
Fuzzy Maintainability Model for Object Oriented Software
System

Soumi Ghosh1, Sanjay Kumar Dubey2 and Prof. (Dr.) Ajay Rana3

Department of Computer Science and Engineering, Amity University
NOIDA, U.P., 201303, India

Abstract
In recent years for achieving considerable success in software
system, maintainability plays a very crucial role and it is
considered as an important quality characteristics. In this paper a
maintainability model has been proposed to compare
maintainability of object-oriented software system. Attempts
have been made on software developed in different programming
languages to make comparison of maintainability pattern using
AHP and Fuzzy Index method.

Keywords: Maintainability, AHP, software system, Object-
oriented metrics.

1. Introduction

For the entire life cycle of software products, the key
factor maintainability is one of the important quality
characteristics. The maintenance activities practically
involve enhancement of software products, adapting
existing products to new environment and correction of
faults and errors. The ISO/IEC 9126 [5] standard defines
maintainability as the capability of the software product to
be modified, including corrections, improvements or
adaptation of the software to changes in environment and
in requirements and functional specifications. Good
maintainability enables the software to meet the
requirements of customers. Software maintainability is
mainly evaluated through quantitative measurement,
qualitative analysis and experiences of experts. On the
basis of quantitative measurement some main problems
required to be solved including the measurement,
evaluation criteria and evaluation methods of software
maintainability [12]. Software maintenance issues
primarily dominate costs in software development.

Although now-a-days large amount of money is invested in
software development within the life cycle of a software
product but infact maintenance and adaptation of software
is by far the costliest proposition. The maintainability of
software is therefore, the most important part of the overall
costs that has to be incurred during the lifetime of the
system i.e. from the stage of development, its utility and till

replacement. For this, the maintainability of software is by
and large influenced by the quality of the source code. The
main external quality attributes that have been identified by
ISO/IEC 9126 [5] are functionality, reliability, usability,
maintainability, portability and efficiency. The sub-
characteristics of maintainability are defined as:
Analyzability- The capability of the software product to
be diagnosed for deficiencies or causes of failures in the
software or for the parts to be modified to be identified [6].
Changeability- The capability of the software product to
enable a specified modification to be implemented [6].
Stability- The capability of the software product to avoid
unexpected effects from modifications of the software [6].
Testability- The capability of the software product to
enable modified software to be validated [6].

It is a fact that the most important indicators of final
product quality are the external attributes but they can only
be effectively measured after the product has been
developed. The other approach for measuring the quality
of a software system is through internal quality attributes.
Such internal quality attributes are size, cyclomatic,
coupling, inheritance etc. and these help the assessment of
software quality in the early phase of development life
cycle. The aim of this paper is to compare the
maintainability of object-oriented system developed in
different programming languages.

2. Object-oriented Metrics

The initial step involves selection of a group of
object-oriented metric for each one of the internal quality
attributes.

LOC (Line of Code): It is one of the earliest and simpler
metrics for calculating the size of computer program. It is
generally used in calculating and comparing the
productivity of the programmers. Any line of program text
excluding comment or blank line regardless of the no. of
statements or parts of statements on the line is considered a
line of code [10].

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 338

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

WMC (Weight Method per Class): - This metrics is
count of methods implemented within a class or sum of
complexities of methods. The number of methods and
complexity of the methods involved is a prediction of how
much time and effort is required to develop and maintain
the class [11].
CBO (Coupling Between Objects): - Coupling is a
measure of strength of association established by a
connection from one entity to another. CBO counts the
number of other classes to which a class is coupled.
Number of distinct non- inheritance related class
hierarchies on which a class depends gives CBO [11].
DIT (Depth of Inheritance): - Inheritance is a type of
relationship among classes that enables programmers to
reuse previously defined objects including variables and
operators. DIT of a class within the inheritance hierarchy is
the maximum length from the class node to the root of the
tree and is measured by the number of ancestor classes
[11].

3. Proposed Model

In terms of software quality one can easily distinguish
internal and external quality [5]. The primary step of this
paper is the establishment of a relationship between
maintainability (external quality) and internal quality
attributes such as size, complexity, coupling and
inheritance.
Size- Size is used to evaluate the case of understandability
of the code by the developers and maintainers. It may be
measured in a variety of ways such as by counting all
physical lines of code, the number of statements and the
number of blank lines [8].
Complexity- By software complexity we mean the
difficulty to preserve, modify and comprehend the software.
It is the measure of how difficult a software system is and
it is really desirable to achieve low complexity in software
system [8].
Coupling- Coupling means the interdependence between
different components or functions. It is the measure of
interconnections among the modules in a software
structure. It is the degree to which each program module
depends on the other and it is required to achieve low
coupling in software systems [8].
Inheritance- Inheritance is defined as classes having same
methods and operations based on hierarchy. It is a
mechanism whereby one object acquires the characteristics
from one or more other objects [8].

Fig1. Proposed Maintainability Model

4. Proposed Method

To evaluate the maintainability of object-oriented
software systems, we use the AHP method [12] and fuzzy
index method [7]. The method chosen for evaluation is
shown in fig.1. The method uses following steps:-

i) To find weight matrix for maintainability sub-
characteristics using AHP [12]

ii) To find weight matrix for object-oriented metrics
using AHP [12]

iii) To find rank matrix using fuzzy index method [7]
iv) To find maintainability using step (i) to (iii)
v) To compare maintainability of software system

developed in different languages

5. Case Study

For comparing maintainability, we selected two projects,
scientific calculator and other tic-tac-toe game developed
in Java, C++, and C# [4]. Tools selected as Analyst 4j,
CCCC and Visual Studio code metrics power tool for Java,
C++ and C #respectively. Using the fig.1 we applied AHP
method [12] in order to determine the weight at all levels.
The pairwise comparison method is used taking into
consideration 1-9 scale to form the pairwise comparison
matrix (Ak) between the 2nd and 3rd level metrics. We need
to make consistency test. If C.R.=C.I./R.I.<0.1, then Ak is
correct, otherwise modify Ak. From these Ak (k=1, 2,….,n) we
will find w1

(3), w2
(3),…,wn

(3) and by comparing these
weighted metrics we will get w(3). Then we have to
calculate the eigen vector w(2) between the 1st and 2nd level
metrics in the similar process. The weight metrics between
the 2nd and 3rd level metrics as:

 Internal Quality Attributes

 Size Complexity Coupling Inheritance

 Maintainability

Analyzability Changeability Stability Testability

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 339

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

w (3) = 0.1221 0.2483 0.2991 0.1073
 0.1150 0.16062 0.26171 0.448
 0.6162 0.44513 0.29378 0.3708
 0.1467 0.14600 0.14543 0.0735
Fig.2 weighted matrix for maintainability sub-characteristics

The pairwise comparison metrics between 1st and 2nd level
is given as follows:-

λmax = 4.114, C.I.= 0.038, C.R. = 0.0422

So, the matrix between 1st and 2nd level is given as:
w(2)= [0.17015, 0.16500, 0.48265, 0.18220]T

Then the values of each 3rd level metrics are calculated
and determine whether the value is within the permission
of range or not. If it is true then the value equals to 1,
otherwise it is 0 [7]. Now we have to calculate the value
vector (VT) of the 2nd level metrics with the values of the
3rd level metrics and weight vector w(3). The binary values
are described in Table 2 for scientific calculator developed
in Java using tool [1].

Table2. Binary values of the 3rd level metrics

VT1
1

= [0.3838, 0.55492, 0.70624, 0.6292]

The binary values are described in Table 3 for scientific
calculator developed in C++ using tool [2]

Table3. Binary values of the 3rd level metrics

VT1
2

= [0, 0, 0, 0]

The binary values are described in Table 4 for scientific
calculator developed in C# using tool [3]

Table4. Binary values of the 3rd level metrics

VT1
3

= [1, 1, 1, 1]

The binary values are described in Table 5 for tic-tac-toe
game developed in Java using tool [1]

Table5. Binary values of the 3rd level metrics

VT2
1

= [0.3838, 0.55492, 0.70624, 0.6292]

The binary values are described in Table 6 for tic-tac-toe
game developed in C++using tool [2]

Table6. Binary values of the 3rd level metrics

VT2
2

= [1, 1, 1, 1]

The binary values are described in Table 7 for tic-tac-toe
game developed in C# using tool [3]

Threshold
metrics [9]

Value
(CCCC)

Binary
values

Size (LOC) 200-750 449 1

Complexity (WMC) 1-20 17 1

Coupling (CBO) 0-5 0 1

Inheritance(DIT) 0-3 0 1

A
na

ly
za

bi
lit

y

C
ha

ng
ea

bi
lit

y

St
ab

ili
ty

T
es

ta
bi

lit
y

E
ig

en
 v

ec
to

r
(w

)
Analyz-
ability

1 1 0.5393 0.6295 0.17015

Change-
ability

1 1 0.3003 1 0.16500

Stability 1.85
43

3.330 1 3.56 0.48265

Test-
ability

1.58
86

1 0.281 1 0.18220

Total 1.0000

Threshold
metrics [9]

Value
(Analyst 4j)

Binary
values

Size (LOC) 200-750 477 1
Complexity (WMC) 1-20 2.33 1
Coupling (CBO) 0-5 30 0
Inheritance(DIT) 0-3 0.88 1

Threshold
metrics [9]

Value
(Code
metric)

Binary
values

Size (LOC) 200-750 1069 0
Complexity (WMC) 1-20 114 0
Coupling (CBO) 0-5 47 0
Inheritance(DIT) 0-3 7 0

Threshold
metrics [9]

Value
(Analyst 4j)

Binary
values

Size (LOC) 200-750 396 1
Complexity (WMC) 1-20 2.86 1
Coupling (CBO) 0-5 16 0
Inheritance(DIT) 0-3 2 1

Threshold
metrics [9]

Value
(CCCC)

Binary
values

Size (LOC) 200-750 228 1

Complexity (WMC) 1-20 4 1

Coupling (CBO) 0-5 4 1

Inheritance(DIT) 0-3 0 1

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 340

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Table7. Binary values of the 3rd level metrics

VT2
3

= [0.1221, 0.2483, 0.2991, 0.1073]

The evaluation level is supposed to be M= {M1, M2, M3,
M4} = {Poor, Fair, Good, Excellent} (1)

The threshold is taken as (0, 0.5, 0.75, 0.9, 1) [7] then we
have c1= 0.25, c2= 0.625, c3= 0.825, c4= 0.95. With the
value vector of the 2nd level metrics VT, we put the values
of analyzability, changeability, stability and testability into
expert formulas and we get the membership functions.
Finally we obtain the rank matrix as

R1 = 1 0.56054 0 0
 0.5352 1 1 1
 1 0 4.8752 6.416
 0 0 0 0

R2 = 0 0 0 0
 0 0 0 0
 0 0 0 0
 1 1 1 1

R3= 1 1 1 1
 0 0 0 0
 0 0 0 0
 0 0 0 0

R4 = 1 0.56054 0 0
 0.5352 1 1 1
 1 0 4.8752 6.416
 0 0 0 0

R5 = 0 0 0 0
 0 0 0 0
 0 0 0 0
 1 1 1 1

R6 = 1 1 1 1
 0 0 0 0
 0 0 0 0
 0 0 0 0

We calculate maintainability (M) by using the formula
rank matrix* w(2).
M1= [0.26 0.92 3.7 0] M2 = [0 0 0 1] M3 = [1 0 0 0]
M4 = [0.26 0.92 3.7 0] M5 = [0 0 0 1] M6 = [1 0.95 0 0]
where M1, M2, M3, M4, M5, M6 shows the quality of the

maintainability in scientific calculator and tic-tac-toe game
code.

By comparing with (1), we see that for scientific calculator
and tic-tac-toe game, maintainability for Java code is good,
for C++ code is excellent, for C# code is poor.
So, we conclude that software developed in C++ is more
maintainable in comparison of code developed in Java and
C#.

6. Conclusions

This paper proposes a method to compare the
maintainability of object-oriented software system. The
inputs for the method are size, complexity, coupling and
inheritance which affect the maintainability of the software
in different object-oriented programming languages such
as Java, C++ and C#. These inputs were determined on the
basis of survey from different experts which include
project managers, system developers, researchers and other
who are working on this field. This method shows any
program build in the object-oriented language C++ has
highest degree of maintainability as compared to other
languages. In future we will try to evaluate the
maintainability of object-oriented software system using
the concept of FAHP (Fuzzy Analytic Hierarchy Process).

References
[1] http://www.Eclipse4you.com/?q=en/eclipse_plugins/analyst

4j/accessed on 15/05/2012
[2] http://cccc.sourceforge.net/ accessed on 15/5/2012
[3] http://www.visualstudiomagazine.com/articles/2008/10/21/
[4] code-metrics.aspx accessed on 16/5/2012
[5] http://www.planet-source-code.com/ accessed on 14/5/2012
[6] ISO/IEC 9126, “International technology- software product

evaluation- Quality characteristics and guidelines for their
use”, International Standard Organization, Geneva 1991

[7] ISO/IEC 9126-1 “Software engineering- Product quality –
Part 1: Quality model”, 2001

[8] J. Chen and X. Liu, “Software Maintainability Metrics
Based on the Index System and Fuzzy Method”, 1st

International Conference on Information Science and
Engineering (ICISE 2009)

[9] K. K. Aggarwal and Y. Singh, Software Engineering, New
Age International (P) Limited, 2005

[10] L. H. Rosenberg and L. E. Hyatt, “Software Quality
Metrics for Object-Oriented Environments”, A report of
SATC’S research on OO Metrics, Crosstalk Journal, vol. 10,
issue: 2, pp. 1-6, 1997

[11] N. Fenton and S. Pfleeger, “Software Metrics: A Rigorous
and Practical Approach”, 2nd edition, 1997

[12] S. Chidamber and C. Kemerer, “A Metrics Suite for Object-
Oriented Design”, IEEE Trans. Software Eng., vol. 20, no. 6,
pp. 476-493, June 1994

[13] T. L. Saaty, “Multi criteria decision making: the Analytic
Hierarchy process”, RWS publications, Pittsburg, PA, 1988

Threshold
metrics [9]

Value
(Code
metric)

Binary
values

Size (LOC) 200-750 440 0
Complexity (WMC) 1-20 151 0
Coupling (CBO) 0-5 33 0
Inheritance(DIT) 0-3 7 0

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 341

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

[14] X.Wang, L. Chen and L. Guo, “The software Maintenance
Measurement Research based on Ambiguous Synthesis
Judge Method”, Fire control and command control, vol. 33,
pp. 14-16, April 2008

Soumi Ghosh is pursuing M. Tech (CS&E) at Amity
University Uttar Pradesh, India. Her research areas include
Software Engineering and Fuzzy Logic.

Sanjay Kumar Dubey is an Assistant Professor in Amity
University Uttar Pradesh, India. His research areas include
Human Computer Interaction, Software Engineering and
Usability Engineering. He has published more than 30
research papers in reputed National & International Journals.
He is member of IET. He is pursuing his Ph. D. in Computer
Science and Engineering from Amity University, India.

Prof. (Dr.) Ajay Rana is a Professor and Director, Amity
University Uttar Pradesh, India. He is Ph. D. in Computer
Science and Engineering from U. P. Technical University.
India. His research area includes Software Engineering. He
has published more than 50 research papers in reputed
National & International Journals. He is member of IEEE, CSI
and IETE. He has received number of Best Paper awards for
his work.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 342

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

