters  ,  , min and max on the shape of the

 non-linear decay rate.

6. Experiments and Results

In this paper we propose two different stopping conditions

for the algorithm. Since non-linear great deluge plays the

main role in the evolutionary non-linear great deluge

algorithm, we want to investigate which are the adequate

criteria for stopping the non-linear great deluge search

before it goes to the next process which is update of the

pool of solutions (see Figure 1). It should be clear that the

non-linear great deluge search promotes intensification in

the overall evolutionary method. The use of a population

of solutions and the mutation operator promote

diversification. Then, by setting the stopping condition for

the non-linear great deluge search, we are effectively

setting (in a simple manner) the balance between

intensification and diversification in the overall

evolutionary approach. The first strategy for this balance is

to stop the non-linear great deluge after 8000 idle

iterations or 30 seconds of computational time, whichever

happens first. The second strategy is to stop the non-linear

great deluge after three seconds of computational time.

The first strategy gives more time to intensification while

the second strategy attempts to promote diversification

more by stopping intensification sooner. In general, the

whole hybrid evolutionary process can be described as

follows.

After generating the initial set of solutions, this population

then becomes the pool of individual solutions (refer to

Figure 1). After the tournament selection of a solution s,

this solution is mutated or not as explained above

according to the set probability. Then, the non-linear great

deluge search takes place over the solution s. The non-

linear great deluge search continues until the given

stopping condition, one of the two strategies explained

above, is satisfied. We implemented three variations of the

proposed evolutionary algorithm in order to examine the

performance of the algorithm when each of the two

stopping conditions is used and also when the mutation

operator is re-moved. The three algorithm variants are:

Evolutionary Non-linear Great Deluge Without Mutation

(ENLGD-M), Evolutionary Non-linear Great Deluge using

stopping condition 1 (ENLGD-1) and Evolutionary Non-

linear Great Deluge using stopping condition 2 (ENLGD-

2). Both ENLGD-1 and ENLGD-2 have the mutation

operator incorporated. The aim of examining these

algorithm variants is to assess the robustness of the

proposed evolutionary algorithm with different settings. By

robustness we mean the reliability of the algorithm to

produce high-quality of solutions under different settings.

Table 2 shows the various parameter settings for the three

algorithm variants examined here.

Table 2: Parameter Setting for the Three Variants of the Proposed

Evolutionary Non-Linear Great Deluge Algorithm.

Parameter ENLGD-M ENLGD-1 ENLGD-2

Mutation no mutation applied 0.5 0.5

Stopping condition idle 8000 iterations Idle 8000 iterations every 3 seconds

 or 30 seconds or 30 seconds of computation time

Replacement Steady state Steady state Steady state

Stopping time for small (2600 seconds) small (2600 seconds) small (2600 seconds)

whole search Medium (7200 seconds) medium(7200 seconds) medium (7200 seconds)

Process large (10000 seconds) large (10000 seconds) large (10000 seconds)

We now evaluate the performance of the proposed

evolutionary algorithm (in this experiments, we used the

benchmark instances by Socha et, al. [26]). For each

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 7

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

problem size, a fixed computation time (timemax) in seconds

was used as the stopping condition: 1000 for small

problems, 7200 for medium problems and 10000 for the

large problem. This fixed computation time is for the

whole process including the construction of the initial

population. We executed the proposed evolutionary

algorithm 20 times for each problem instance.

Table 3 shows the experimental results for the three

algorithm variants described above, i.e. ENLGD-M,

ENLGD-1 and ENLGD-2. The Table shows the best and

the average results obtained for each method. For each

dataset, the best results are indicated in bold. As shown in

Table 3, the evolutionary non-great deluge algorithms

(ENLGD-1 and ENLGD-2) clearly outperform NLGD.

The results also show that both ENLGD-2 and ENGLD-1

produce better results when compared to ENLGD-M. This

means that the tailored mutation operator makes a

significant impact to the good performance of ENLGD.

Besides that, the results also show that ENLGD-2

outperforms ENLGD-1 and ENLGD-M. This means that

balancing the intensification and diversification helps the

ENLGD approach to better explore the search space rather

than run the intensification for longer which makes the

local search to converge earlier (as in the ENLGD-1 case).

The intensification phase is mainly carried out by NLGD.

Table 3: Comparison of NLGD, ENLGD-M, ENLGD-1 and ENLGD-2

on the Socha et al. UCTTP Instances.

IN NLGD ENLGD-M ENLGD-1 ENLGD-2
 Best Avg Best Avg Best Avg Best Avg

S1 3 3.6 0 1.55 0 0.95 0 0.7
S2 4 4.85 0 2.2 0 1.45 0 0.3
S3 6 6.85 1 2.7 0 1.3 0 1.05
S4 6 6.85 0 1.7 0 1.35 0 1.25
S5 0 1.75 0 0 0 0 0 0
M1 140 160.75 144 176.65 125 140 59 84.8
M2 130 156 140 162 123 149.1 51 93.8
M3 189 212.1 182 204.8 178 199.3 75 121.05
M4 112 138.3 135 164.6 116 130.2 48 72.8
M5 141 192.6 123 173.15 129 168.6 65 110.2
L 876 974.3 970 1026 821 946.1 703 819.2

Further investigation was also carried out to inspect the

overall performance of ENLGD algorithm. Figures 5, 6

and 7 the performance of the various versions of the

algorithm together with NLGD. The x-axis corresponds to

the instance type while the y-axis corresponds to the

penalty cost. Figure 5 shows the strong performance of

ENLGD-2 on medium and large instances, while also

obtaining optimal solutions with the same quality as the

other algorithms for small instances. In addition, Figure 6

and Figure 7 show details of the results achieved by the

proposed algorithms. Both figures show that according to

the average results, ENLGD-2 outperformed the other

algorithms.

Overall, this experimental evidence shows that by

combining some key evolutionary components with single-

solution NLGD approach, we have been able to produce a

hybrid evolutionary approach that is still quite simple but

much more effective than the single-solution stochastic

local search in generating best known solutions for a well-

known set of difficult university course timetabling

instances. It is also evident that the mutation operator

makes a significant contribution to the good performance

of ENLGD as the results obtained without this operator

(ENLGD-M) are considerably worse in medium and large

instances. The proposed algorithm seems particularly

effective on small and medium problem instances.

Fig. 5 Best Results Obtained by the Proposed Algorithm

Fig. 6 Average Results Obtained by the Proposed Algorithm Variants on

Small Instances.

Fig. 7 Average Results Obtained by the Proposed Algorithm Variants on

medium and large Instances.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 8

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Table 4: Comparison of results obtained by the Evolutionary Non-Linear

Great Deluge (ENLGD) proposed in this chapter against the best known

results from the literature for the 11 Socha et al. UCTTP instances.

ENLGD-2 is Evolutionary Non-Linear Great Deluge with stopping strategy 2.
NLGD is Non-Linear Great Deluge [18].
RRLS is the Local Search and Ant System in [27]
MMAS is the MAX-MIN Ant System in [26]
GALS is Genetic algorithm and local search by Abdullah and Turabieh [4].
RIICN is Randomised iterative improvement algorithm by Abdullah et al. [1].
GBHH is Graph-based Hyper-heuristic by Burke et al. [9].
CFHH is the Choice Function Hyper-heuristic in [8]
VSN-T is Variable neighbourhood search with tabu by Abdullah et al. [3].
HEA is Hybrid evolutionary approach by Abdullah et al. [2].
FMHO is fuzzy multiple heuristic ordering [6]
EGD is Extended Great Deluge [19]
S1-S5 represent small problem instances 1 to 5
M1-M5 represent medium problem instances 1 to 5

Table 4 compares the results obtained by the approach

proposed with the state of the art approaches in the

literature that have been used to solve the course

timetabling problem. The term x%Inf in Table 4 illustrates

a percentage of runs that were unable to achieve feasibility.

The figures in bold indicate the best results. Results in the

Table indicate that some of the algorithms were unable to

produce feasible solutions. However, in contrast, our

approach was able to achieve feasible solutions. It can be

seen that the proposed hybrid evolutionary approach

(ENLGD-2) matches the best known solution quality for

all small problem instances. For medium instances,

ENLGD-2 was able to achieve better quality solutions

when compared against all other methods listed in Table 3.

More interestingly ENLGD-2 is able to produce high

quality solutions and outperformed the best known results

obtained by other algorithms as reported in the literature.

Only on the case of the large problem instance, we see that

our algorithm does not match the best known result

reported by Abdullah at al. [2]. However, our result is still

comparable to other results reported in the literature.

Overall, this experimental evidence shows that by

combining some key evolutionary components and an

effective stochastic local search procedure, we have been

able to produce a hybrid evolutionary approach that is still

quite simple but more effective than the single-solution

stochastic local search in generating best know solutions

for well-known set of difficult course timetabling problem

instances. The proposed algorithm seems particular

effective on small and medium problem instances.

6.1 Statistical Analysis

To compare the performance of the different methods

proposed, we run some statistical analysis. Even though

conclusions can usually be made based on the best and

average results obtained by each algorithm, those

conclusions and analysis might be premature. Therefore,

ANOVA was used to determine whether there is a

significant difference in performance among ENLGD-2,

ENLGD-1, ENLGD-M and NLGD. Before we proceed to

the analysis, it is essential to verify the compatibility of the

models with the sample data. There are important

hypotheses that need to be verified: normality,

independency and homogeneity of the sample data. After

running the descriptive analysis, we found that our sample

data fulfils the hypothesis requirements. For that reason

variance analysis (ANOVA) is considered suitable for the

sample data hypothesis ensuring the validity of the

experiment. ANOVA is one of the existing statistical

models used to test significant differences between means

and this tool is very useful to make comparison when

dealing with three or more means.

The analysis showed that there are statistically significant

differences among the proposed algorithms with the p-

value very close to zero as shown in Figure 8.

The p-value stands for probability ranging from zero to

one. Therefore, the p-value is used to measure the

difference in population means and used as an evidence to

reject or accept the null hypothesis. In our case the null

hypothesis H0 is that there are no significant differences in

performance between the algorithms. Therefore, if we

reject H0 then we accept that there are significant

differences in performance

among the algorithms. Tables 7, 8 and 9 clearly show that

there are significant differences between the algorithms as

described below:

 For small instances, the p-value are less than the

confidence level at 0.05 for every pair of

algorithms (ENLGD-2, ENLGD-1), (ENLGD-2,

ENLGD-M), (ENLGD-2, NLGD), (ENLGD-1,

ENLGD-M) and (ENLGD-M, NLGD).

 For medium instances there are significant

differences in performance between (ENLGD-2,

ENLGD-1), (ENLGD-2, ENLGD-M), (ENLGD-

2, NLGD), (ENLGD-1, ENLGD-M) where the p-

value are less than the confidence level at 0.05.

 However, there is no significant difference in

performance between NLGD and ENLGD-M,

where the Post-Hoc analysis shows that the p-

value is 0.659 (greater than 0.05).

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 9

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

 Finally for the large instance, there are significant

differences in performance between (ENLGD-2,

ENLGD-1), (ENLGD-2, ENLGD-M) (ENLGD-2,

NLGD) and (ENLGD-1, ENLGD-M) where the

p-value for the respective pairs are less than 0.05

significance level. Interestingly, the Post-Hoc test

shows that there is no significant difference in

performance between (ENLGD-1, NLGD) and

(NLGD-M, NLGD) where the p-value are 0.697

and 0.063 respectively, where both p-value is

greater than significant level at 0.05.

The Post-Hoc analysis clearly showed that all four

algorithms perform differently. However, at this stage we

still do now know which algorithm is actually

outperforming the others across the eleven instances. Thus,

to evaluate this, we plot the mean of each algorithm with

Least Significant Difference (LSD) intervals at 95%

confidence level for the different algorithms as shown in

Figures 8.

Figure 9, Figure 10 and Figure 11 present the means plot

of each algorithm, for the specific instances. Figure 8

shows that there are three homogenous groups for small

instances (ENGLD-1, ENLGD-2), (ENLGD-M) and

(NLGD). The best algorithm is ENGLD-2 followed by

ENLGD-1 and ENLGD-M, the worst algorithm is NLGD.

In medium instances we also found three homogenous

groups as shown in Figure 9 and they are (ENGLD-1),

(ENLGD-2) and (ENLGD-M, NLGD). The algorithm that

performs well in medium instances is ENGLD-2 followed

by ENLGD-1 and two algorithms which perform slightly

worst are ENLGD-M and NLGD. Finally, for the large

instance, we found that there are three homogenous group

(ENGLD-1, NLGD), (ENLGD-2) and ENLGD-M. In the

large instance case, we found that ENLGD-2 outperforms

the other algorithms and ENLGD-M is the worst. In

conclusion, considering the overall performance, ENLGD-

2 is the best algorithm followed by ENLG-1, NLGD and

the worst algorithm is ENLGD-M (mutation operator

removed). to 10. LSD is used to measure the significant

differences between group means in ANOVA. From the

mean plot, we see that ENLGD-2 outperforms the other

algorithms followed by ENLGD-1, NLGD and the worst

algorithm is ENLGD-M.

The statistical analysis presented in the paper suggest that

each algorithm performs differently across all 11 Socha et

al. Instances[26]. This analysis also shows that ENLGD-2

outperforms the three other algorithms across all instances.

It is also evident that the mutation operator makes a

significant contribution to the good performance of

ENLGD-2 as the results obtained by ENLGD-M are

considerably worse. Moreover, the strategy applied in

ENLGD-2 to balance intensification and diversification

proves to be a good strategy as it managed to further

improve the solution quality compared to ENLGD-1. As a

conclusion, the proposed evolutionary non-linear great

deluge approach matches the best known solution quality

for almost all small problem instances and improves the

best known results for most all medium instances. For

large instances, the evolutionary non-linear great deluge

algorithm did not match the best known results published

in the literature. However, the results are still competitive

when compared to the results obtained by other algorithms

reported in the literature.

Table 5: Average Penalty Cost of ENLGD-2 and ENLGD-1 Across the

11 Socha et al. Instances.

 ENLGD-2 ENLGD-1

Run Small Medium Large Small Medium Large

1 0.8 95.6 703 0.20 159 821

2 0.4 85.8 927 1.4 165.4 940

3 0.4 95.4 835 1 167.8 963

4 0.4 93.6 968 1.2 163.6 879

5 0.4 108.6 895 1 165.2 954

6 0.4 99.8 730 1.2 162 952

7 0.2 81.2 782 8.8 146.4 938

8 0.4 91.6 711 1.2 148.2 976

9 0.8 110.4 777 1 147.4 1018

10 1 96.4 838 0.6 144.4 1020

11 0.4 96.6 808 1 171.6 968

12 1 98.4 944 1.6 178 904

13 0.8 91.2 870 1.2 158.8 958

14 1.2 96.4 807 0.4 159.2 876

15 0.4 83.6 849 1.8 165 876

16 1.2 90.6 713 1.6 156 970

17 0.4 117.8 852 1.2 169.6 918

18 0.6 102.2 795 0.6 172.8 1003

19 1.6 106 779 0.6 148.2 1031

20 0.8 89.4 801 0.6 175.2 1072

Table 6: Average Penalty Cost of ENLGD-M and NLGD Across the 11

Socha et al. Instances.

 ENLGD-M NLGD

Run Small Medium Large Small Medium Large

1 2 186.2 1023 3.8 142.4 966

2 2 176.6 1070 4.8 165 1070

3 1.4 191.6 998 6 165.6 876

4 2 177.6 1142 5.2 162.2 935

5 1.4 205.8 1114 5 165.2 971

6 1 189.8 984 4.6 166.8 942

7 1 184 923 5 165.4 895

8 1.8 179.6 970 5.2 156.8 976

9 2 166.4 1082 5.4 160.4 986

10 1.4 185 1023 5.4 172.8 1005

11 1.8 192.2 1023 3.8 185 966

12 2 159.2 1070 4 171.6 1070

13 2 178.8 998 4.2 177 935

14 2.2 156.4 1142 4.2 181 1024

15 1.6 167.6 984 4 172.4 942

16 2 166.6 923 5 188.4 958

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 10

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

17 1.6 168.6 970 4.2 179.6 978

18 0.8 168.8 1082 5.4 182.6 1005

19 1.4 156.6 1023 5.4 196 1078

20 1.2 166.8 982 5 183.8 907

Fig 8: ANOVA Results.

 Table 7: Post Hoc Tests - Small Instances

 ENLGD-2 ENLGD-1 ENLGD-M NLGD

ENLGD-2 - 0.041 0.000 0.000

ENLGD-1 0..041 - 0.000 0.000

ENLGD-M 0.000 0.000 - 0.000

NLGD 0.000 0.000 0.000 -

 Table 8: Post Hoc Tests - Small Instances

 ENLGD-2 ENLGD-1 ENLGD-M NLGD

ENLGD-2 - 0.000 0.000 0.000

ENLGD-1 0..000 - 0.001 0.019

ENLGD-M 0.000 0.000 - 0.649

NLGD 0.000 0.019 0.649 -

Table 9: Post Hoc Tests - large Instances

 ENLGD-2 ENLGD-1 ENLGD-M NLGD

ENLGD-2 - 0.000 0.000 0.000

ENLGD-1 0..000 - 0.003 0.697

ENLGD-M 0.000 0.003 - 0.063

NLGD 0.000 0.697 0.063 -

7. Conclusions

The overall endeavour of this paper was to extend our

previous approach, a non-linear great deluge algorithm,

towards an evolutionary variant by incorporating some key

operators like a population of solutions, tournament

selection, a mutation operator and a steady-state

replacement strategy. The performances of the various

versions of evolutionary non-linear great deluge were

compared along with the single-solution NLGD algorithm.

Preliminary comparisons illustrate that ENLGD-2

outperforms the results produced by other versions of

ENLGD and NLGD algorithms. The results from our

experiments also provide evidence that our hybrid

evolutionary algorithm is capable of producing best known

solutions for a number of the test instances used here.

Obtaining the best timetables (with penalty equal to zero)

for the medium and large instances is still a challenge.

However, when compared to the results obtained by

ENLGD-2 to the best know results reported in the

literature, obviously, ENLGD-2 outperform all the results

of medium instances and produced comparable ones for

large instance.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 11

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

References
[1] S. Abdullah, E. K. Burke and B. McCollum, “A Hybrid

 Evolutionary Approach to the University Course

 Timetabling problem”. in proceedings of CEC: The IEEE

 Congress on Evolutionary Computation, 2007, pp. 1764-

 1768.

[2] S. Abdullah, E.K. Burke and B. McCollum, “Using a

 Randomised Iterative Improvement Algorithm with

 Composite Neighbourhood Structures for University

 Course Timetabling”, Metaheuristics-Progress in

 Complex Systems Optimization, 2007, pp. 153-172.

 [3] S. Abdullah, E. K. Burke and B. McCollum, “ An

 Investigation of Variable Neighbourhood Search

 for University Course Timetabling”, in The 2nd

 Multidisciplinary Conference on Scheduling:

 Theory and Applications, NY, USA, 2005,

 pp. 413-427.

 [4] S. Abdullah, H. Turabieh, “ Generating University

 Course Timetable Using Genetic Algorithms and Local

 Search”, in The Third International Conference on

 Convergence and Hybrid Information Technology

 (ICCIT), 2008, pp. 254-260.

[5] D.H. Ackley, A Connectionist Machine for Genetic

 Hill Climbing, Kluwer Academic Press, Boston,

 1987.

[6] H. Asmuni, E.K. Burke and J. Garibaldi, “Fuzzy

 Multiple Heuristic Ordering for Course Timetabling”,

 in Proceedings of the 5th United Kingdom, Workshop

 on Computational Intelligence (UKCI), 2005, pp. 302-309.

[7] T. Back, F. Hoofmeister and H. Schwefel, “A survey

 of Evolution Strategies”, in Proceedings of the Fourth

 International Conference on Genetic Algorithms, 1991,

 pp. 2-9.

[8] E. Burke, G. Kendall and E. Soubeiga, “A Tabu Search

 Hyperheuristic for Timetabling and Rostering”, Journal

 of Heuristics, 2003, vol. 9, pp. 451-470.

 [9] E. Burke, B. McCollum, A. Meisels, S. Petrovic and

 Q. Rong, “A Graph based Hyper-heuristic for Educational

 Timetabling Problems”, European Journal of Operational

 Research, 2007, vol. 176, pp. 177-192.

[10] E. Burke, J. Newall and R. Weare, “A Memetic

 Algorithm for University Exam Timetabling” , in

 Burke, E. Ross. P.(eds), The Practice Theory of

 Automated Timetabling: Selected Papers PATAT95,

 Napier University, Lecture Notes in Computer Science,

 Springer, New York, 1996, vol. 1153, pp. 241-25.

[11] E. K. Burke and J. P. Newall, “A Multi-Stage Evolutionary

 Algorithm for the Timetable Problem”, IEEE Transactions

 On Evolutionary Computation, 1999, vol. 13(1), pp. 63-74.

[12] T. Cooper and H. Kingston, “The Complexity of

 Timetable Construction Problems”, in Selected paper

 from the 1st International Conference on the Practice and

 Theory of Automated Timetabling (PATAT'95), LNCS,

 Springer, 1996, vol. 1153, pp. 283-295.

 [13] G. Dueck, “New Optimization Heuristic: The Great

 Deluge Algorithm and the Record-to-Record Travel”,

 Journal of Computational Physics, 1993, vol. 104,

 pp. 86-92.

[14] A. Eiben and J. E Smith, Introduction to Evolutionary

 Computing, Natural Computing Series. Springer first

 edition, 2003.

[15] M. Gorges-Schleuter, “ASPARAGOS: An

 Asynchronous Parallel Genetic Optimization Strategy”, in

 proceedings of the Third International Conference on

 Genetic Algorithms, Morgan Kaufmann (San

 Mateo), 1989, pp. 422-427.

[16] G. Gutin and D. Karapetyan, “ A Memetic Algorithm for

 the Generalized Travelling Salesman Problem”, Natural

 Computing, 2010, vol. 9(1), pp. 47-60.

[17] D. Haibin and X. Yu, “Hybrid ant Colony Optimization

 Using Memetic Algorithm for Travelling Salesman

 Problem”, in proceedings of the IEEE Symposium on

 Approximate Dynamic Programming and Reinforcement

 Learning (ADPRL), 2007, pp. 92-95.

[18] D. Landa-Silva and J. Henry Obit, “Great Deluge with

 Nonlinear Decay Rate for Solving Course Timetabling

 Problems”, in proceedings of the IEEE Conference on

 Intelligent Systems, IEEE Press, 2008, pp. 8.11-8.18.

[19] P. McMullan, “An Extended Implementation of the Great

 Deluge Algorithm for Course Timetabling”, Springer-

 Verlag Berlin Heidelberg, Part I, LNCS, 2007, vol. 4487,

 pp. 538-545.

[20] P. Moscato and M.G. Norman, “A Memetic Approach for

 the Traveling Salesman Problem Implementation of a

 Computational Ecology for Combinatorial Optimization

 on Message-Passing Systems”, in proceedings of the

 International Conference on Parallel Computing and

 Transporter Applications, 1992, vol. 28, pp. 177-186.

[21] E. Ozcan and A. Alkan, “A Memetic Algorithm for

 Solving a Timetabling Problem: An Incremental

 Strategy”, in P. Baptiste, G. Kendall, A. Munier-Kordon,

 and F. Sourd, editors, in proceedings of the 3rd

 Multidisciplinary International Conference on Scheduling:

 Theory and Applications (MISTA): Paris, France, 2007,

 pp. 394-401.

[22] B. Paechter , A.P. Cumming, M. Norman and H. Luchian,

 “ Extensions to a Memetic Timetabling System”, The

 Practice and Theory of Automated Timetabling I:

 Selected Papers from 1st International Conference on

 the Practice and Theory of Automated Timetabling

 (PATAT I), Springer-Verlag: Edinburgh, UK, 1996,

 vol. 1153, pp. 251-265.

[23] N. J. Radclife and P. D. Surry, “Formal Memetic

 Algorithms”, in Evolutionary Computing: AISB Workshop

 Workshop, Ed: T.C. Fogarty, Springer-Verlag LNCS,

 1994, vol. 865, pp. 1-16.

[24] O. Rossi-Doria, M. Sampels, M. Birattari, M. Chiarandini,

 M. Dorigo, L.C. Gambardella, J. Knowles, M. Manfrin.

 M. Mastrolilli, B. Paechter, B. Paquete and T. Stutzle, “A

 Comparison of the Performance of Different

 Metaheuristics on the Timetabling Problems”, selected

 papers from the 4th International Conference on the

 Practice and Theory of Automated Timetabling

 (PATAT), 2003, vol. 2740, pp. 330-352.

[25] K. Sastry, D. Goldberg and G.Kendall, “Genetic

 Algorithms”, in E. Burke and G. Kendall, editors, Search

 Methodology, Springer, 2005, pp. 97-125.

 [26] K. Socha, K.. Knowles and J. Samples, M, “A Max-Min

 Ant System for the University Course Timetabling

 Problems. in Ant Algorithms", in proceedings of The 3rd

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 12

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

 International Workshop (ANTS), 2002, vol.2463,

 pp. 1-13.

 [27] K. Socha, M. Sampels and M. Manfrin, “Ant Algorithms

 for the University Course Timetabling Problems with

 Regard to the State-of-the-Art”, in Applications of

 Evolutionary Computing, proceedings of the

 EvoWorkshops, Springer, LNCS, 2003, vol. 2611, pp.

 334-345.

First Author Dr. Joe Henry Obit is a Senior Lecturer in the School
of Informatics Science in E-Commerce Department at the
Universiti Malaysia Sabah, Labuan International Campus. His
main research interest lies at the interface of Operational
Research and Computer Science. In particular, the exploration
and development of innovative Operational Research, Artificial
Intelligence, and Distributed Artificial Intelligence models and
methodologies for automatically producing high quality solutions to
a wide range of real world combinatorial optimisation and
scheduling problems. Dr. Joe Obtained his Bachelor Degree in
Finance at Universiti Kebangsaan Malaysia in 1999, an MSc
Information Technology from Universiti Putra Malaysia in 2001and
a PhD in Computer Science from the School of Computer Science
at the University of Nottingham. His PhD thesis is Developing a
Novel Meta-heuristic, Hyper-heuristic and Cooperative Search,
and it was under the supervision of Associate Professor Dr. Dario
Landa-Silva.

Second Author Dr. Djamila Ouelhadj is a Senior Lecturer in
Operational Research Department of Mathematics at the
University of Portsmouth. Her main research interest lies at the
interface of Operational Research and Computer Science. In
particular, the exploration and development of innovative
Operational Research, Artificial Intelligence, and Distributed
Artificial Intelligence models and methodologies for automatically
producing high quality solutions to a wide range of real world
combinatorial optimisation and scheduling problems. Dr. Djamila
Ouelhadj obtained her PhD in Computer Science from the School
of Computer Science at the University of Nottingham in 2002.

Third Author Dr. Dario Landa-Silva is an Associate Professor in
Computer Science for the School of Computer Science at the
University of Nottingham. He is a member of the Automated
Scheduling, Optimisation and Planning (ASAP) research group.
He is also a member of the Institute for Operations Research and
Management Sciences (INFORMS), the Operational Research
Society (ORS) and a member of the editorial board for the Neural
Computing and Application Journal. Dario Landa-Silva obtained a
Technical Professional Qualification in Electro-mechanics from the
CBTis 13 (Mexico) in 1987, a BEng in Industrial Electronic
Engineering from Instituto Tecnologico de Veracruz (Mexico) in
1991, an MSc in Engineering-Computer Science from DEPI in the
Instituto Tecnologico de Chihuahua in 1997 and a PhD in
Computer Science from the School of Computer Science at the
University of Nottingham in 2003.

Fourth Author Dr. Rayner Alfred is a Senior Lecturer in Software
Engineering Department for the School of Engineering and
Information Technology at Universiti Malaysia Sabah. His main
research interest lies at the Machine Learning in Knowledge
Discovery. Dr. Rayner Alfred obtained his BSc in Computer
Science at Polytechnic University of Brooklyn, New York, United
States of America in 1994, an MSc in Computer Science from
Western Michigan University, Michigan, United States of America
in 1997 and a PhD in Computer Science from the School of
Computer Science at the University of York, UK in 2008.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 13

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

http://www.nottingham.ac.uk/cs
http://www.nottingham.ac.uk/cs
http://www.nottingham.ac.uk/
http://www.nottingham.ac.uk/cs
http://www.nottingham.ac.uk/
http://asap.cs.nott.ac.uk/
http://asap.cs.nott.ac.uk/
http://www.informs.org/
http://www.informs.org/
http://www.theorsociety.com/
http://www.theorsociety.com/
http://www.itver.edu.mx/
http://depi.itchihuahua.edu.mx/
http://www.itch.edu.mx/
http://www.nottingham.ac.uk/cs
http://www.nottingham.ac.uk/
http://www.nottingham.ac.uk/cs
http://www.nottingham.ac.uk/cs
http://www.nottingham.ac.uk/

