
Tuning the SQL Query in order to Reduce Time

Consumption
 Mr.P.Karthik1, Prof.G.Thippa Reddy2, Mr.E.Kaari Vanan3

1M.Tech Software technology

School of Information Technology and Engineering

VIT University

Vellore, Tamil Nadu, India-632014

2Assistant Professor

School of Information Technology and Engineering

VIT University

Vellore, Tamil Nadu, India-632014

3M.Tech Software technology

School of Information Technology and Engineering

VIT University

Vellore, Tamil Nadu, India-632014

Abstract

The optimizer examines parsed and normalized queries,

and information about database objects. The input to the

optimizer is a parsed SQL query and statistics about the

tables, indexes, and columns named in the query. The

output from the optimizer is a query plan. The query plan

is compiled code that contains the ordered steps to carry

out the query, including the access methods (table scan or

index scan, type of join to use, join order, and so on) to

access each table. Using statistics on tables and indexes,

the optimizer predicts the cost of using alternative access

methods to resolve a particular query. It finds the best

query plan – the plan that is least the costly in terms of I/O

[1].For many queries, there are many possible query plans.

Adaptive Server selects the least costly plan, and compiles

and executes it. The query process very faster and less cost

per query. This query optimization gives the High

performance of the system and less stress on the database

when data transmission occurs and the efficient usage of

database engine and lesser memory consumed.

Keywords: Optimization, Indexing, Normalization, Query

Processing, Control methods and search.

1. Introduction

Query tuning is a method of tuning the query and re-

writing a query such that it runs faster. It includes adding

an index changing the schema or modifying transaction

links etc. There are two ways to see that query is running

slowly.

You look at its query plan and see that relevant indexes are

not used. (The query plan is the method chosen by the

optimizer to execute the query).

1.1 Importance of Tuning

 Reduce response time for SQL processing

 To find a more efficient way to process workload

 Improve search time by using indexes

 Join data efficiently between 2 or more tables

1.2 Role of Hardware & Design [2]

 Memory, Disk & CPU speed can improve

 performance

 Increased hardware does not always result

 into better performance

 Poor application design accounts for over 70% of

performance issues

 Do Performance design review early in development

2. Tuning Individual Oracle Statements

The acronym SQL stands for Structured Query Language.

SQL is an industry standard database query language that

was adopted in the mid-1980s.[4] It should not be

confused with commercial products such as Microsoft

SQL Server or open source products such as MySQL, both

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 418

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

of which use the acronym as part of the title of their

products.

2.1 Do this before you start individual SQL

statement Tuning

This broad-brush approach can save thousands of hours of

tedious SQL tuning because you can hundreds of queries

at once. Remember, you MUST do this first, else later

change to the optimizer parameters or statistics may un-

tune your SQL.

Remember, you must ALWAYS start with system-level

SQL Tuning, else later changes might undo your tuned

execution plans:

 Optimize the server kernel - You must always tune

your disk and network I/O subsystem (RAID, DASD

bandwidth, network) to optimize the I/O time,

network packet size and dispatching frequency.

 Adjusting your optimizer statistics - You must

always collect and store optimizer statistics to allow

the optimizer to learn more about the distribution of

your data to take more intelligent execution

plans. Also, histograms can hypercharge SQL in

cases of determining optimal table join order, and

when making access decisions on skewed WHERE

clause predicates.

 Adjust optimizer parameters - Optimizer

optimizer_mode, optimizer_index_caching,

optimizer_index_cost_adj.

 Optimize your instance - Your choice

of db_block_size, db_cache_size, and OS parameters

(db_file_multiblock_read_count, cpu_count, &c), can

influence SQL performance.

 Tune your SQL Access workload with physical

indexes and materialized views - Just as the 10g

SQL Access advisor recommends missing indexes and

missing materialized views, you should always

optimize your SQL workload with indexes, especially

function-based indexes, a Godsend for SQL tuning.

Oracle11g Note: The Oracle 11g SQL Performance

Analyzer (SPA), is primarily designed to speed up the

holistic SQL[8] tuning process.

Once you create a workload (called a SQL Tuning Set, or

STS), Oracle will repeatedly execute the workload, using

sophisticated predictive models (using a regression testing

approach) to accurately identify the salient changes to

SQL execution plans, based on your environmental

changes. Using SPA, we can predict the impact of system

changes on a workload, and we can forecast changes in

response times for SQL after making any change, like

parameter changes, schema changes, hardware changes,

OS changes, or Oracle upgrades. For details, see the

book Oracle11g new Features.

Once the environment, instance, and objects have been

tuned, the Oracle administrator can focus on what is

probably the single most important aspect of tuning an

Oracle database: tuning the individual SQL statements. In

this final article in my series on Oracle tuning, I will share

some general guidelines for tuning individual SQL

statements to improve Oracle performance.

3. Oracle SQL Tuning goals

Oracle SQL tuning is a phenomenally complex subject.

Entire books have been written about the nuances of

Oracle SQL tuning; however, there are some general

guidelines that every Oracle DBA follows in order to

improve the performance of their systems. Again, see the

book "Oracle Tuning:[3] The Definitive Reference", for

complete details. The goals of SQL tuning focus on

improving the execution plan to fetch the rows with the

smallest number of database "touches" (LIO buffer gets

and PIO physical reads).

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 419

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

http://www.rampant-books.com/book_1002_oracle_tuning_definitive_reference_2nd_ed.htm

 Remove unnecessary large-table full-table scans-
Unnecessary full-table scans cause a huge amount of

unnecessary I/O and can drag-down an entire

database. The tuning expert first evaluates the SQL

based on the number of rows returned by the query.

The most common tuning remedy for unnecessary

full-table scans is adding indexes. Standard b-tree

indexes can be added to tables, and bitmapped and

function-based indexes can also eliminate full-table

scans. In some cases, an unnecessary full-table scan

can be forced to use an index by adding an index hint

to the SQL statement.

 Cache small-table full-table scans- In cases where a

full-table scan is the fastest access method, the

administrator should ensure that a dedicated data

buffer is available for the rows. In Oracle8 and

beyond, a small table can be cache by forcing it into

the KEEP pool.

 Verify optimal index usage- Oracle sometimes has a

choice of indexes, and the tuning professional must

examine each index and ensure that Oracle is using

the proper index.

 Materialize your aggregations and summaries for

static tables - One features of the Oracle 10g SQL

Access advisor is recommendations for new indexes

and suggestions [6] for materialized

views. Materialized views pre-join tables and pre-

summarize data, a real silver bullet for data mart

reporting databases where the data is only updated

daily. Again, see the book "Oracle Tuning: The

Definitive Reference", for complete details on SQL

tuning with materialized views.

These are the goals of SQL [9] tuning in a nutshell.

However, they are deceptively simple, and to effectively

meet them, we need to have a thorough understanding of

the internals of Oracle SQL. Let's begin with an overview

of the Oracle SQL optimizers.

4. Rules Followed for Query Tuning in this

Project

 Rewrite the query such that indexes are used properly

1. 'or' should be written with a union

for e.g. instead of writing where a=1 or b=3 write

where a=1 union b=3
2. relational operator replace with between

for e.g. instead of writing where a>2 and b<5 write

where a between 2 and 5

3. There shouldn't be any formulae along with the

attributes in where clause

for e.g. where 2*a=40 this should be removed

wherever found.

 Avoid using Join if it is not necessary[5]

for e.g. suppose SID attribute in table Sailors is a primary

key that refers to another attribute SID in table Reserved

so the query is – Select S.SID from Sailors S, Reserved R

where S.SID=R.SID instead of writing this the query

should be changed to Select R.SID from Reserve R;

 Avoid the keyword DISTINCT if it is not necessary for

e.g. Select Distinct ssnum from Employee where dept =

'Information Technology' here there is no need of writing

DISTINCT keyword because ssnum is itself a primary

key.

 Avoid using same nested query for e.g. there

are 2 tables Employee and Techdept

and the query is Select ssnum from Employee where dept

in (Select dept from Techdept); instead of writing this we

can write select ssnum from Employee, Techdept where

Employee.dept = Techdept.dept;

 Avoid using temporary relations if not necessary but

where there is necessity there it should be used like- a

query for finding all information department employees

who earn more than $40000 is written as Select * into

Temp from Employee where Salary > 40000; then the

next query is Select ssnum from Temp where Temp.dept =

'Information Systems'; so there is no need for using aTemp

here and it can be changed to Select ssnum from

Employee where Employee.dept = 'Information System'

and Salary>40000;[10].

 If a query is long then break it into parts

for e.g. select * from T1 T2 where <condition1> group by

<attribute> having <condition2>....this should be written

as where select * from T1 T2 where <condition2> [11]it

will automatically group and show no need of writing

groupby.

5. Proposed Work:

There are three programs in our project. QueryTuning.java

contains the main function which calls another two java

programs Tune.java and Database.java. Tune.java

implements all the rules described above and the

DataBase.java does the required database connection and

fetches data from the SQL tables.[12] We have created

two tables named employee and department which are

shown below in the snapshot.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 420

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

http://www.dba-oracle.com/tips_rittman_dbazine_sqlaccess.htm
http://www.dba-oracle.com/tips_rittman_dbazine_sqlaccess.htm
http://www.dba-oracle.com/tips_rittman_dbazine_sqlaccess.htm
http://www.rampant-books.com/book_1002_oracle_tuning_definitive_reference_2nd_ed.htm
http://www.rampant-books.com/book_1002_oracle_tuning_definitive_reference_2nd_ed.htm
http://www.rampant-books.com/book_1002_oracle_tuning_definitive_reference_2nd_ed.htm

Fig. 1 Tables used in the project

6. Results and Discussion:

Fig. 2 Change OR to UNION

Fig. 3 Remove NESTED SELECT statement

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 421

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 4 Change AND to BETWEEN

Fig. 5 Remove use of DISTINCT keyword where not necessary

7. Conclusion:

In this project we discussed about the ways of tuning an

SQL query in such a manner that it decreases the time

consumed by the query during its runtime and also filter

some keywords that are not needed to use in the query like

for example, the use of DISTINCT keyword has no

meaning when we have a search based on a primary key

attribute, etc. Also tuning the SQL query increases the

performance of the Select, Update and other Data

Definition, Data Manipulation and Data Control

operations. The main area where further modifications can

be done is doing an SQL query optimization in the parallel

or distributed databases where the databases are stores in

different locations geographically separated. Here there

will be a requirement of more complex algorithms for

tuning the SQL query.

References

[1] Apers, P.M.G., Hevner, A.R., Yao, S.B. Optimization

 Algorithms for Distributed Queries. IEEE Transactions

 on Software Engineering, Vol 9:1, 1983.

[2] Bancilhon, F., Maier, D., Sagiv, Y., Ullman, J.D.

 Magic sets and other strange ways to execute logic

 programs. In Proc. of ACM PODS, 1986.

[3] Bernstein, P.A., Goodman, N., Wong, E., Reeve, C.L,

 Rothnie, J. Query Processing in a System for

 Distributed Databases (SDD-1), ACM TODS 6:4 (Dec

 1981).

[4] Chaudhuri, S., Shim K. An Overview of Cost-based

 Optimization of Queries with Aggregates. IEEE DE

 Bulletin, Sep. 1995. (Special Issue on Query

 Processing).

[5] Chaudhuri, S., Shim K. Including Group-By in Query

 Optimization. In Proc. of VLDB, Santiago, 1994.

[6] Chaudhuri, S., Shim K. Query Optimization with

 aggregate views: In Proc. of EDBT, Avignon, 1996.

[7] Chaudhuri, S., Dayal, U. An Overview of Data

 Warehousing and OLAP Technology. In ACM

 SIGMOD Record, March 1997.

[8] Chaudhuri, S., Shim K. Optimization of Queries with

 Userdefined Predicates. In Proc. of VLDB, Mumbai,

 1996.

[9] Chaudhuri, S., Krishnamurthy, R., Potamianos, S.,

 Shim K. Optimizing Queries with Materialized Views.

 In Proc. of IEEE Data Engineering Conference,Taipei,

 1995.

[10] Chaudhuri, S., Gravano, L. Optimizing Queries over

 Multimedia Repositories. In Proc. of ACM SIGMOD,

 Montreal, 1996.

[11] Chaudhuri, S., Motwani, R., Narasayya, V. Random

 Sampling for Histogram Construction: How much is

 enough In Proc. Of ACM SIGMOD, Seattle, 1998.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 422

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Mr.P.Karthik B.E., (M.Tech)., He

is pursuing M.Tech in the stream of

Software Technology at VIT

University, Vellore, Tamil Nadu,

India and currently doing internship

with Alcatel-Lucent, Chennai. He

received Bachelor degree in

Computer Science and Engineering

from Anna University of

Technology, Coimbatore, Tamil

Nadu, India. He presented research

papers in International and National

Conferences and his interested areas

are Cloud Computing and Databases.

Mr.E.Kaari vanan B.E., (M.Tech).,
graduated from Veltech Multitech

Engineering College (Affiliated to

Anna University Chennai)in

2011.presently pursuing M.Tech

Software Technology at VIT

UNIVERSITY, Vellore, Tamil Nadu,

India and presented research papers

in International and National

Conferences, his interested areas are

Object Oriented Systems and

Databases.

Prof. Thippa Reddy.G, M.E.,(CSE)

He is currently working as an

Assistant Professor at VIT

University. He has an experience of

above 6 years in the teaching field.

He received his Masters Degree in

Computer Science and Engineering

from Sasurie College of Engineering,

affiliated to Anna University,

Coimbatore in the year 2010. He

received his Bachelors Degree in

Computer Science and Engineering

in the year 2003 from SVH College

of Engineering, affiliated to

Nagarjuna University, Guntur. He

presented research papers in several

International and National

Conferences. His interested areas are

Cloud Computing, Databases, and

Theory of Computation.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 423

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

