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Abstract 

The paper is focused especially on presenting possibilities of 
applying artificial neural networks at creating   the optimal model 
PEM fuel cell. Various ANN approaches have been tested; the 
back-propagation feed-forward networks show satisfactory 
performance with regard to cell voltage prediction. The model is 
then used in a power system for residential application. This 
models include an ANN fuel cell stack model, reformer model 
and DC/AC inverter model. Furthermore a neural network 
(NNTC) and fuzzy logic (FLC) controllers are used to control 
active power of PEM fuel cell system. The controllers modifies 
the hydrogen flow feedback from the terminal load. The validity 
of the controller is verified when the fuel cell system model is 
used in conjunction with the NNT controller to predict the 
response of the active power to: (a) computer-simulated step 
changes in the load active and reactive power demand, and (b) 
actual active and reactive load demand of a single family 
residence. Simulation results confirmed the high performance 
capability of the neural network (NNTC) to control power 
generation. 
Keywords: Fuel Cell; Polymer-electrolyte fuel cell PEMFC; 
Electrochemical model; Modelling and Simulation; Fuzzy Logic 
Controller (FLC); Neural Network controller (NNTC) 

1. Introduction 

Proton exchange membrane (PEM) fuel cell is one of 
the promising technologies for alternative power source of 
residential power generation in future. However, a fuel cell 
system is large, complex and expensive Designing and 
building prototypes is difficult and expensive. The 
alternative is modelling the fuel cell system for the 
simulation. The modelling of fuel cell is very important for 
power system, because it facilitates the understanding of 
the involved phenomena. Many models have been 
proposed to simulate fuel cells in the literature [1]-[8], 
which have generally each the own specificities and 

utilities, following the studied phenomena. A PEMFC 
converts the chemical energy of a fuel 2O , in electrical 

energy. The outline of a typical PEMFC is illustrated in 
Figure 1 On one side of the cell, referred to as the anode, 
the fuel is supplied under certain pressure. The fuel for this 
model is the pure gas 2H , although other compositions of 

gases can be used. In these cases, the hydrogen 
concentration should be determined in the mixture. The 
fuel spreads through the electrode until it reaches the 
catalytic layer of the anode where it reacts to form protons 
and electrons, as shown below in the reaction given in Eq. 
(1.1) [1]-[9]: 

 

anodeeHH −+ +→ 222                                                 (1) 

 
The protons are transferred through the electrolyte (solid 
membrane) to the catalytic layer of the cathode. On the 
other side of the cell, the oxydizer flows through the 
channels of the plate and it spreads through the electrode 
until it reaches the catalytic layer of the cathode. The 
oxydizer used in this model is air or O2. The oxygen is 
consumed with the protons and electrons and the product, 
liquid water, is produced with residual heat on the surface 
of the catalytic particles. The electrochemical reaction that 
happens in the cathode is 

 

catodeOeO −− +→+ 2
2 24                                               (2) 

 
Then, the full physical–chemical FC reaction is: 
 

energyelectricalheatOHOH +++→+ 222 2

1
              (3) 
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Figure 1. Basic Fell Cell Operation 

2. Fuel Cell Model Formulation  

In [1], [2] and [3] a performance model for a proton 
exchange membrane (PEM) fuel cell stack was previously 
developed . The model incorporated both the mechanistic 
and empirical properties to describe the electrochemical 
phenomena of combining oxygen and hydrogen over a 
platinum catalyst to produce an electrical current and water. 
The previous model predicted the cell voltage in terms of 
inlet partial pressures of hydrogen and oxygen, stack 
temperature, and operating current. The cell voltage was 
defined as: 

 

actohmactNerstFc VVVEV −−−=                                    (4) 
 
In (2.1), NenstE  is the thermodynamic potential of the cell 

and its represents reversible voltage; actV  is the voltage 

drop due to the activation of the anode and of the cathode; 

ohmV  is the ohmic voltage drop, a measure of the ohmic 

voltage drop associated with the conduction of the protons 
through the solid electrolyte and electrons through the 
internal electronic resistances; concV  represents the voltage 

drop resulting from the concentration or mass 
transportation of the reacting gases [5]. The first term of 
(2) represents the FC open circuit voltage, while the three 
last terms represent reductions in this voltage to supply the 
useful voltage of the cell, for a certain operating condition. 
Each one of the terms in (2) can be calculated by the 
following equations [6]: 
 

3

5

2 2

= 1,229 0.85.10 ( 298,15)

1
4,31.10 . . ( ) ( )

2

nerst

H O

E T

T ln P ln P

−

−

− −

 + + 
 

                        (5) 

 

Where 2HP  and 2OP  while and are the partial 
pressures of hydrogen and oxygen (atm), 
respectively, T the cell operation temperature (K) 
 

)]().(..[= 42321 stackact IlnCoTTV ξξξξ +++−                (6) 
 
Where stackI  is the cell operating current (A), and the 

ξ i  's represent parametric coefficients for each cell 

model, whose values are defined based on theoretical 
equations with kinetic, thermodynamic, and 
electrochemical foundations [6]. 2CO  is the 
concentration of oxygen in the catalytic interface of 
the cathode mol/cm, determined by 
 

)498/(6
2

2
.5,08.10

=
Te

Po
Co −                                             (7) 

                        
).(= cmstackohmic RRIV +                                             (8) 

 
 Where cR represents the resistance to the transfer of 

protons through the membrane, usually considered 

constant and: 
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the specific resistivity of the membrane for the electron 
flow cm/Ω  , A is the cell active area cm and l is the 
thickness of the membrane (cm), which serves as the 
ectrolyte of the cell. Where 0,634)181,6/( −ψ  the term is 

the specific resistivity cm/Ω  at no current and at Co30  
[6]; 
 











−−

max
con J

J
lnBV 1.=                                               (9) 

  
Where B (V) is a parametric coefficient, which depends on 
the cell and its operation state, and J  represents the actual 
current density of the cell (A/cm) . 

2.1 Artificial Neural Network (ANN) Model 

 
Artificial neural network is a type of artificial 

intelligence technique that mimics the behaviour of human 
brain. It can approximate any linear or nonlinear function 
well. A feed-forward neural network with supervised 
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training [14] was utilized in this study. The structure of the 
feedforward is three-layer. The network consists of an 
input layer, a hidden layer and an output layer. The transfer 
function for the hidden layer is a sigmoid function, whose 
form is defined by [17]: 
 

).(1

1
=)(

ude
uf −+

                                                    (10) 

 
where d  is the slope parameter. The input of the hidden 
layer can be described by the following equation: 
 

)(=
1=

iiij

n

j

bxwu +∑                                                    (11) 

where wij is the weight from the jth input xj to the ith 
neuron in the hidden layer, and bi is the bias. If the 
function in the output layer is linear, the model equation 
for the entire network can be expressed as follows[17]: 
 

))((==)(=
1=1=1=

iiij

N

j

o
ij

N

j
ii

o
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N

j
k bxwfwubuwuy ++ ∑∑∑     (12) 

where ky is the output signal from the thk output neuron, 

and o
kiw  is the weight from the ith output iu to the thk  

neuron in the output layer. In this study, the weights and 
bias values of ANN are updated according to the gradient 
descent momentum algorithm, which is considered to be 
one of the best training algorithms for the ANN [16]. 
 
Fig 2 shows the architecture of the developed neural 
network model. The ANN network has an input layer with 
3 inputs (partial pressures of hydrogen P 2H , partial of 

oxygen P 2O  and cell operating current Istack  ) , 1 hidden 

layer with 10 neurons and an output layer with 1 outputs 
(PEMFC cell voltage). MATLAB§  (The MathWorks Inc.) 

Neural Networks Toolbox was used to build ANN models. 
The hyperbolic tangent sigmoid transfer function 
(``tansig'') was used in the hidden layer and linear transfer 
function (``purelin'') was applied in the output layer. The 
two-layer sigmoid/linear network usually can represent any 
functional relationship between inputs and outputs if the 
sigmoid layer has enough neurons [16]. 
 
The nonlinear transfer function in the hidden layer allows 
the network to learn nonlinear and linear relationships 
between input and output vectors and the linear output 
layer lets the network produce values outside the range -1 
to + 1. The weights and biases were initialized using ``init'' 
function which calculates the weight and bias values using 
the Nguyen--Widrow initialization method. The data from 
the semi-empirical model was used for training the 

network. Lavenberg--Marquart backpropagation training 
algorithms (``trainlm'') was used as a training function to 
update weight and bias values, as it is the fastest training 
algorithm for networks of moderate size although it can 
require additional memory. Memory problems did not 
occur during the simulations for all developed ANN 
models. Neural network simulation blocks for use in 
Simulink can be automatically generated with the (gensim 
) command [18]. 
  
Fig 3  show A typical PEMFC (NNT model) cell voltage 
response surface. With simultaneous changes in the inlet 
partial pressure of hydrogen and current at a constant stack 

temperature of o70  
 
Fig 4 show the relative difference between semi-empirical 
model and neural network model. The simulation results 
show good agreement with the empirical and experimental 
ones. The absolute error was less than 0.4%. This result 
prove the ability of NNT model to replace the analytical 
model for simulink 

 
Fig  2: PEMFC NNT model 
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Fig  3:  Polarization curve 

  

 
 

Fig 4:  Relative difference between semi-empirical model and neural 
network model 

3. Fuel Cell System Model 

3.1 Fuel Cell Dynamic Model 

Choose the partial pressure of hydrogen and oxygen on the 
cathode side as three states; hydrogen inlet flow rate, 
oxygen inlet flow rate and output current density as three 
inputs as well. Using the ideal gas law, the state equations 
become[9]: 
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Where: 2HP , 2OP  and OHP 2  : the partial pressures of each 

gas inside cell; in
Hq 2 , in

Oq 2 : the inlet flow rates of hydrogen 

and oxygen of the cathode and anode; out
Hq 2 , out

Oq 2 and 
out

OHq 2 : the outlet flow rates of each gas and water vapor; 
r
Hq 2 , r

Oq 2  and r
OHq 2 : usage and production of the gases 

and water. 
Based on the electrochemical relationships, we have[6]: 

stackr
stackr

OH
r
O

r
H IK

F

IN
qqq .2.=

2.

.
==2= 0

222             (16) 

OHOH
out

OHOO
out
OHH

out
H PKqPKqPKq 222222222 =;=;=      (17) 

Where: 

2HK  : hydrogen valve molar constant [kmol/(atm s)]; 

2OK  : oxygen valve molar constant (kmol/(atm s)); 

:0N number of series fuel cells in the stack; stackI : stack 

current (A); rK  : constant =
F

N

4
0  Kmol/ (s.A) and F : 

Farady constant 9684600 C/Kmol. 
By substituting equations (16) and (17) into equation (15), 
applying the Laplace transform, and isolating the partial 
pressure term, the following equation can be written as: 

)2(
1

1/
= 2

2

2
2 stackrH

H

H
H IKq

s

K
P −

+τ
                              (18) 

where 2Hτ  : the system pole associated with the hydrogen 

flow. and for partial pressure of oxygen: 
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1

1/
= 2

2

2
2 stackrO

O

O
O IKq

s

K
P −

+τ
                                (19) 

This model is based on simulating the relationship 
between output voltage and partial pressure of 
hydrogen and oxygen. 

3.2   Reformer Model 

In [9]and[10] the authors introduced a simple model of a 
reformer that generates hydrogen through reforming 
methane. The model is a second-order transfer function. 
The mathematical form of the model can be written as 
follows: 

1).(.
=

21
2

21

2

+++ ss

CV

q

q

methane

H

ττττ
                             (20) 

 
Were: 
CV: conversion factor[kmol of hydogen per kmol of 
methane]; methaneq  methane flow rate (kmol/s ); 1τ , 2τ : 

reformer time constants [s] 
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3.3   DC/AC inverter Model  

In this paper, only a simple model of a DC/AC inverter is 
considered for the following reasons: the dynamic time 
constant of inverters is of the order of microseconds or at 
the most milliseconds. The time constants for the reformer 
and stack are of the order of seconds model of the inverter 
is given in [11], where output voltage and output power are 
controlled using the inverter modulation index and the 
phase angle of the AC voltage. 
Considering the fuel cell as a source, the output voltage 
and the output power as a function of the modulation index 
and the phase angle can be written as: 
 
 δ∠cellac VmV .=                                                      (21) 

)(
.

= δsin
X

Vm
P cell

ac                                                  (22) 

 )(
.

= δsin
X

Vm
P cell

ac
                                                

(23)                             

X

cosVVmVm
Q scellcell

ac
)(...

=
2 δ−

                                (24) 

)(.
=

θcosV

P
I

s

L
L                                                        (25) 

)(.= δθ +cosImI Lstack                                             (26) 

 
 Where the model parameter are as follows: 
 acV : AC output voltage of the inverter ; m  : inverter 

modulation index; δ  :phase angle of the AC voltage 
[rad] ;  P ac : AC output power from the inverter; 

acQ :reactive output power from the inverter;sV  :load 

terminal voltage; X : reactance of the line connecting the 
fuel cell to the load LI :load current ; θ  :load phase 
angle [rad]; LP  :load power; stackI :stack current. 

 PI controllers are used to control the modulation index. 
The transfer function of the modulation index can be 
expressed as:  

)(= 65
acr VV

s

skk
m −

+
                                                 (27) 

 Were : 

5k ,and 6k : are the PI gain, and rV  is the reference voltage 

signal. 
In traditional synchronous generators, the amount of steam 
input to the turbine controls the power angle, which 
controls the active output power from the generator. In 
synchronous machines, the power angle is not measured 
but the adjustment of the power angle occurs following 
changes in steam input and rotor speed. In the fuel cell 
system, there is no speed control but a similar relationship 
between the output voltage phase angle and the flow of 

hydrogen can be adopted as follows. Given that the load 
voltage is constant and the AC source voltage out of the 
inverter is as given in [11] , the angle controls the power 
flow from the fuel cell to the load, as in [10]. The phase 
angle can be controlled using the input flow of hydrogen. 
The expression for, therefore, provides the relationship 
between the power output as a regulated quantity, and the 
amount of flow of fuel input. This relationship is described 
by the following equations: 
 

stackcelldcac IVPP .==                                                    (28) 

 
 Assuming a lossless inverter, we get According to 
electrochemical relationships, a relationship between the 
stack current and the molar flow of hydrogen can be 
written as 
 

UF

IN
q stack

H .2

.
= 0

2                                                             (29) 

Were U is a utilization factor 
 From equation (21), (22) and (29) 
 

2
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=)( H

s

q
NVm

XUF
sin δ                                                    (30) 

 Assuming a small phase angle  

2
0.

..2.
= H

ss

q
NVm

XUFδ                                                          (31) 

The equation (31) describes the relationship between 
output voltage phase angle and hydrogen flow. Equations 
(21) and (31) indicate that the active power as a function of 
the voltage phase angle can be controlled by controlling 
the amount of hydrogen flow. 

3.4 Fuzzy Logic Controller 

The active power flow from the PEMFC to the load is 
controlled thought controlling the flow hydrogen. The 
proposed fuzzy logic controller controls the active power 
by controlling the hydrogen flow. 
 The fuzzy controller consists of five different steps [12] , 
[11] 
Step 1) definition of input-output variables of controller 
Step 2) design of fuzzy control rule 
Step 3) fuzzification 
Step4) inference 
Step 5) defuzzification 
The fuzzy controller inputs are the error e(k), and change 
of error ce(k). The output of the controller is the duty ratio 
of hydrogen flow 2Hu (k). The error, change of error, and 

the output of the controller are given as follows: 
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bHrefmethH qqqke 22=)( −+                                          (32) 

 
Were 2Hq is the flow hydrogen from the current feedback 

signal were is proportional to the terminal load, methaneq  is 

the methane reference signal and bHq 2 is the hydrogen 

flow feedback signal. 
 

1)()(=)( −− kekekce                                                    (33) 

 
)(.1)(u=)(u 2H2H2H kukk ∆+− ρ                                 (34) 

 
 Were )(u 2H k∆ is the inferred change of duty ratio by 

fuzzy controller and ρ is the gain factor of the 

controller[13],[11]. Fig 6, 7 and 8 shows the basic fuzzy 
partition of membership function for error, change of error, 
and change of control action. And fuzzy variables are 
expressed by linguistic variables such as''positive 
big(PB)'',positive medium(PM)'',''zero(ZO)'',''negative 
medium(NM)'' ,''negative big(NB)''. Table 1 shows the 
fuzzy model based on fuzzy rules[9]. 
 Exemple fuzzy rules are: 
 Ruel 1 `` If e(k) is PM and ce(k) ZO then )(ku is PM 

 Ruel 2 `` If e(k) is NB and ce(k) NM then )(ku is NB 

The inference methode used is basic and simple, it is 
developed from the minimum operation function rule as a 
fuzzy implementing function. The membership function of 
e, ce and 2Hu are given by iEµ  , iCEµ , iHU 2

µ iCµ  . The 

commonly use Min-Max method is given as: 
 
 )](),([min=),( ceecee

iceieiR µµµ  i=1.. n                     (34) 

 
)](),,([=)( 222 HiHuRiHiC uceemaxu µµµ                       (35)                                                                    (35) 

Table 1.  Linguistic Rule. 

                  CHANGE OF ERROR(ce) 

 
 
E 
R 
R 
O 
R 
 

 U NB NM ZO PM PB 

NB NB NB NM NM ZO 

NM NB NM NM ZO PM 

ZO NM NM ZO PM PM 

PM NM ZO PM PM PB 

PB ZO PM PM PB PB 

 
 

The centroid defuzzification method determines the output 
value from center of gravity of the output membership 
function and is given by the expression[12].  
 

)(

)(

=

2

n

0=i

22

n

0=i
2H

iHiC

iHiHiC

u

uu

u

µ

µ

∑

∑
∆                                           (36) 

 
Based on table 1 and fig9, the 3-dimensinal representation 
of control input ( 2Hu ) for fuzzy variables (e,ce) is shown 

in figure 7 
 

 
Fig  6: Membership fonction for  error(e) 

 

 
Fig  7: Membership fonction for change of error(ce) 
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Fig  8: Membership fonction for control(u) 

 
Fig 9: FLC control input  

3.4 Neural Network Controler 

The structure of the Neural Network Controller (NNTC) is 
similar to one of the Neural Network Identifier. The 
objective of NNTC is to develop a back-propagation 
algorithm such that the output of the plant can track the 
output of fuzzy logic controller FLC (fig 10) . 

 
Fig 10: Block diagram of the proposed controller.  

  

The 3-dimensional representation of control input for 
NNTC 2Hu  (e, ce) is shown in Fig11 

 

Fig11: NNT control input 

4. Simulation Results 

The model parameter are given in Table 2. The model of 
Fuel cell system for residential power generations shown in 
Fig 12 is tested with step change in the load as shown in 
Fig13. These abrupt changes in the active and reactive 
power are for testing the dynamic response of the system 
and do not necessarily represent change in residential load. 
 
In a practical system, the response time of the reformer can 
be longer than tens second [8], [9]. Therefore the reformer 
controller parameters have significant effect on the active 
power control. In this simulation the Neural Network 
controller (NNTC) was able to modify hydrogen flow for 
controlling active power to the load change fig13. The 
Neural Network controller (NNTC) is characterized by 
faster time response compared to the fuzzy logic controller 
and PID controllers used in fig14 
 
Fig15 and Fig 16 shows the change of hydrogen flow and 
phase angle. we note that this change is similar to the 
change of active power because the active power flow 
from the PEMFC to the load is controlled thought 
controlling the flow hydrogen. 
 
The reactive power Qac follows immediately the change of 
the reactive power load (fig17). Because the reactive 
power is controlled directly by modulation index (fig 18) 
from DC/AC inverter and the response of DC/AC inverter 
is not considerable. We notice that, the reactive power 
value is superior to the reactive power. This is due to 
inductive effect losses of the line (x). 
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Fig  12: Simulink implementation of Fuel Cell control system architecture  

Table2.  Model Parameter 
 

Parameters Values 

Facteur de conversion  CV 2 

farady,s Constant,  F 9684600 C/Kmol 

Universal gas Constant R 8314.47 j/Kmol.K 

Number of cells  N0 333 

Hydrogen valve constant  KH2 4.22*10-5 Kmol/(s.A) 

Oxygen  valve constant  KO2 2.11*10-5 Kmol/ (s.atm) 

Hydrogen time constant, τH2 3.37 (s) 

Oxygen time constant, τO2 6.74 (s) 

Utilization factor, U 0.8 

PI gain constants  K5,K6 10 

Hydrogen –Oxygen flow ratio rH-O 1.168 

Methane reference signal, qref 0.000015 Kmol/ s 

Reformer time constants  τ1 , τ2 2,  2 

Line reactance, X 0.05Ω 

Voltage reference signal Vr 240 V 

Kr constant = 0
4

N

F
 0.996*10-6 Kmol/ (s.A) 

 

 

Fig 13:  Load step  
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Fig  14: Active output power change ( with,PID, FLC,and 

NNTC) 
 

 
Fig  15: Hydrogen flow rate change( with,PID, FLC,and NNTC)  

 

Fig  16: Output voltage phase angle change 
change( with,PID, FLC,and NNTC) 

 

Fig17:  Reactive output power change  
 
 
 

 

Fig  18: Modulation index change  

Conclusions 

This paper introduces a technique based on neural network 
to control the active power output from fuel cell system 
power generation. The proposed model includes a neural 
net work PEMFC model, a dynamic fuel cell model, a gas 
reformer model, DC/AC inverter model, and NNT 
controller unit block. Artificial neural networks can be 
trained to simulate the performance of a fuel cell with great 
accuracy; consequently, the same concept could be 
extended to other components and thus bigger and more 
complex cycles can be simulated at reduced time. The 
developed models are tested using computer-simulated 
step change in the load active and reactive power demands. 
The simulation results indicate that converter and fuel 
quantities have to be controlled simultaneously to control 
the active and reactive power. It also indicates that the 
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neural netowrk controller (NNTC) and fuzzy logic 
controller (FLC) are very effective to control hydrogen 
flow for active power load variation. 
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