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Abstract 

The stochastic Kronecker Graph model can generate large 

random graph that closely resembles many real world networks. 

For example, the output graph has a  heavy-tailed degree 

distribution, has a (low) diameter that effectively remains 

constant over time and obeys the so-called densification power 

law [1]. Aside from this list of very important graph properties, 

one may ask for some additional information about the output 

graph: What will be the expected number of isolated vertices? 

How many edges, self loops are there in the graph? What will be 

the expected  number of triangles in a random realization? Here 

we try to answer the above questions. In the first phase, we 

bound the expected values of the aforementioned features from 

above. Next we establish the sufficient conditions to generate 

stochastic Kronecker graph with a wide range of interesting 

properties. Finally we show two phase transitions for the 

appearance of edges and self loops in stochastic Kronecker 

graph.  

 

Keywords: Stochastic Kronecker Graph, Isolated vertex, Edge 
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1. Introduction 

Suppose we have designed a communication protocol for 

the internet and are very eager to know how well it will 

perform in the next five years. What we need to do is to 

simulate our protocol on the graph that is unknown today 

and yet changing in the most unpredictable manner over 

the time. Fortunately enough, it has been observed that 

network in the real world does not grow/shrink in a truly 

random manner. Rather this evolves in such a way as to 

give birth to a graph that has a power law degree 

distribution (power laws have been found in the internet 

[2], the Web [3], citation graph [4], online social network 

[5] and in many others), small effective diameter (effective 

diameter has been found to be small for massive real world 

networks like the Internet, the Web and Online Social 

Network [6] ) and so on. So we need a suitable graph 

generator that can generate graphs with power law degree 

distribution and small effective diameter. Such a graph 

generator has recently been proposed in  [1] and it is based 

on a non-standard matrix operation, namely: the Kronecker 

product. The model starts with an initiator graph G1 having 

N1 nodes and E1 edges and (gradually) computes the k
th

 

Kronecker product Gk of it. The graph Gk would have N1
k
 

nodes and E1
k
 edges and thus exhibits a version of 

Densification Power Law. Additionally it will be a graph 

of small effective diameter. While the Kronecker power 

construction in the deterministic case yields graphs with a 

range of desired properties, its discrete nature produces 

staircase effects in the degrees and spectral quantities, 

simply because individual values have large multiplicities 

[1]. So authors in [1] propose a stochastic model of 

Kronecker product and empirically shows it can create 

smoother and more realistic graph than can be generated 

by its deterministic counter-part. Some basic properties 

(such as connectivity, existence of giant component, small 

diameter etc) of stochastic Kronecker graph have been 

thoroughly investigated in [7]. But we believe the theory of 

stochastic Kronecker Graph is still very young and many 

obvious questions about it are yet unanswered. Here we try 

to answer a few question regarding the number of isolated 

vertices, number of edges, self loops and triangles. In 

section: 3, we find the expected number of different 

features as a function of parameters of the stochastic 

Kronecker graph. Next as obvious corollaries of the above, 

we establish the sufficient conditions to generate graphs 

having no isolated vertex, no edges, no self loops and 

things like these. 

2. Stochastic Kronecker Graph Model 

The Kronecker graph model is defined in its full generality 

in [1]. But here we concentrate on a specific variant of 
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stochastic Kronecker graph with an initiator matrix of  size 

2. We adopt the definition provided in [7]. 

 

Definition:  A  (stochastic)  Kronecker  graph  is  defined  by 

 An  integer  k 

 A symmetric     matrix θ: θ[1,1] =  α, θ[1,0] =  

θ[0,1] = β,  θ[0,0] = γ where      β   
 . We  call θ the base or initiator matrix. 

 The graph has      number of vertices where 

each of the vertices is labeled with a unique bit 

vector of length  . Given two vectors of label ( 

                                     

the probability that the edge       exists is 

given by: ∏           independent of the all 

other edges. 

 The weight of a vertex is the number of 1 in its 

labeling. 

 

The restrictions on the parameters of the base matrix θ has 

been verified empirically in [1]. If these restrictions are 
maintained, namely when       , then the resultant 

Kronecker product does give rise to a (statistically) 

equivalent real world random network. 

3. Expected Feature Count 

In this section we will find out the expected number of 

isolated vertices, edges, self loops and triangles. As 

obvious corollaries to these expected feature count we then 

establish the sufficient condition to generate large random 

graphs with no isolated vertex, no edge and no self loops. 

We start this section with a theorem proved in [7].  

 

Theorem 1: The expected degree of a vertex of weight   is 

              . 

 

3.1. Expected Number of Isolated Vertices 

Theorem 2: The expected number of isolated vertices in 

stochastic Kronecker graph with parameter       is: 

  
 

     
 . 

 

Proof: For any vertex   of weight   and any other vertex  , 

let   be the number of bits where           and   be 

the number of bits where            . So there will be 

      bit positions where              and      

   bit  positions where            . As a result the 

probability of edge       to be present is given by: 

                      . The probability that edge 

      is not present is given by:        ̅̅ ̅̅ ̅̅ ̅̅ ̅    

              . Vertex   is indeed a member of a class of 

vertices ( let this class be     ) and there are ( 
 
)  (   

 
) 

identical vertices [ identical with respect to   ] in this class. 

So the probability that vertex   is not connected to any 

vertex of class     is given by: 

                  
 ( 

 ) (   
 )  

. The value of   varies from 

  to   and the value of   varies from   to    . As the 

edges in stochastic Kronecker graph exist (or not) 

independently of any other edges, the probability that 

vertex   is connected to none of the vertices over all 

possible class     is given by: 

 

∏ ∏                   
 ( 

 ) (   
 )  

    
   

 
     

 ∏ ∏  
 ( 

 ) (   
 )              

    
   

 
    [As            ] 

  ∏  
 ( 

 ) 
      ∑ (   

 )            
    

     

 ∏   ( 
 ) 

              
 
     

                 
  

               

 [As      ] 

 

Now we define indicator random variables 

                where    denotes the event that 

vertex   be isolated and   be the total number of isolated 

vertices in a random realization. Then,           

           .  

So, 

     ∑      
 
     ∑      

 
     ∑ ( 

 
)         

    

             
 

     
 .  

Corollary 1: If            then the stochastic 

Kronecker graph will have no isolated vertex with high 

probability
1
. 

3.2. Expected Number of Edges 

Theorem 3: The expected number of edges in stochastic 

Kronecker graph is:  
 

 
          . 

 

Proof: From theorem: 1, the expected degree of a vertex of 

weight   is given by:               . And there are 

( 
 
) number of vertices of weight  . Thus summing it over 

all  possible values of   we will be able to calculate the 

expected total degree of the resultant graph which equals: 

 

∑ ( 
 
)               

     

                       

 

                                                           
1 With high probability, we mean probability       . 
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Now from the degree sum formula [8] the total (expected) 

number of edges will be 
 

 
 times the total (expected) degree. 

So the expected number of edges  
 

 
          .  

 

Corollary 2: If          then the stochastic 

Kronecker graph will have no edges with high probability.  

3.3. Expected Number of Self Loops 

Theorem 4: The expected number of self loops in 

stochastic Kronecker graph is       . 

 

Proof: The probability that a vertex of weight   is 

connected to itself is       . Summing it over all possible 

values of   we get the total expected number of self loops 

(as the self loops exist independent of each other we can 

simply sum up their individual probability): 

 ∑ ( 
 
)       

    =       .  

 

Corollary 3: If       then the stochastic Kronecker 

graph will  have no self loops with high probability. 

3.4. Expected Number of Triangles 

Theorem 5: The expected number of triangles in 

stochastic Kronecker graph is:          ( 
   

   
 

   
   

   
  )

 

. 

 

Proof: Let us consider three arbitrary vertices v1, v2, v3 of 

weight l1, l2, l3 respectively. We now define four variables 

i1, i2, j1, j2 as follows: i1 = number of those bit positions 

where both v1, v2 have ‘1’ in their labeling; i2 = number of 

those bit positions where both v2, v3 have ‘1’ in their 

labeling; j1 = number of bit positions where v1 = 0, v2 = 1; 

j2 = number of bit positions where v2 = 0, v3 = 1. Now 

there will be (l1-i1) bit positions where v1 = 1, v2 = 0 and 

(l2-i2) bit positions where v2 = 1, v3 = 0; (k-l1-j1) bit 

positions where both v1, v2 have ‘0’ in their labeling and 

(k-l2-j2) bit positions where both of v2 and v3 have ‘0’ 

labeling. So the probability that both the edge (v1, v2) and 

(v2, v3) be present is given by:                      

                    . Also we notice  that          

and         . Now summing it over all possible values 

of             we will get the total expected number of two 

length paths: 

  ∑ ∑ (
  
  

) (
    

  
)                    

    

     

  

     

 ∑ ∑ (
  
  

) (
    

  
)                    

    

     

  

     
 

  ∑ ∑ (
  
  

) (
    

  
)                    

    

     

  

     

 ∑ (
  
  

)         ∑ (
    

  
)           

    

     

  

     
 

  ∑ ∑ (
  
  

) (
    

  
)                    

    

     

  

     

                  

  ∑ ∑ (
  
  

) (
    

  
)                    

    

     

  

     

 
       

       
       

  ∑ ∑  (
  
  

) (
    

  
)                    

    

     

  

     

 
          

          
       

         ∑ (
  
  

) ( 
   

   
)

  
  

     

      

   ∑ (
    

  
)

    

    

( 
   

   
)

  

         

       ( 
   

   
  )

  

( 
   

   
  )
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A two length path can be easily extended to a three length 

cycle by simply connecting the two end vertices by an edge. 

From the definition of stochastic Kronecker graph, we 

know that the maximum probability of the existence of an 

edge is    . So the expected number of triangles starting 

at v1 will be: 

       ( 
   

   
  )

  

( 
   

   
  )

    

    

Now we note that the above quantity indeed counts for 

some fictitious triangles of the form v1v1v1 or like v1v2v2. 

So the sign ‘ ’ should be replaced by ‘<’. We also note 

that every triangle is counted twice in the above: one in the 

clockwise and the other is the counter clock-wise ordering 

of its vertices. Now incorporating the above facts and 

summing it over all possible choices of v1, we will be able 

to get the total expected number of triangles in a random 

realization of stochastic Kronecker graph model and this 

quantity would be: 

  ∑ (
 

  
)

 

    

      ( 
   

   
  )

  

( 
   

   

  )
    

   

         ∑ (
 

  
)

 

    

( 
   

   
  )

  

( 
   

   

  )
    

 

         ( 
   

   
    

   

   
  )

 

 

4. Phase Transitions 

In this section we show two phase transitions in stochastic 

Kronecker graph. In proving the existence of phase 

transitions we need to resort to the second moment 

argument which simply says that: If X is a random variable, 

then         
 (  )      

     
, in particular,          

when 
     

     
  .  

4.1. Appearance of Edges 

Theorem 5: The appearance of edges in stochastic 

Kronecker graph exhibits a threshold at          . 

 

Proof: Let   be the total number of edges in a random 

realization of a stochastic Kronecker graph and      

  ( 
 
) be the indicator random variable for the existence 

of the  -th edge. Now from theorem: 3, we know when 

         then              . So when 

         we only need to show that at that instance, 

            (which will then complete the proof of 

existence of a phase transition at          utilizing 

the second moment argument). Here we notice that all the 

   are independent according to the definition of 

Kronecker graph. Hence,  

       (              (  ))
 

  

∑             ∑       ∑                

4.2. Appearance of Self Loops 

Theorem 6: The appearance of self loops in stochastic 

Kronecker graph exhibits a threshold at       . 

Proof: Let   be the total number of self loops in a random 

realization and         , be the indicator random 

variable for the existence of the  -the loop. Now from 

theorem: 4, we know that when       then  

            . So to complete the proof of existence 

of a threshold at        we need to show that when 

     , then            . Now we note that all the 

self loops exist independent of one another. So we have: 

 

                        
  

= ∑            ∑       ∑             
 

5. Conclusion 

The stochastic Kronecker model of graph generation is 

very new and most of the properties of graphs generated by 

this model are yet to be investigated. Here we try to 

explore some of its properties namely expected number of 

isolated vertex, edge, self loop, triangles along with two 

phase transitions. Based on these expected feature counts, 

we then establish some of the sufficient conditions to 

generate graphs with an interesting set of properties. 
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