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Abstract 
In this paper, the stability and stabilization of a neutral system 
with time-delay are treated. First, the flexible manipulator is 
modeled as a neutral time-delay system form. Then, based on the 
Lyapunov-Krasovskii functional theory, a delay dependant 
condition is proposed to test studied system stability, which is 
applied to a flexible manipulator model. The test shows that this 
flexible manipulator is instable and it should be stabilized. For 
this reason, other theorem is elaborated to determinate a feed-
back control based on linear matrix inequalities (LMI). Finally, 
simulation results are presented to prove theorical development. 
 
Keywords: Flexible Manipulator, Stability, Stabilization, LMI, 
Lyapunov-Krasovskii. 

1. Introduction 

Flexible manipulator is among the important tools which 
are rapidly developed in last decades. It is used generally 
in grinding, polishing and some other manufacturing tasks. 
However presence of perturbation and disturbances in 
considered system environment makes system modeling 
more complicate.  Thus, modeling should be linearized 
around a chosen steady state. In general, there are many 
possible models for flexible manipulator. Some 
manipulators are modeled by neutral time-delay systems 
[1]. 
 
The presence of time delay gives a model more similar to 
real system than non delayed model.  However, the 

stability and stabilization steps became more complicate 
and obligate to guarantee security in robot functioning.  
For this reason many research are interested to develop 
delay-dependent [2-5] and delay-independent [6-10] 
stability and stabilization conditions using Lyapunov–
Krasovskii functional approach. 
 
Lyapunov-Krasovskii functional theory has first started for 
system without neither uncertainties nor control [11] [12], 
some robust stability conditions based on LMI approach 
are given. Then, the guaranteed cost control problem for 
neutral time delay system with feed-back control is 
investigated. Some papers are interested on stability and 
stabilization where a linear–quadratic cost function is 
considered as a performance measure for the closed-loop 
systems [13] [14] [15] [16] [17]. In the last years, 
interesting works have been concerned with uncertain 
neutral time-delay systems stability and stabilization 
analysis based on Lyapunov-Krasovskii functional theory 
[18] [19] [20]. 
 
The aim contributions of this paper is to determinate a 
general solution for flexible manipulator model proposed 
in literature. Then, based on this general solution, flexible 
manipulator is modeled in neutral time-delay form. After 
that, stability and stabilization conditions are proposed in 
term of linear matrix inequalities.  

 The paper is organized as follows: in section 2 a brief 
review on stability analysis of neutral time-delay systems 
is presented. A flexible manipulator model is developed in 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 490

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



 

 

Section 3. Section 4 gives stability and stabilization 
problem based on linear matrix inequalities. 

Section 5 shows and analyzes simulation results.   

2. Review of Stability analysis for Neutral 
delay systems 

The stability analysis is an essential step for a system 
control and a diagnosis strategy. Some conditions are 
derived in literature to guarantying neutral time-delay 
systems. 

It’s already cited that there are two classes of stability 
conditions for neutral systems with time-delay. The first is 
a delay independent condition. Stability criteria for neutral 
systems with multiple time-delays are presented in [12]. 
Using the Lyapunov second method, Park and al. establish 
a new delay-independent criterion for the asymptotic 
stability. In these criteria, the derived sufficient conditions 
are expressed in terms of LMI so that the criteria are less 
conservative.  

In [21], sufficient conditions for the existence of these 
observers are derived. Using the linear matrix inequality 
and the linear matrix equality (LME) formulation, 
independent of delays stability criteria are derived in [21] 
for proposed observers.  

Wang and al. [22] consider the H∞ dynamic for linear 
neutral time-delay systems output feedback controller 
design problem. The approach here is based on Lyapunov 
functional due to Krasovsii. A sufficient condition is 
deduced in terms of linear matrix inequalities.  

The second conditions are dependent on a delay size.  

In fact, in [13], Sun and al. introduce a new form of the 
Lyapunov functional that contains a triple integral term 

0 0
( ) ( )

t
T

t
x s Rx s dsd d

τ θ λ
λ θ

− +∫ ∫ ∫ ɺ ɺ . Two integral inequalities are 

used to derive a new delay-dependent stability criterion 
without introducing any free-weighting matrices. Using 
this criterion, a method of designing a stabilizing state 
feedback controller is also presented. 

The paper of Xin and al. [23] deals with the delay-
dependent stability criterion and the state observers design 
problem as well as observer-based stabilization problem 
for linear neutral delay systems. A delay-dependent 
stability criterion is developed, which is presented in terms 
of a feasibility positive definite solution to a linear matrix 
inequality. 

3. Flexible manipulator modeling 

3.1 Determination of general solution 

From [24], a differential equation of a flexible manipulator 
free vibration is written as: 

( ) ( )2 22

2 2 2

, ,
     0

y x t y x t
EI m x L

x x t

δ δδ
δ δ δ

 
− = ≤ ≤ 

          
(1)

 
where ( , )y x t is a transition emplacement for each point x  
and time t , EI is the flexibility and m is the mass.  

The limit conditions are as follow: 

( ) ( ) ( ) ( )1 0 2

,
1) 0,              2) |x

y x t
y t u t u t

x

δ
δ == =

( ) ( ) ( ) ( )3 4

,
3) ,               4) |x L

y x t
y L t u t u t

x

δ
δ == =  

  Lemma 1: general solution of (1) is expressed as: 

( ) ( )( , )y x t t x t xφ α ψ α= + + −
                                

(2)  

where 4
m

EI
α = −     

Proof: Equation (1) gives: 

( ) ( )2 22

2 2 2

, ,
=0     0

y x t y x t
EI m x L

x x t

δ δδ
δ δ δ

 
− − ≤ ≤ 

            
(3)  

 Consider Laplace transformation, we obtain: 

( ) ( )
4

2
4

,
, =0     0

y x p m
p y x p x L

EIx

δ
δ

+ ≤ ≤
                      

(4) 

Its characteristic equation can be written as: 

4 2 0
m

p
EI

ζ  − − = 
                                                     

(5)  

The solution of equation (5) is: 

4
m

p
EI

ζ = ± −
                                                                  

(6) 

Hence, the solution of (1) is: 

( ) ( ) ( )
4 4

1 2ˆ ,
m m

x p x p
EI EIy x p e p e pγ γ

− − −
= +

           
(7)  
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Let’s propose: s p=   

Then, the solution can be rewritten as: 

( ) ( ) ( )4 4
2 2

1 2ˆ ,
m m

x s x s
EI EIy x s e s e sγ γ

− − −
= +

                     
(8) 

Consider two functions ( )sφ  and ( )sψ expressed by: 

2
1( ) ( )s sφ γ= and 2

2( ) ( )s sψ γ=  

Thus, solution can be expressed: 

( ) ( ) ( )
4 4

ˆ ,
m m

x s x s
EI EIy x s e s e sφ ψ

− − −
= +

                  
(9) 

Applying Laplace inverse, the general solution (2)is 
obtained. 

3.2 Flexible manipulator model 

In this section, modeling is based on first equation and 
we propose that ( ) ( ),Y t y L t= .  

Condition 3) gives: 

( ) ( ) ( ) 3( )Y t t L t L u tφ α ψ α= + + − =
                           

(10)  

From condition 1), we have: 

1( ) ( ) ( )t t u tφ ψ+ =
                                                           

(11)  

Hence, 

( ) ( ) 12 ( ) ( )Y t L t L t u tα ψ α ψ− − − + =
                           

(12) 

In other hand, condition 2) gives: 

( ) 2( ) ( ) ( )b t t u tφ ψ− =ɺ ɺ

                                                     
(13)  

Then, 

( ) ( ) 2
1

2 ( ) ( )Y t L t L t u tα ψ α ψ
α

− − − − =ɺ ɺ ɺ

                       
(14) 

Condition 4) gives: 

( ) ( )( ) 4( )t L t L u tα φ α ψ α+ − − =ɺ ɺ

                                  
(15)  

Hence, 

( ) 4
1

( ) 2 ( )Y t t L u tψ α
α

− − =ɺ ɺ

                                           
(16)  

 

Then, 

( ) ( ) ( )4
1

2 2Y t L t L u t Lα ψ α α
α

− = − + −ɺ ɺ

                      
(17) 

Substituting ( )Y t Lα−ɺ

 
into (14), we obtain: 

( ) ( ) ( )4 2
1 1

2 2 2 ( ) ( )t L u t L t L t u tψ α α ψ α ψ
α α

− + − − − − =ɺ ɺ ɺ

                                                                                                                             

                                                                                               
(18)  

Therefore,  

( ) ( )( )2 4
1

2 ( ) ( )t L t u t u t Lψ α ψ α
α

− − = − −ɺ ɺ

                   
(19)  

with addition of (19) and (12) and when we replace 

( )Y t Lα−  by ( )3u t Lα− , we obtain a neutral time-delay 

system. 

( ) ( )

( )( ) ( )2 4 3 1

( ) ( ) 2 2

1
( ) ( )         

t t t L t L

u t u t L u t L u t

ψ ψ ψ α ψ α

α α
α

= − − + −

− − − + − −

ɺ ɺ

        
(20)  

4.  Stability and stabilization analysis 

4.1 Stability conditions 

In this paper, a condition of stability for a type of 
neutral system with delayed control will be presented.   

Consider a neutral time-delay system with the following 
form: 

[ ]

1 1( ) ( ) ( ) ( ) ( ) ( )

( ) ( )                                                                          

( ) ( ),     ,0                                                   

h dx t Ax t A x t h A x t d Bu t B u t

y t Cx t

x t t t

τ

ϕ τ

= + − + − + + −
=
= ∈ −

ɺ ɺ

    







                                                                                         

(21)  

The following theorem shows a new condition for system 
(21) with robust delayed control. 

 

Theorem 4.1 

Consider neutral system (21) with given constants 
* 0.h >  h , d  and 1τ  are supposed different. System (21) is 

asymptotically stable for any *0 hτ< ≤ , if there exist 
matrices 0,  T 0,  and 0X Y> > >  satisfy the following 
LMI: 
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                                                                                               (22)  

where: “*” and I  denote respectively the transposed 
elements in the symmetric position and identity matrix.  

( ) ( )( , , )
T

h h hG X A A A A X X A A= + + +
 

Proof: 

Consider  the vector ( )U t  and the matrix Bɶ expressed as: 

1

( )
( )

( )

u t
U t

u t τ
 

=  − 
and ( )1B B B=ɶ . 

The system (21) becomes: 

[ ]

( ) ( ) ( ) ( ) ( )

( ) ( )                                                   

( ) ( ),     ,0                                 

h dx t Ax t A x t h A x t d BU t

y t Cx t

x t t tϕ τ

 = + − + − +


=
 = ∈ −

ɶɺ ɺ

            

(23)  

Hence, the result follows immediately by applying 
Theorem 2.2 in [25]. 

4.2 Stabilization 
In this section neutral system will be stabilized using a 

feed back control to guarantying system stability. The time 
delay in control can caused system instability. 
Considered system with a feed-back control ( ) ( )w t Kx t=
can be written as: 

[ ]

1 1

( ) ( ) ( ) ( ) ( )

         ( ) ( )

( ) ( )                                                  

( ) ( ),     ,0                                

h d

w

x t Ax t A x t h A x t d Bu t

B u t B w t

y t Cx t

x t t t

τ

ϕ τ

= + − + − +
 + − +
 =
 = ∈ −



ɺ ɺ

             

(24)  

To achieve stabilization, feed-back control should be 
determined. 

 

Hence, system (24) can be written as: 

( )

[ ]

1 1

( ) ( ) ( ) ( )

         ( ) ( )

( ) ( )                                                    

( ) ( ),     ,0                                  

w h dx t A B K x t A x t h A x t d

Bu t B u t
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x t t t

τ

ϕ τ

 = + + − + −


+ + −
 =
 = ∈ −




ɺ ɺ

            

(25)  

This system has the same form of system (21). ( )w t

guarantees system stabilization only if system (25) is stable. 
The following theorem gives stability condition if system 
(25). 

Theorem 4.2:   

Consider neutral system (25) with given constants 
* 0h > . h , d  and 1τ  are supposed different. System (25) is 

asymptotically stable for any *0 hτ< ≤ , if there exist 
matrices 0,  T 0,  and 0X Y> > >  and matrix F satisfy the 
following LMI: 
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(26)  

where: “*” and I  denote respectively the transposed 
elements in the symmetric position and identity matrix.  

( ) ( )T T T
h h w wA A X X A A B F F B+ + + + +

 

where 1( ) ( )w t FX x t−= .  

Proof: 

The result follows immediately by applying Theorem 
II I.1 to the closed-loop system (25) and setting F KX= .  

5.  Stability and stabilization conditions 
application for a flexible manipulator 

Consider system (20) with 2 1Lα = , the fault and 
output matrices are respectively [1 1]F = and [1 1]C =
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and the fault vector to be detected is 1 2[ ]Tf f f=  where 

1

1,     10 25
( )

0,      otherwise.

t
f t

≤ ≤
= 
  

and
 

2

2,     30 45
( )

0,      otherwise.

t
f t

≤ ≤
= 


 

In this study, we suppose that the faults do not occur 
simultaneously and their modes are unknown. 

First, we start with stability analysis test. The 
application of theorem III.1 and by solving the LMI (22), 
the solution is infeasible. Hence, system (21) is non stable 
which justify the free vibration of manipulator. This result 
is verified by the state response behavior of nominal 
system Fig.1. 

Fig.1 The state response behavior of nominal system 

In order to guarantee the good functioning of robot, the 
manipulator stabilization should be achieved.  

Consider 1wB = .  

By Theorem III.2, the feasibility of LMI (26) is 
obtained with: 

1.1790 2.1933 0.3456X Y T= = =  ,   ,   
et 4.1962F = − . 

With the control law ( ) -3.559 ( )w t x t=  Fig.3, the closed-

loop system is asymptotically stable and the response of 
the closed-loop system is illustrated by Fig.2. 

 

 

Fig.2 The state response of augmented system 

 
Fig.3. feed-back control evolution 

System output behavior compose two part; first part is 
between initial time 0s to 15s and it is characterized by a 
little vibration or perturbation caused by feed-back control 
behavior. Second time is from 15s, the system is stable. 
We can conclude that control can be a motor which make 
some vibration in first time and after that the manipulator 
is fixed.    

 6.  Conclusion 

Flexible manipulator is modeled in neutral time-delay 
form using a general solution which is determinate first. 
Then, stability and stabilization conditions are obtained in 
term of linear matrix inequalities.  Developed theories are 
applied to a flexible manipulator. Hence, this manipulator 
is instable due to free vibrations. Stabilization condition 
gives a feed back control which stabilizes the functioning 
of manipulator. This control can represent the same 
comportment of a motor. When the flexible manipulator 
model is stabilized, the fault detection and isolation of this 
system can be achieved to reduce accidents caused by 
faulty flexible manipulator. 
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