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files enrich the detector set. But the SVM has more 
stable detection rates than the RBF when there’s a 
lack of training data.  

Fig. 11 shows that RBF network has better 
performance than SVM. The RBF network algorithm 
has the advantages of fast learning, high accuracy and 
strong self-adapting ability with the large amount of 
training data, so it has the highest detection rate in 
most datasets. Meanwhile, the SVM algorithm has a 
stable detection rate and only needs a small quantity 
of training data to train the classifier.  

B. Summary 
Based on the knowledge of artificial immune 

system, the paper proposed the general model for a 
virus detection system. Using basic theories such as 
negative selection, clonal selection as well as the r-
Contiguous matching rule, a virus detection system 
has been set up successfully. To increase the 
competence of detection, two classifiers are 
integrated to the system.  
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