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Abstract 
The aim of this paper is to extend our non-linear great deluge 

algorithm into an evolutionary approach by incorporating a 

population and a mutation operator to solve the university course 

timetabling problems. This approach might be seen as a variation 

of memetic algorithms. The popularity of evolutionary 

computation approaches has increased and become an important 

technique in solving complex combinatorial optimisation 

problems. The proposed approach is an extension of a non-linear 

great deluge algorithm in which evolutionary operators are 

incorporated. First, we generate a population of feasible solutions 

using a tailored process that incorporates heuristics for graph 

colouring and assignment problems. The initialisation process is 

capable of producing feasible solutions even for large and most 

constrained problem instances. Then, the population of feasible 

timetables is subject to a steady-state evolutionary process that 

combines mutation and stochastic local search. We conducted 

experiments to evaluate the performance of the proposed 

algorithm and in particular, the contribution of the evolutionary 

operators. The results showed the effectiveness of the 

hybridisation between non-linear great deluge and evolutionary 

operators in solving university course timetabling problems. 

 

Keywords: Evolutionary Algorithm, Non-linear Great 

Deluge and Course Timetabling. 

 

1. Introduction 
  

The central aim of this paper is to hybridise the non-linear 

great deluge algorithm presented in our previous paper 

[18] with the evolutionary approach by incorporating a 

population and a mutation operator to solve the university 

course timetabling problem. This technique might be seen 

as a variation of memetic algorithms in particular as 

presented in [1, 12, 21, 22]. The popularity of evolutionary 

computation approaches has increased and become an 

important technique in solving complex combinatorial 

problems. They are powerful techniques and have been 

applied to many complex problems e.g. the travelling 

salesman problem [20,17,16], university exam timetabling 

[10], and university course timetabling problems [11, 22, 

21]. 

 

Finding good quality solutions for timetabling problems is 

a very challenging task due to the combinatorial and highly 

constrained nature of these problems [13]. In recent years, 

several researchers have tackled the course timetabling 

problem, particularly the set of 11 instances of course 

timetabling problem proposed by Socha et al. [26]. Among 

the algorithms proposed there are: MAX-MIN ant system 

[26]; tabu search hyper-heuristic strategy [8]; evolutionary 

algorithm, ant colony optimisation, iterated local search, 

simulated annealing and tabu search [24]; fuzzy multiple 

heuristic ordering [6]; variable neighbourhood search [3]; 

iterative improvement with composite neighbourhoods [2]; 

a graph-based hyper-heuristic [9] and a hybrid 

evolutionary algorithm [1]. 

 

There are many versions of evolutionary algorithms that have 

been discussed in the literature, however, there is a common 

underlying idea that underpins the basic structure of these 

algorithms [14], such as, and most of the evolutionary 

algorithms are population-based meta-heuristics. These 

algorithms maintain a population of solutions and conduct the 

search process by simulating natural selection based on 

Darwin's theory of survival of the fittest.  This means that 

only strong individual solutions will survive and participate in 

the selection for reproduction before being subject to the 

process of recombination and mutation.  Sastry et al. [25] 
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explained various types of recombination and mutation 

operators.  Recombination is an operator which combines two 

or more individuals from the mating pool in order to create 

one or more new candidate solutions, whereas mutation is 

usually designed to add more diverse solutions to increase the 

chances of exploring large areas of the search space [25]. 

Mutation is only applied to one candidate solution and 

produces one new solution. Even though crossover is one of 

the main components in genetic algorithms and other 

evolutionary algorithms, Moscato and Norman [20] and 

Radcliff and Surry [23] have argued whether crossover 

should be the main operator in Genetic Algorithms. It is 

not an unusual practice that some papers present different 

implementations of Evolutionary Algorithms in which 

local search are used as a replacement for crossover. For 

example, Ackley [5] proposed a genetic hill-climbing 

approach in which the crossover operator only plays a 

small role in the algorithm. In addition, according to Bäeck 

et al. [7] the Evolutionary strategies community has 

emphasised on mutation rather than crossover. 

  

This paper proposes a two-stage hybrid meta-heuristic 

approach to tackle course timetabling problems. The first 

stage constructs feasible timetables while the second stage is 

an improvement process that also operates within the feasible 

region of the search space. The second stage is a combination 

of non-linear great deluge [18] with evolutionary operators to 

improve the quality of timetables. 

 

The rest of this paper is organised as follow, in Section 2, 

the subject problem and test instances are described. 

Section 3 gives the description of the evolutionary non-

linear great deluge approach proposed for solving the 

university course timetabling problems. Computational 

experiments and results are presented in Section 4 and the 

paper ends with a conclusion in Section 5. 

 

2. University Course Timetabling 
    

In general, university course timetabling is the process of 

allocating, subject to predefined constraints, a set of 

limited timeslots and rooms to courses, in such a way as to 

achieve as close as possible a set of desirable objectives. In 

timetabling problems, constraints are commonly divided 

into hard and soft constraints. A timetable is said to be 

feasible if no hard constraints are violated while soft 

constraint may be violated but we try to minimise such 

violation in order to increase the quality of the timetable. 

In this work, we tackle the course timetabling problem 

defined by Socha et al. [26] where there are: n events E = { 

e1, e2, ..., en }, k timeslots T =  { t1, t2, ..., tk }  and m rooms R = 

{ r1, r2, ... , rm } and a set S of students. Each room has a 

limited capacity and a set F of features that might be 

required by the events. Each student must attend a number 

of events within E. The problem is to assign the n events to 

the k timeslots and m rooms in such a way that all hard 

constraints are satisfied and the violation of soft constraints 

is minimised. 
 
Hard Constraints.  There are four in this problem:  

 H1: a student cannot attend two events  
       simultaneously.  

 H2: only one event can be assigned per timeslot  
       in each room. 

 H3: the room capacity must not be exceeded at  
       any time. 

 H4: the room assigned to an event must have  
       the features required by the event. 

 
Soft Constraints. There are three: 

 S1: students should not have exactly one event  
      timetabled on a day. 

 S2: students should not have to attend more  
      than two consecutive events on a day. 

 S3: students should not have to attend an event  
      in the last timeslot of the day. 

 

The benchmark data sets proposed by Socha et al. [26] are 

split according to their size into 5 small, 5 medium and 1 

large, as shown below :  

 

Category  Small Medium Large 

Number of events n 100 400 400 

Number of rooms m 5 10 10 

Number of room features 

|F| 

5 5 10 

Number of students |S| 80 200 400 

Number of events per 

student  

20 20 20 

Maximum students per 

event 

20 50 100 

Approximation features 

per room 

3 3 5 

Percent feature use 70 80 90 

 
Table 1 Parameter values for the course timetabling problem categories 

in the set by Socha, Knowles and Samples [26]. The last four rows 

give some indication about the structure of the instances. 

 

For all instances, k = 45 (9 hours in each of 5 days). It 

should be noted that although a timetable with zero penalty 

exists for each of these problem instances (the data sets 

were generated starting from such a timetable [26]), so far 
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no heuristic method has found the ideal timetable for the 

medium and large instances. Hence, these data sets are still 

very challenging for most heuristic search algorithms. 

 

2.1  Problem Formulation 
 

The objective in this problem is to find a feasible solution 

that minimises the violation of soft constraints. The 

problem data sets described above ( Socha et al. instances) 

can be formalised as follows.  Let X is the set of all 

possible solutions, where each event has been assigned a 

pair timeslot-room. Let A = {h1, h2, h3, h4} be the set of 

all hard constraints.  Let B = {s1, s2, s3} be the set of all 

soft constraints for which violation should be minimised. 

Let XX 
~

be the set of all feasible solutions that satisfy 

the hard constraints in A. The cost function f(x) for both 

problem data sets can be represented by this formulation. 

Each solution  x  X
~  is associated with a cost function 

measuring the total violation of soft constraints in B.  The 

main objective of this problem is to search for an optimal 

solution *x  X
~ , in this case an optimal solution is, if f(x*) 

  f(x), x  X .  The cost function f(x) measures the 

quality of the feasible solution x  X  by measuring the 

violation of the total soft constraints given by:  
 

f(x) = 



Ss

sxfsxfsxf )),(),(),(( 321
 

 ),(1 sxf  : number of times a student s in  

timetable x is assigned to the last timeslot of the 

day. 

 ),(2 sxf : number of times a student s in       

        timetable x is assigned more than two     

       consecutive classes. Every extra consecutive  

       class will add 1 penalty point, for example      

      ),(2 sxf  = 1 if a student s has three consecutive  

       classes and ),(2 sxf : = 2 if the student s has  

       four consecutive classes, and so on. 

 ),(3 sxf : number of times a student s in timetable 

x is assigned a single class on a day. ),(3 sxf  = 1 

if student s has only 1 class in a day and if 

student s has two days with only one class  

),(3 sxf   = 2. 

 

3. Evolutionary Non-Linear Great Deluge      

    Approach 

 
As discussed in the introduction, crossover operator can be 

replaced by local search. For example Ackley [5] used hill-

climbing as an operator instead of crossover after arguing that 

crossover was not effective and played less dominant role. 

Gorges-Schleuter [15] used local search as an operator in 

evolutionary algorithms, and showed that it definitely 

improves the quality of the solutions. 

 

In this work, we propose to extend the single solution non-

linear great deluge approach to a population-based 

evolutionary approach by incorporating tournament 

selection, a mutation operator and a replacement strategy. 

The motivation behind the introduction of evolutionary 

operators into our great deluge algorithm comes from the 

interest for striking a good balance between diversification 

and intensification, which are the main strategic forces in 

meta-heuristic approaches. Therefore, a good search 

technique must balance these two forces in order to 

achieve robustness and effectiveness in the search as well 

as to help the search activity to find optimal or near 

optimal solutions. Diversification is the ability to reach not 

yet visited regions in the search space and it can be 

achieved by disturbing some of the solutions using special 

operators (in our case, we use mutation) when necessary. 

Intensification is about exploiting the current search space 

regions by using local search (non-linear great deluge in 

our case) to obtain better quality of solutions. 
 
Figure 2 shows the components of the proposed evolutionary 

non-great deluge algorithm. It begins by generating an initial 

population of solutions of size P which becomes the pool of 

solutions. Then, a number of generations take place and in 

each of them the algorithm works as follows.  First, 

tournament selection is used to choose 5 individuals at 

random from the pool of solutions and the one with the best 

fitness is selected (xt).  With probability less or equal to 0.5, a 

mutation operator is applied to xt while maintaining feasibility 

and obtaining solution xm.  The probability value was 

determined by experimentation (If we apply the mutation too 

high or too low, no much improvement can be found). Next, 

the non-linear great deluge algorithm is applied to xm to 

obtain an improved solution xi. Then, the worst solution in the 

pool of solutions, xw (ties broken at random) is identified and 

if xi is better than xw 
 then xi replaces xw in the pool of 

solutions. This evolutionary non-liner great deluge algorithm 

is then executed for a pre-determined computation time 

according to the size of the problem instance. Note that this is 

a steady-state evolutionary approach that uses non-linear great 

deluge for intensification and a mutation operator for 

diversification. The following subsections describe each of 

the algorithm components is more detail. 
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Figure 1:The Evolutionary Non-linear Great Deluge Algorithm. 

 

3.1 Solution Representation 

 
 
Each solution in the population uses a direct 

representation, consisting of a chromosome with 

information on what events or courses are assigned into a 

pair of timeslot-room.  In addition, the chromosome is also 

used to keep information on forbidden assignments for a 

particular timeslot and room. Figure 2 illustrates the direct 

encoding of an individual solution used in the population. 

ei is an event number i, i ϵ {1,...,n}  where n is the number of 

events that need to be scheduled in the available timeslot t, 

t ϵ {1, k } where k is the number of available timeslots. For 

example event e4 is assigned to timeslot 1 in room 1. 

 
Figure 2: Solution Representation (direct encoding) of a Timetable where 

events are assigned to pairs  timeslot-room. 

 

3.2 Initialisation of the Population 

 
The initial population of solutions is generated using the 

heuristic described in Algorithm 1. Two well-known graph 

colouring heuristics are incorporated, Largest Degree (LD) 

and Saturation Degree (SD). First, the events in the pool of 

unscheduled events are sorted based on LD. After that, we 

choose the event with the highest LD and calculate its SD. 

In the first while loop, the initialisation heuristic attempts 

to place all events into timeslots while avoiding conflicts. 

In order to do that, the heuristic uses the SD criterion and a 

list of rescheduled events to temporarily insert the 

conflicting events. The heuristic tries to do this for a given 

timeU but once that time has elapsed, all remaining 

unscheduled events are inserted into random timeslots. If 

by the end of the first while loop the solution is not yet 

feasible, at least the penalty due to hard constraint 

violations is already very low. In the second while loop, 

the heuristic uses simple local search and tabu search to 

achieve feasibility with two neighbourhood moves M1 and 

M2. M1 selects one event at random and assigns it to a 

feasible pair timeslot-room also chosen at random. M2 

selects two events at random and swaps their timeslots and 

rooms while ensuring feasibility is maintained. The local 

search attempts to improve the solution but it also works as 

a perturbation operator. The tabu search uses move M2 

only, which selects only an event that violates the hard 

constraints. The tabu search runs for  a fixed number of 

iterations tsmax.  In our experiments, this initialisation 

heuristic always finds a feasible solution for all the 

problem instances considered. 
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4.3 The Evolutionary Operator: Mutation 
 
With a probability less or equal to 0.5 (p  ≤  0.5), the 
mutation operator is applied to the solution selected 
from the tournament (x

t
). The mutation operator selects 

at random one out of three types of neighbourhood 
moves in order to change the solution while maintaining 
feasibility. These moves are described below. 
 

1. Move M1.  Selects one event at random and 

assigns it to a feasible timeslot and room.  
 

2. Move M2. Selects two events at random and 

swaps their timeslots and rooms while ensuring 

feasibility is maintained.  
 

3. Move M3. Selects three events at random, then it 

exchanges the position of the events at random 

and ensuring feasibility is maintained.  

 

5. Non-linear Great Deluge Algorithm 

 

The non-linear great deluge algorithm is a modified 

great deluge algorithm which incorporates a non-linear 

decay rate. The motivation behind the use of a non-

linear decay rate and floating water level is to enhance 

the feedback between the search activity and the water 

level. Early in the search the algorithm is able to reduce 

the penalty cost considerably and the gap between the 

water level and the penalty cost is usually very large. 

Therefore, the algorithm must prevent the cost function 

to go back near to the water level and for this reason it 

is important to reduce the gap between the water level 

and the penalty cost. Later in the search, it becomes 

more difficult to find the improvement moves. To 

manage this situation, we float the water level to 

prevent the algorithm becoming greedy. By floating the 

water level the algorithm tries to diversify the search by 

extending its search to a different region of the search 

space. Therefore, at the early stage of the search this 

algorithm performs more intensification and less 

diversification. However, when the search gets stuck in 

the local optima the algorithm begins to diversify the 

search by floating the water level (increasing the water 

level). The main weakness with the linear decay of the 

water level is that the water level decreases too quick in 

the later stages of the search. At the beginning, the 

algorithm seems to produce several successful moves. 

However when the search is in the middle or 

approaching the end of the search and the water level 

converges with the value of the current best solution, 

most of the neighbourhood solutions are rejected and 

this situation hinders the algorithm in diversifying the 

search. Therefore, the algorithm suffers on its own 

greediness by trapping itself in local optimum. In the 

conventional great deluge approach, there is no 

mechanism to help escaping local optima once 

the water level and the best solution penalty cost 

converge. The non-linear great deluge algorithm is 

described in Algorithm 2. 
 

5.1 Non-linear and Floating Water Level                    

      Decay 
 

Consider a problem in which the goal is to find the solution 

that minimises a given objective function. The distinctive 

feature of the conventional great deluge Consider a problem 

in which the goal is to find the solution that minimises a 

given objective function. The distinctive feature of the 

conventional great deluge algorithm is that when the 

candidate solution S*  is worse than the current solution S, 

then S*  replaces S depending on the current water level B. 

The water level is initially set according to the quality of 

the initial solution, that is, B > f( S ) where f( S ) denotes 

the objective function value of the initial solution S . The 

decay, i.e. the speed at which B decreases, is determined 
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by a linear function in the conventional great deluge 

algorithm: 

             B = B -  B where  B 


   (3.0) 

The non-linear great deluge algorithm uses a non-linear 

decay for decreasing the water level. The decay is given by 

the following expression: 

          B = B X   )(exp max])([min,
         (3.1) 

 

The various parameters in Eq. (3.1) control the speed and 

the shape of the water level decay rate. Parameter   

represents the minimum expected value corresponding to 

the optimal solution. In this paper, we set   = 0 because 

we want the water level to reach that value by the end of 

the search. This is because we know that an optimal value 

of zero is possible for the problem instances tackled in this 

paper. If for a given minimisation problem we knew that 

the minimum objective value that can be achieved is let's 

say 100, then we would set   around that value. If there is 

no previous knowledge on the minimum objective value 

expected, then we suggest to tune   through preliminary 

experimentation for the problem in hand. The role of the 

parameters  , min and max (more specifically the 

expression max])([min,exp  ) is to control the speed of the 

decay and hence the speed of the search process. A random 

min and max are drawn from the uniform distribution 

interval [min, max] and the min and mix are integer 

numbers. By changing the value of these three parameters, 

the water level goes down faster or slower. Therefore, the 

lower the values of min and max, the faster the water level 

goes down, and in consequence, the search quickly 

achieves an improvement but it also gets stuck in local 

optima very early. To escape from the local optima, the 

algorithm needs to increase the water level. 

  

In this paper, the value of the parameters in Eq. (3.1) were 

determined by experimentation. We tested different 

combination of parameter values (- and rnd [min, max]) 

and observe the effect of each combination in order to find 

suitable parameters for given problem. Based on the 

preliminary experiments, we now then assigned,   the 

values of 5X
1010

, 5X
810

 and 5X
910

 for small, medium 

and large instances respectively. As said before, the value 

of   for all problem instances is   = 0. The values of 

min and max in Eq. (3.1 ) are set according to the size of 

the problem instance. For medium and large problems we 

used min = 100000 and max = 300000. For small problems 

we used min = 10000 and max = 20000. The parameter 

values for small instance is only apply when the penalty 

cost reach to 10 points. Therefore, it means that from the 

first iteration the non-linear great deluge algorithm uses the 

same parameters used for medium instances and changes 

the parameters when it reaches the penalty cost to 10 

points. The use of the non-linear decay rate is shown in 

algorithm 2 below.  

 

In addition to using a non-linear decay rate for the water 

level B, we also allow B to go up when its value is about to 

converge with the penalty cost of the candidate solution 

S*. This occurs when range   1 in Algorithm 2 (range is 

the difference between the water level and the penalty 

cost). We increase the water level B by a random number 

within the interval [
minB , 

maxB ]. All the parameter values in 

[
minB , 

maxB ] were identified by experimentation. For small 

problem instances the interval used was [2, 5]. For the 

large problem instance the interval used was [1,3].  For 

medium problem instances, we first check if the penalty of 

the best solution so far )( bestSf  is lower than a parameter 

lowf .  If this is the case, then we use [1,4] as the interval 

[
minB , 

maxB ]. Otherwise, we assume that the best solution 

so far seems to be stuck in local optima ( )( bestSf  > 

lowf ) so we make B = B + 2. The concept of floating water 

level might be similar to reheating concept in simulated 

annealing, however in simulated annealing to reheat the 

temperature, it uses the geometric reheating method. In our 

method we increase the water level at random. In addition, 

acceptance in simulated annealing uses probability while 

great deluge does not employ probability. Full details of 

this strategy to control the water level decay rate in the 

modified great deluge are shown in Algorithm 2.   
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The behaviour of the proposed Algorithm 2 can be 

illustrated in Figure 3. From the outset, the water level is 

equal to the current penalty cost. When the search progress 

the current penalty cost is improving as shown by the blue 

line. The water level decreases quickly to prevent a huge 

gap between the water level and the current penalty cost. 

As shown in the figure, when the water level and current 

penalty cost is about the converge the algorithm then float 

the water level as shown by the up and down red line. 

 

 
            Fig. 3 Non-Linear Great Deluge Behaviour. 

 

 

 
        Fig. 4 Comparison between linear (Eq. 1) and non-linear     

        (Eq. 2) decay rates and illustration of the effect of   

        parameters  ,  , min and max on the shape of the      

        non-linear decay rate. 

 

6. Experiments and Results 
      

In this paper we propose two different stopping conditions 

for the algorithm. Since non-linear great deluge plays the 

main role in the evolutionary non-linear great deluge 

algorithm, we want to investigate which are the adequate 

criteria for stopping the non-linear great deluge search 

before it goes to the next process which is update of the 

pool of solutions (see Figure 1). It should be clear that the 

non-linear great deluge search promotes intensification in 

the overall evolutionary method. The use of a population 

of solutions and the mutation operator promote 

diversification. Then, by setting the stopping condition for 

the non-linear great deluge search, we are effectively 

setting (in a simple manner) the balance between 

intensification and diversification in the overall 

evolutionary approach. The first strategy for this balance is 

to stop the non-linear great deluge after 8000 idle 

iterations or 30 seconds of computational time, whichever 

happens first. The second strategy is to stop the non-linear 

great deluge after three seconds of computational time. 

The first strategy gives more time to intensification while 

the second strategy attempts to promote diversification 

more by stopping intensification sooner. In general, the 

whole hybrid evolutionary process can be described as 

follows. 

  

After generating the initial set of solutions, this population 

then becomes the pool of individual solutions (refer to 

Figure 1). After the tournament selection of a solution s, 

this solution is mutated or not as explained above 

according to the set probability. Then, the non-linear great 

deluge search takes place over the solution s. The non-

linear great deluge search continues until the given 

stopping condition, one of the two strategies explained 

above, is satisfied. We implemented three variations of the 

proposed evolutionary algorithm in order to examine the 

performance of the algorithm when each of the two 

stopping conditions is used and also when the mutation 

operator is re-moved. The three algorithm variants are: 

Evolutionary Non-linear Great Deluge Without Mutation 

(ENLGD-M), Evolutionary Non-linear Great Deluge using 

stopping condition 1 (ENLGD-1) and Evolutionary Non-

linear Great Deluge using stopping condition 2 (ENLGD-

2). Both ENLGD-1 and ENLGD-2 have the mutation 

operator incorporated. The aim of examining these 

algorithm variants is to assess the robustness of the 

proposed evolutionary algorithm with different settings. By 

robustness we mean the reliability of the algorithm to 

produce high-quality of solutions under different settings. 

Table 2 shows the various parameter settings for the three 

algorithm variants examined here. 
 

Table 2:  Parameter Setting for the Three Variants of the Proposed 

Evolutionary Non-Linear Great Deluge Algorithm. 

    

Parameter ENLGD-M ENLGD-1 ENLGD-2 

Mutation no mutation applied 0.5 0.5 

Stopping condition idle 8000 iterations Idle 8000 iterations every 3 seconds 

 or 30 seconds or 30 seconds of computation time 

Replacement Steady state Steady state Steady state 

Stopping time for small (2600 seconds) small (2600 seconds) small (2600 seconds) 

whole search Medium (7200 seconds) medium(7200 seconds) medium (7200 seconds) 

Process large (10000 seconds) large (10000 seconds) large (10000 seconds) 

 

We now evaluate the performance of the proposed 

evolutionary algorithm (in this experiments, we used the 

benchmark instances by Socha et, al. [26]). For each 
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problem size, a fixed computation time (timemax) in seconds 

was used as the stopping condition: 1000 for small 

problems, 7200 for medium problems and 10000 for the 

large problem. This fixed computation time is for the 

whole process including the construction of the initial 

population. We executed the proposed evolutionary 

algorithm 20 times for each problem instance. 

  

Table 3 shows the experimental results for the three 

algorithm variants described above, i.e. ENLGD-M, 

ENLGD-1 and ENLGD-2. The Table shows the best and 

the average results obtained for each method. For each 

dataset, the best results are indicated in bold. As shown in 

Table 3, the evolutionary non-great deluge algorithms 

(ENLGD-1 and ENLGD-2) clearly outperform NLGD. 

The results also show that both ENLGD-2 and ENGLD-1 

produce better results when compared to ENLGD-M. This 

means that the tailored mutation operator makes a 

significant impact to the good performance of ENLGD. 

Besides that, the results also show that ENLGD-2 

outperforms ENLGD-1 and ENLGD-M. This means that 

balancing the intensification and diversification helps the 

ENLGD approach to better explore the search space rather 

than run the intensification for longer which makes the 

local search to converge earlier (as in the ENLGD-1 case). 

The intensification phase is mainly carried out by NLGD. 

 
Table 3:  Comparison of NLGD, ENLGD-M, ENLGD-1 and ENLGD-2 

on the Socha et al.  UCTTP Instances. 

 

IN NLGD ENLGD-M ENLGD-1 ENLGD-2 
 Best Avg Best Avg Best Avg Best Avg 

S1 3 3.6 0 1.55 0 0.95 0 0.7 
S2 4 4.85 0 2.2 0 1.45 0 0.3 
S3 6 6.85 1 2.7 0 1.3 0 1.05 
S4 6 6.85 0 1.7 0 1.35 0 1.25 
S5 0 1.75 0 0 0 0 0 0 
M1 140 160.75 144 176.65 125 140 59 84.8 
M2 130 156 140 162 123 149.1 51 93.8 
M3 189 212.1 182 204.8 178 199.3 75 121.05 
M4 112 138.3 135 164.6 116 130.2 48 72.8 
M5 141 192.6 123 173.15 129 168.6 65 110.2 
L 876 974.3 970 1026 821 946.1 703 819.2 

 
Further investigation was also carried out to inspect the 

overall performance of ENLGD algorithm. Figures 5, 6 

and 7 the performance of the various versions of the 

algorithm together with NLGD. The x-axis corresponds to 

the instance type while the y-axis corresponds to the 

penalty cost. Figure 5 shows the strong performance of 

ENLGD-2 on medium and large instances, while also 

obtaining optimal solutions with the same quality as the 

other algorithms for small instances. In addition, Figure 6 

and Figure 7 show details of the results achieved by the 

proposed algorithms. Both figures show that according to 

the average results, ENLGD-2 outperformed the other 

algorithms. 

Overall, this experimental evidence shows that by 

combining some key evolutionary components with single-

solution NLGD approach, we have been able to produce a 

hybrid evolutionary approach that is still quite simple but 

much more effective than the single-solution stochastic 

local search in generating best known solutions for a well-

known set of difficult university course timetabling 

instances. It is also evident that the mutation operator 

makes a significant contribution to the good performance 

of ENLGD as the results obtained without this operator 

(ENLGD-M) are considerably worse in medium and large 

instances. The proposed algorithm seems particularly 

effective on small and medium problem instances. 

 

 

 
Fig. 5  Best Results Obtained by the Proposed Algorithm 

 

 

 
 

Fig. 6  Average Results Obtained by the Proposed Algorithm Variants on 

Small Instances. 

 

 

 
 
Fig. 7  Average Results Obtained by the Proposed Algorithm Variants on 

medium and large Instances. 
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Table 4: Comparison of results obtained by the Evolutionary Non-Linear 

Great Deluge (ENLGD) proposed in this chapter against the best known 

results from the literature for the 11 Socha et al. UCTTP instances. 

 
ENLGD-2 is Evolutionary Non-Linear Great Deluge with stopping strategy 2.  
NLGD is Non-Linear Great Deluge [18].  
RRLS is the Local Search and Ant System in [27]  
MMAS is the MAX-MIN Ant System in [26]  
GALS is Genetic algorithm and local search by Abdullah and Turabieh [4].  
RIICN is Randomised iterative improvement algorithm by Abdullah et al. [1].  
GBHH is Graph-based Hyper-heuristic by Burke et al. [9].  
CFHH is the Choice Function Hyper-heuristic in [8]  
VSN-T is Variable neighbourhood search with tabu by Abdullah et al. [3].  
HEA is Hybrid evolutionary approach by Abdullah et al. [2].  
FMHO is fuzzy multiple heuristic ordering [6]  
EGD is Extended Great Deluge [19]  
S1-S5 represent small problem instances 1 to 5  
M1-M5 represent medium problem instances 1 to 5 

 

Table 4 compares the results obtained by the approach 

proposed with the state of the art approaches in the 

literature that have been used to solve the course 

timetabling problem. The term x%Inf in Table 4 illustrates 

a percentage of runs that were unable to achieve feasibility. 

The figures in bold indicate the best results. Results in the 

Table indicate that some of the algorithms were unable to 

produce feasible solutions. However, in contrast, our 

approach was able to achieve feasible solutions. It can be 

seen that the proposed hybrid evolutionary approach 

(ENLGD-2) matches the best known solution quality for 

all small problem instances. For medium instances, 

ENLGD-2 was able to achieve better quality solutions 

when compared against all other methods listed in Table 3. 

More interestingly ENLGD-2 is able to produce high 

quality solutions and outperformed the best known results 

obtained by other algorithms as reported in the literature. 

Only on the case of the large problem instance, we see that 

our algorithm does not match the best known result 

reported by Abdullah at al. [2]. However, our result is still 

comparable to other results reported in the literature.  

Overall, this experimental evidence shows that by 

combining some key evolutionary components and an 

effective stochastic local search procedure, we have been 

able to produce a hybrid evolutionary approach that is still 

quite simple but more effective than the single-solution 

stochastic local search in generating best know solutions 

for well-known set of difficult course timetabling problem 

instances. The proposed algorithm seems particular 

effective on small and medium problem instances.  

 

6.1 Statistical Analysis 

 
To compare the performance of the different methods 

proposed, we run some statistical analysis. Even though 

conclusions can usually be made based on the best and 

average results obtained by each algorithm, those 

conclusions and analysis might be premature. Therefore, 

ANOVA was used to determine whether there is a 

significant difference in performance among ENLGD-2, 

ENLGD-1, ENLGD-M and NLGD. Before we proceed to 

the analysis, it is essential to verify the compatibility of the 

models with the sample data. There are important 

hypotheses that need to be verified: normality, 

independency and homogeneity of the sample data. After 

running the descriptive analysis, we found that our sample 

data fulfils the hypothesis requirements. For that reason 

variance analysis (ANOVA) is considered suitable for the 

sample data hypothesis ensuring the validity of the 

experiment. ANOVA is one of the existing statistical 

models used to test significant differences between means 

and this tool is very useful to make comparison when 

dealing with three or more means. 

 

The analysis showed that there are statistically significant 

differences among the proposed algorithms with the p-

value very close to zero as shown in Figure 8. 

The p-value stands for probability ranging from zero to 

one. Therefore, the p-value is used to measure the 

difference in population means and used as an evidence to 

reject or accept the null hypothesis. In our case the null 

hypothesis H0 is that there are no significant differences in 

performance between the algorithms. Therefore, if we 

reject H0 then we accept that there are significant 

differences in performance 

among the algorithms. Tables 7, 8 and 9 clearly show that 

there are significant differences between the algorithms as 

described below: 

 For small instances, the p-value are less than the 

confidence level at 0.05 for every pair of 

algorithms (ENLGD-2, ENLGD-1), (ENLGD-2, 

ENLGD-M), (ENLGD-2, NLGD), (ENLGD-1, 

ENLGD-M) and (ENLGD-M, NLGD). 

 For medium instances there are significant 

differences in performance between (ENLGD-2, 

ENLGD-1), (ENLGD-2, ENLGD-M), (ENLGD-

2, NLGD), (ENLGD-1, ENLGD-M) where the p-

value are less than the confidence level at 0.05. 

 However, there is no significant difference in 

performance between NLGD and ENLGD-M, 

where the Post-Hoc analysis shows that the p-

value is 0.659 (greater than 0.05). 
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 Finally for the large instance, there are significant 

differences in performance between (ENLGD-2, 

ENLGD-1), (ENLGD-2, ENLGD-M) (ENLGD-2, 

NLGD) and (ENLGD-1, ENLGD-M) where the 

p-value for the respective pairs are less than 0.05 

significance level. Interestingly, the Post-Hoc test 

shows that there is no significant difference in 

performance between (ENLGD-1, NLGD) and 

(NLGD-M, NLGD) where the p-value are 0.697 

and 0.063 respectively, where both p-value is 

greater than significant level at 0.05. 

 

The Post-Hoc analysis clearly showed that all four 

algorithms perform differently. However, at this stage we 

still do now know which algorithm is actually 

outperforming the others across the eleven instances. Thus, 

to evaluate this, we plot the mean of each algorithm with 

Least Significant Difference (LSD) intervals at 95% 

confidence level for the different algorithms as shown in 

Figures 8.  

     

Figure 9, Figure 10 and Figure 11 present the means plot 

of each algorithm, for the specific instances. Figure 8 

shows that there are three homogenous groups for small 

instances (ENGLD-1, ENLGD-2), (ENLGD-M) and 

(NLGD). The best algorithm is ENGLD-2 followed by 

ENLGD-1 and ENLGD-M, the worst algorithm is NLGD. 

In medium instances we also found three homogenous 

groups as shown in Figure 9 and they are (ENGLD-1), 

(ENLGD-2) and (ENLGD-M, NLGD). The algorithm that 

performs well in medium instances is ENGLD-2 followed 

by ENLGD-1 and two algorithms which perform slightly 

worst are ENLGD-M and NLGD. Finally, for the large 

instance, we found that there are three homogenous group 

(ENGLD-1, NLGD), (ENLGD-2) and ENLGD-M. In the 

large instance case, we found that ENLGD-2 outperforms 

the other algorithms and ENLGD-M is the worst. In 

conclusion, considering the overall performance, ENLGD-

2 is the best algorithm followed by ENLG-1, NLGD and 

the worst algorithm is ENLGD-M (mutation operator 

removed). to 10. LSD is used to measure the significant 

differences between group means in ANOVA. From the 

mean plot, we see that ENLGD-2 outperforms the other 

algorithms followed by ENLGD-1, NLGD and the worst 

algorithm is ENLGD-M. 

  

The statistical analysis presented in the paper suggest that 

each algorithm performs differently across all 11 Socha et 

al. Instances[26]. This analysis also shows that ENLGD-2 

outperforms the three other algorithms across all instances. 

It is also evident that the mutation operator makes a 

significant contribution to the good performance of 

ENLGD-2 as the results obtained by ENLGD-M are 

considerably worse. Moreover, the strategy applied in 

ENLGD-2 to balance intensification and diversification 

proves to be a good strategy as it managed to further 

improve the solution quality compared to ENLGD-1. As a 

conclusion, the proposed evolutionary non-linear great 

deluge approach matches the best known solution quality 

for almost all small problem instances and improves the 

best known results for most all medium instances. For 

large instances, the evolutionary non-linear great deluge 

algorithm did not match the best known results published 

in the literature. However, the results are still competitive 

when compared to the results obtained by other algorithms 

reported in the literature.  
 
Table 5:  Average Penalty Cost of ENLGD-2 and ENLGD-1 Across the 

11 Socha et al.  Instances. 

 

 ENLGD-2 ENLGD-1 

Run Small Medium Large Small Medium Large 

1 0.8 95.6 703 0.20 159 821 

2 0.4 85.8 927 1.4 165.4 940 

3 0.4 95.4 835 1 167.8 963 

4 0.4 93.6 968 1.2 163.6 879 

5 0.4 108.6 895 1 165.2 954 

6 0.4 99.8 730 1.2 162 952 

7 0.2 81.2 782 8.8 146.4 938 

8 0.4 91.6 711 1.2 148.2 976 

9 0.8 110.4 777 1 147.4 1018 

10 1 96.4 838 0.6 144.4 1020 

11 0.4 96.6 808 1 171.6 968 

12 1 98.4 944 1.6 178 904 

13 0.8 91.2 870 1.2 158.8 958 

14 1.2 96.4 807 0.4 159.2 876 

15 0.4 83.6 849 1.8 165 876 

16 1.2 90.6 713 1.6 156 970 

17 0.4 117.8 852 1.2 169.6 918 

18 0.6 102.2 795 0.6 172.8 1003 

19 1.6 106 779 0.6 148.2 1031 

20 0.8 89.4 801 0.6 175.2 1072 

 

Table 6:  Average Penalty Cost of ENLGD-M and NLGD Across  the 11 

Socha et al.  Instances.  

 
 ENLGD-M NLGD 

Run Small Medium Large Small Medium Large 

1 2 186.2 1023 3.8 142.4 966 

2 2 176.6 1070 4.8 165 1070 

3 1.4 191.6 998 6 165.6 876 

4 2 177.6 1142 5.2 162.2 935 

5 1.4 205.8 1114 5 165.2 971 

6 1 189.8 984 4.6 166.8 942 

7 1 184 923 5 165.4 895 

8 1.8 179.6 970 5.2 156.8 976 

9 2 166.4 1082 5.4 160.4 986 

10 1.4 185 1023 5.4 172.8 1005 

11 1.8 192.2 1023 3.8 185 966 

12 2 159.2 1070 4 171.6 1070 

13 2 178.8 998 4.2 177 935 

14 2.2 156.4 1142 4.2 181 1024 

15 1.6 167.6 984 4 172.4 942 

16 2 166.6 923 5 188.4 958 
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17 1.6 168.6 970 4.2 179.6 978 

18 0.8 168.8 1082 5.4 182.6 1005 

19 1.4 156.6 1023 5.4 196 1078 

20 1.2 166.8 982 5 183.8 907 

 
 

 
Fig 8:  ANOVA Results. 

   
 

    Table 7:  Post Hoc Tests - Small Instances 

 
 ENLGD-2 ENLGD-1 ENLGD-M NLGD 

ENLGD-2 - 0.041 0.000 0.000 

ENLGD-1 0..041 - 0.000 0.000 

ENLGD-M 0.000 0.000 - 0.000 

NLGD 0.000 0.000 0.000 - 

 
 Table 8:  Post Hoc Tests - Small Instances 

 
 ENLGD-2 ENLGD-1 ENLGD-M NLGD 

ENLGD-2 - 0.000 0.000 0.000 

ENLGD-1 0..000 - 0.001 0.019 

ENLGD-M 0.000 0.000 - 0.649 

NLGD 0.000 0.019 0.649 - 

 
Table 9:  Post Hoc Tests - large Instances 

 
 ENLGD-2 ENLGD-1 ENLGD-M NLGD 

ENLGD-2 - 0.000 0.000 0.000 

ENLGD-1 0..000 - 0.003 0.697 

ENLGD-M 0.000 0.003 - 0.063 

NLGD 0.000 0.697 0.063 - 

 

 

 

 
 

 

7.  Conclusions 
 

The overall endeavour of this paper was to extend our 

previous approach, a non-linear great deluge algorithm, 

towards an evolutionary variant by incorporating some key 

operators like a population of solutions, tournament 

selection, a mutation operator and a steady-state 

replacement strategy. The performances of the various 

versions of evolutionary non-linear great deluge were 

compared along with the single-solution NLGD algorithm. 

Preliminary comparisons illustrate that ENLGD-2 

outperforms the results produced by other versions of 

ENLGD and NLGD algorithms. The results from our 

experiments also provide evidence that our hybrid 

evolutionary algorithm is capable of producing best known 

solutions for a number of the test instances used here. 

Obtaining the best timetables (with penalty equal to zero) 

for the medium and large instances is still a challenge. 

However, when compared to the results obtained by 

ENLGD-2 to the best know results reported in the 

literature, obviously, ENLGD-2 outperform all the results 

of medium instances and produced comparable ones for 

large instance. 
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