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Abstract
Soft-decision decoding is an NP-hard problem with great interest
to developers of communication systems. We present an efficient
soft-decision decoder of linear block codes based on compact
genetic algorithm (cGA) and compare its performances with
various other decoding algorithms including Shakeel algorithm.
The proposed algorithm uses the dual code in contrast to Shakeel
algorithm which uses the code itself. Hence, this new approach
reduces the decoding complexity of high rates codes. The
complexity and an optimized version of this new algorithm are
also presented and discussed.

Keywords: Compact genetic algorithm, soft-decision decoding,
Error correcting codes, Shakeel algorithm, Chase algorithm,
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1. Introduction

In digital communication, one of the important issues is
how to transmit the message from the source to the
destination as faithfully as possible. One of the most used
techniques and also the most convenient is the adoption of
error-correcting codes. Indeed the codes are used to
improve the reliability of data transmission over
communication channels susceptible to noise. The coding
techniques are based on the following principle: add the
redundancy to the transmitted message to obtain a vector
called "code word". Decoding techniques are based on the
algorithms witch try to find the most likely transmitted
code word related to the received one (see Fig. 1).

Decoding algorithms are classified into two categories:
hard-decision and soft-decision algorithms. Hard-decision
algorithms work on a binary form of the received
information. In contrast, soft decision algorithms work
directly on the received symbols [1].

Fig. 1. A simplified communication system model.

Soft-decision decoding is an NP-hard problem and was
approached in different ways. Recently artificial
intelligence (AI) techniques were introduced to solve this
problem. These techniques show very good results. Among
related works, one work A* algorithm to decode linear
block codes [2], another one uses genetic algorithms (GA)
for decoding linear block codes [3] and a third one uses
compact genetic algorithms to decode BCH codes[4].
Maini and al. [5] were the first, according to our
knowledge, to introduce Genetic algorithms in linear block
codes decoding. Hebbes and al. [6] worked on the
integration of genetic algorithms in a classical turbo codes
decoder, and Durand and al. [7] worked on the
optimization of turbo decoding by optimizing the
interleaver with a genetic algorithm. Furthermore the
deployment of Artificial Neural Networks (ANN), to train
the system for higher fault tolerance in OFDM is used by
Praveenkumar [8]. There are also other works [9-11] based
on AI trying to solve problems related to coding theory.
All these decoders based on GA use the generator matrix
of the code; this fact makes the decoding very complicated
for codes of high rates.
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1. Initialize the probability vector
For i := 1 to l do p[i] := 0.5;

2. Generate two individuals from the probability vector
a := generate(p);
b := generate(p);

3. Let them compete
winner, loser := compete(a, b);

4. Update the probability vector towards the better one
For i := 1 to l do

if winner[i]≠ loser[i] then
if winner[i] = 1 then p[i] := p[i] + 1/

else  p[i] := p[i] – 1/
5. Check if the vector has converged
For i := 1 to l do

if p[i] > 0 and p[i] < 1 then
return to step 2;

We have investigated the use of genetic algorithms in
different ways. In [12], GA is used to search good double-
circulant codes. In [13], a new soft decoder of block codes
based on the classical genetic algorithm with very good
performances was presented.

The Compact Genetic Algorithm Decoder (CGAD) is a
significant contribution to soft-decision decoding. In effect
a comparison with other decoders, that are currently the
most successful algorithms for soft decision decoding,
shows its efficiency. This new decoder can be applied to
any binary linear block code, particularly for codes without
algebraic decoder.  Unlike Chase algorithm which needs an
algebraic hard-decision decoder. Further, it uses the dual
code and work with the parity-check matrix. The later
makes them less complicated for codes of high rates. In
order to show the effectiveness of this decoder, we applied
it for BCH, QR and RS codes over AWGN transmission
channel.

The remainder of this paper is organized as follows: in
section 2, we introduce the compact genetic algorithm.  In
section 3, CGAD, our genetic algorithm for decoding, is
described. Section 4 reports the simulation results and
discussions .In sectionI 5, we study the complexity of our
algorithm.The optimized version of the proposed algorithm
will be presented in section 6. Finally, Section 7 presents
the conclusion.

2. The Compact Genetic Algorithm

The Compact Genetic Algorithm (cGA), proposed by
Harik and al. [19], is a special class of genetic algorithms.
It represents the population as a probability distribution
over the set of solutions; thus, the whole population do not
need to be stored. At each generation, cGA samples
individuals according to the probabilities specified in the
probability vector. The individuals are evaluated and the
probability vector is updated towards the better individual.
Hence, its limitation hinges on the assumption of the
independency between each individual bit. The cGA has an
advantage of using a small amount of memory. The pseudo
code of cGA is shown in Fig. 2. The parameters are the
step size )/1(  and the chromosome length (l).

First, the probability vector p is initialized to 0.5. Next,

the individuals a and b are generated from p . The

fitness values are then assigned to a and b . The

probability vector is updated towards the better individual.
In the population of size , the updating step size is

Fig.2 Pseudo code of cGA

/1 ; The probability vector is increased or decreased by
this size. The loop is repeated until the vector convergence.

3. The Algorithm Proposed

Consider a linear block code C of length n , dimension

k and minimum Hamming distance ,d defined over the

Galois field of order 2 (GF (2)). Also, let H be the parity

matrix of C . It is assumed that code words of C are
modulated by a BPSK modulator and transmitted over an
AWGN channel. Let ),,,( 21 nrrrr  be the
received word from the output of channel. Upon receiving
the vector r , the demodulator makes hard-decisions iw ,

,,,1 ni 


 


0,0
,0,1

i

i
i r

r
w

The receiver then calculates the syndrome wH and

accepts w as the most likely transmitted codeword if the

syndrome 0wH . If the syndrome 0wH , the soft
decoding process begins as described below:
Step 1: Sorting the sequence r in such a way that

1 ii rr for ni 1 . Further, permute the

coordinates of r to ensure that the last )( kn 
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positions of r are the least reliable linearly independent

positions. Call this vector 'r and let  the permutation

related to this vector   rr ' . Apply the permutation

 to H to get a new check

matrix     )( '' HHIAH kn   .

Step 2: Define the objective function:
An individual is a set of k bits. Let 'E be an individual,
z be the quantization of 'r , S be the syndrome of z
such that 'zHS  , 1S be an )( kn  -tuple such that

AES '
1  where A is sub matrix of 'H , and 2S be

an )( kn  -tuple such that .12 SSS  We form the

E error pattern   such that ),( "' EEE  , where 'E is

the chosen individual and 2" SE  . Then, Ez  is a
code word.
The fitness function is the correlation discrepancy between
the permuted received word and the estimated error such
that:

   1
1,1

'
' 




n

Ej
jr

j

rEf

Step 3: Map 'r onto probability vector kRpp ,
The probability vector p defines the starting point for

the genetic search over the k -dimensional vector

space kF2 . It is expected that this search would terminate

(converge) at a vertex of the k -dimensional hypercube.

An obvious starting point is the center point of the search
space, i.e.  kp 15.0 . However, the search time and

complexity can be greatly reduced if the search is initiated
from a point close to the solution vector. The following
steps describe a method that uses soft information of the
received vector to determine a starting point close to the
optimum solution.
Step 4: Generate a pair of binary random vectors 1a , 1b .

A pair of vectors kFba 211 ,  is generated with the

following probabilities:
,)1( ii paP 

.1)0( ii paP 
These vectors can be generated using an uniform random
number generator )1,0(U , as follows:






.,0

)1,0(1
otherwise

pU
a i

i



Step 5: Evaluate ( )iF a . This step evaluates the fitness

values of 1a and 1b using the objective function (1).

The vector with the greater value is identified as the
winner  while the vector with the lesser value is

identified as the loser  .

Step 6: Update the probability vector p .

The vector p , is updated towards the fitter one

(winner ) using the following rules:

 if  1,01  iiii ppthenand

 if  1,10  iiii ppthenand

 if .updatedbewillnotpthen iii  

The updating step size 
1 is a user defined parameter

which is directly related to the performance of the decoder.

Step 7: Converged? i.e.  10  ii porp
If No, go to Step 4.
If yes, the converged p gives the final solution for the

objective function (1).
Step 8: Encode p and apply inverse permutation.

Remark:

In step 1 of the CGAD, in order to have a light algorithm
we apply the Gaussian eliminations on the independent
columns corresponding to the least reliable positions,
without the permutation. This optimization is not used in
other similar works [3, 4, 5].

4. Performances Study

In order to show the effectiveness of CGAD, we do
intensive simulations. For transmission we used an AWGN
channel with a BPSK modulation. The simulations where
made with default parameters outlined in Table 1.
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Table 1: Default parameters.

Parameter Value


1 1/500

Default code BCH(63,51,5)

Channel AWGN

Modulation BPSK

Minimum  number  of
transmitted blocks 1000

Minimum number of  residual
bit errors 200

3.1 Effect of Step Size on Performances

We illustrate the relation between bit error probability and
the step size of CGAD.
The Fig. 3 emphasizes the influence of the step size on the
performances of CGAD. The results show that decreasing


1 also improves BER performances. When decreasing

the step size from 1/50 to 1/500 we can gain 2 dB at 10-4.

1 2 3 4 5 6 7 8
10-5

10-4

10-3

10-2

10-1

100

SNR(dB)

B
E

R

1/ =1/50
1/ =1/100
 1/ =1/500

Fig. 3.  Effect of step size on performances

3.2 Comparison of CGAD versus other decoding
algorithms

In this subsection, we compare the performances of CGAD
with other decoders. (Chase-2 decoding and Shakeel
decoding algorithm).The performances of CGAD are
better than Chase-2 algorithm as shown in Fig. 4 for
BCH(127,113,5) code.

According to this figure, we observed that CGAD is
comparable to Shakeel algorithm. CGAD outperforms
chase-2 algorithm by 0.5 dB at 10-4 and is comparable to
Shakeel algorithm as shown in Fig. 5.

1 1.5 2 2.5 3 3.5 4 4.5 5
10-4

10-3

10-2

10-1

100

SNR(dB)

B
E

R

CGAD
Shakeel decoder
Chase-2 decoder

Fig. 6. Performances of Chase-2, CGAD and Shakeel algorithms for
RS(15,7,9) code.

The Fig. 6 shows the performances of CGAD, Shakeel and
Chase-2 algorithms for non-binary RS(15,7,9) code. We
observe that our decoder is slightly better than the others
algorithms at 10-3.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
10-4

10-3

10-2

10-1

SNR(dB)

B
E

R

CGAD
Shakeel decoder

Fig. 7.  Performances of CGAD and Shakeel algorithm for QR(71,36,11)

5. Complexity Analysis

5.1 Complexity Study

Let n be the code length, k the code dimension,

and t the error correction capability of a linear block

code C. Let cT be the average number of generations.

The Table 1 shows the complexity of the CGAD and
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Shakeel decoder. The complexity is polynomial in k ,

)( kn  and cT for CGAD and k , n and

cT for Shakeel algorithm. We notice also that, our

decoder is less complex than the Shakeel decoder for
codes with a high rate )( nkn  .

Table 2: The complexity of  CGAD and Shakeel algorithms

Algorithm Complexity

CGAD  )( knkTO c 

Shakeel decoder  knTO c

5.2 Experimental Study

5.2.1 Average number of generations required for
convergence

The Fig. 8 shows the evolution of generations average
number required for convergence (ANG) of CGAD and
Shakeel algorithm versus SNR. We notice that the ANG
decreases with increasing of SNR for CGAD, however it is
stable for Shakeel algorithm (SA).
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Fig. 8. The average number of generations required for convergence per
SNR

5.2.2 Time Complexity

The Fig. 9 shows the time complexity of both genetic
decoders. The time complexities are derived from
calculating the run time (T) of 1000 blocks.
This figure shows that the time complexity of the Shakeel
decoder is almost constant along the whole or SNR, for
against it decreases with increasing SNR for our decoder.

And it also shows that our decoder is less complex than the
Shakeel algorithm (SA).
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Fig. 9.  The complexity of the two genetic decoders

5.3 Evolution of Hamming distance between two
individuals with cGA generations.

The Fig. 10 illustrates the evolution of Hamming distance
between the two individuals generated in step 4 of CGAD
versus cGA generation’s number (an average number for
1000 received block). It shows that the average Hamming
distance is stable for the first 1000 generations, then it
decreases until achieving zero value. This confirms the
convergence of our algorithm.
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Fig. 10  The  Hamming distance between two individuals versus
number of generations for CGAD.
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6. Optimized CGAD

According to our simulations, we observed that the CGDA
takes more time to converge the last remaining positions of
vector p, especially on the last position. Therefore, we
thought to optimize our decoder by modifying the stopping
criterion. The new algorithm (OCGAD) stops when there
is a single position not yet converged (before the end of the
convergence of any position vector). As a result, we assign
the value 1 if the latter to its probability is greater than 0.5
and 0 otherwise.

6.1 Time complexity of OCGAD versus CGAD

The Fig. 11 shows the time complexity of CGAD and
OCGAD. The time complexities are derived from
calculating the run time (T) of 1000 blocks.
This figure shows that OCGAD presents a gain of about
40% in terms of time compared to CGAD.
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Fig. 11. The time complexity of CGAD and OCGAD

6.2 The average number of generations required for
convergence

The Fig. 12 shows the evolution of generations average
number required for convergence (ANG) of CGAD and
OCGAD versus SNR. We notice that the ANG of OCGAD
is smaller than ANG of CGAD for all SNR. (Reduction of
approximately 40% of generations).
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Fig. 12 The average number of generations required for convergence
per SNR of CGAD and OCGAD

6.3 The performances of CGAD and OCGAD for
BCH (63, 51, 5) code.

The Fig. 13 shows the performances of OCGAD and
CGAD for BCH(63,51,5) code. We observe that OCGAD
is slightly better than CGAD for SNR=6 dB.
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OCGAD

Fig. 13. The performances of  CGAD and OCGAD  for BCH(63,51,5)
code

6.4 The performances of OCGAD and MLD for
BCH(63,51,5) code.

The performances of OCGAD and MLD (Maximum
Likelihood Decoding) for BCH(63,51,5) code, are shown
in Fig. 14. From the simulation results, we observe that the
performances of OCGAD are near that those of MLD.
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Fig. 14. The performances of CGAD and OCGAD for BCH (63,51,5)
code

7. Conclusions

In this paper, we have proposed a new decoder based on
cGA for linear block codes.
The simulations applied on some BCH, QR, and RS codes,
show that the proposed algorithm is an efficient soft-
decision decoding algorithm. Emphasis was made on the
effect of the step size cGA parameter on the decoder
performances. A comparison was done in terms of bit error
rate performances and complexity aspects of the decoder.
The proposed algorithm has an advantage compared to
competitor decoder developed by Shakeel. Also, the
optimized version of our algorithm has given good results
in terms of performances and complexity.
The obtained results will open new horizons for the
artificial intelligence algorithms in the coding theory field.

References

[1] G. C. Clarck, J.B. Cain, "Error-Correction Coding for Digital
Communications", New York Plenum, 1981.

[2] Y. S. Han, C. R. P. Hartmann, and C.-C. Chen, "Efficient
maximum-likelihood soft-decision decoding of linear block
codes using algorithm A*", Technical Report SUCIS-91-42,
Syracuse University, Syracuse, NY 13244, December 1991.

[3] A. C. M. Cardoso, D. S. Arantes, "Genetic Decoding of
Linear Block Codes", Congress on Evolutionary
Computation, Washington, DC, USA,1999.

[4] I. Shakeel, "GA-based Soft-decision Decoding of Block
Codes", IEEE 17th International Conference on
Telecommunications, pp.13-17, Doha, Qatar, 4-7 April 2010.

[5] H.S. Maini, K. G. Mehrotra,C. Mohan, S. Ranka, "Genetic
Algorithms for Soft Decision Decoding of Linear Block
Codes", Journal of Evolutionary Computation,Vol.2, No.2,
pp.145-164, Nov.1994.

[6] L. Hebbes, R. Malyan, A. Lenaghan, "Genetic Algorithms for
Turbo Codes," IEEE EUROCON 2005, November,Belgrade,
2005.

[7] N. Durand, J.-M Alliot, B. Bartolomé, " Turbo Codes
Optimization Using Genetic Algorithms", Evolutionary
Computation, 1999. CEC 99. in Proc, IEEE Congress on
Evolutionary Computation, Vol. 2, pp. 119-125, 1999.

[8] Padmapriya Praveenkumar, Rengarajan Amirtharajan, K.
Thenmozhi and John Bosco Balaguru Rayappan, 2012.
"Regulated OFDM-Role of ECC and ANN: A Review",
Journal of Applied Sciences, 12: 301-314.

[9] Rajbhandari, Sujan, Ghassemlooy, Zabih and Angelova,
"Adaptive ‘soft’ sliding block decoding of convolutional code
using the artificial neural network", Transactions on
Emerging Telecommunications Technologies. ISSN 2161-
3915, Maia, 2012.

[10] Johnny W. H. Kao, Stevan M. Berber, and Abbas Bigdeli, "A
General Rate K/N Convolutional Decoder Based on Neural
Networks with Stopping Criterion", Advances in Artificial
Intelligence, vol. 2009, Article ID 356120, 11 pages, 2009.

[11] J.Orth and S.Houghten, "Optimizing the Salmon Algorithm
for the Construction of DNA Error-Correcting Codes", 2011
IEEE Symposium on Computational Intelligence in
Bioinformatics and Computational Biology, April 2011.

[12] A. Azouaoui, M. askali, M. Belkasmi, "A genetic algorithm to
search of good double-circulant codes", IEEE Multimedia
Computing and Systems (ICMCS), 2011 International
Conference, Ouarzazate, Morocco, April 2011.

[13] A. Azouaoui, M. Belkasmi and A. Farchane, "Efficient Dual
Domain Decoding of Linear Block Codes Using Genetic
Algorithms", Journal of Electrical and Computer Engineering,
vol. 2012, Article ID 503834, 12 pages.

[14] A. Azouaoui and Dr. M. Belkasmi, "A Soft Decoding of
Linear Block Codes by Genetic Algorithms", International
Conference on Intelligent Computational Systems
(ICICS'2012) Jan. 7-8, 2012, Dubai, UAE.

[15] M. Belkasmi, H. Berbia, F. Elbouanani, "Iterative decoding of
product block codes based on the genetic algorithms",
proceedings of 7th International ITG Conference on Source
and Channel Coding, 14-16 Janvier,2008.

[16] D. E. Goldberg, "Genetic Algorithms in Search, Optimization,
and machine Learning", New York: AddisonWiesle, London,
1989.

[17] D. Chase, "A Class of Algorithms for Decoding Block Codes
with Channel Measurement", 1972.Information, IEEE Trans.
Inform. Theory, vol, 18, pp. 170–181, January.

[18] H. Morelos-Zaragoza, "The Art of Error Correcting Coding",
Second Edition Robert, John Wiley & Sons, Ltd. ISBN : 0-
470-01558-6, 2006.

[19] G. R. Harik, F. G. Lobo and D. E. Goldberg, "The compact
genetic algorithm", in IEEE Transactions on Evolutionary
Computation, 1999, Vol. 3, No. 4, 287-2

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 437

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



Ahmed Azouaoui received his license in Computer Science and
Engineering in June-2001 and Master in Computer Science and
telecommunication from University of Mohammed V - Agdal,
Rabat, Morocco in 2003. Currently he is doing his PhD in
Computer Science and Engineering at Department of Computer
Science ENSIAS (Ecole Nationale Superieure d’Informatique et
d’Analyse des Systems), Rabat, Morocco. His areas of interest
are Information, Coding Theory and Artificial Intelligence.

Ahlam Berkani received his ingeneer diploma in
Telecommunications and networks from ENSAO (Ecole Nationale
des Sciences Appliquees d’Oujda), Morocco in 2010. Actually, she
is preparing his PhD in Computer Science and Engineering at
Department of Computer Science ENSIAS (Ecole Nationale
Suprieure d’Informatique et d’Analyse des Systmes), Rabat,
Morocco. His areas of interest are Information and Coding theory,
and Artificial Intelligence.

Pr. Mostafa Belkasmi is a professor at ENSIAS (Ecole Nationale
Superieure d’Informatique et d’Analyse des Systmes,Rabat); head
of Telecom and Embedded Systems Team at SIME Lab.He had
PhD at Toulouse University in 1991(France). His current research
interests include mobile and wireless communications,
interconnections for 3G and 4G, and Information and Coding
Theory.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 438

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.




