on the Controllability of a Class of
Discrete Distributed Systems

Hasna Jourhmane1, Mostafa Rachik2, Ahmed Abdelhak3, Jamal Bouyaghrouni4 and Hanane Ferjouchia5

1,2 Departement of mathematics, University Hassan II-Mohammedia, faculty of sciences Ben M’sik, Casablanca, Morroco.

3 Departement of mathematics, University Ibn Tofail, faculty of sciences, B.P 133, Kénitra, Morroco.

4,5 Departement of mathematics, University Hassan II-Mohammedia, faculty of sciences Ben M’sik, Casablanca, Morroco.

Abstract

We consider a class of linear discrete-time systems controlled by a continuous time input. Given a desired final state x_d, we investigate the optimal control which steers the system, with a minimal cost, from an initial state x_0 to x_d. We consider both discrete distributed systems and finite dimensional ones. We use a method similar to the Hilbert Uniqueness Method (HUM) to determine the control and the Galerkin method to approximate it, we also give an example to illustrate our approach.

Keywords: Discrete linear systems, Hilbert Uniqueness Method, Optimal Control, Galerkin Method.

1 Introduction

This paper is devoted to the study of the controllability problem corresponding to the discrete-time varying distributed systems described by

\[
\begin{align*}
x_{i+1} &= \phi x_i + \int_{t_i}^{t_{i+1}} B_i(\theta) u(\theta) d\theta, \\
x_0 & \text{ given in } X
\end{align*}
\]

for $i = 0, \ldots, N - 1$, where $x_i \in X$, $u \in L^2(0,T,U)$, $\phi \in L(X)$, $B_i(\theta) \in L(U,X)$, $(X, \|\|)$ and $(U, \|\|)$ are Hilbert spaces and $(t_i)_{i}$ is a subdivision of the interval $[0,T]$ such that $t_0 = 0$ and $t_N = T$. Moreover, we suppose that the applications $\theta \to B_i(\theta)$, $i = 0, \ldots, N - 1$ are continuous.

In other words, given a desired final state x_d, we investigate the optimal control which steers the system (S) from x_0 to x_d with a minimal cost $J(u) = \|u\|$

As an example of systems described by (S), we consider the linear continuous system given by

\[
x(t) = S(t)x_0 + \int_0^t S(t-r)Bu(r)dr, \quad t \geq 0 \quad (1)
\]

where $S(t)$ is a strongly continuous semi group on the Hilbert space X and $B \in L(U,X)$. In order to make the system accessible by a computer we proceed to a sampling of time (see for example \cite{8,12,13}), this means, we put

\[
[0,T] = \bigcup_{i=0}^{N-1} [t_i,t_{i+1}]
\]

where

\[
\begin{align*}
t_0 &= 0 \\
t_{i+1} &= t_i + \delta,
\end{align*}
\]

with $\delta = \frac{T}{N}$ and $N \in \mathbb{N}^*$.

If we take $x_i = x(t_i)$ then
In many works (see [6, 8, 13]) and under the hypothesis system (S) leads to the difference equation

\[x_{i+1} = x(t_{i+1}) \]

\[= S(t_{i+1})x_0 + \int_{t_i}^{t_{i+1}} S(t_{i+1} - r)Bu(r)dr \]

\[= S(t_i + \delta)x_0 + \int_{t_i}^{t_{i+1}} S(t_i + \delta - r)Bu(r)dr \]

\[+ \int_{t_i}^{t_{i+1}} S(t_{i+1} - r)Bu(r)dr \]

\[= S(\delta)[S(t_i)x_0 + \int_{t_i}^{t_{i+1}} S(t_i - r)Bu(r)dr] \]

\[+ \int_{t_i}^{t_{i+1}} B_i(r)u(r)dr \]

then

\[x_{i+1} = S(\delta)x(t_i) + \int_{t_i}^{t_{i+1}} B_i(r)u(r)dr \]

and consequently

\[x_{i+1} = \phi x_i + \int_{t_i}^{t_{i+1}} B_i(r)u(r)dr \]

which is a system described by (S).

In many works (see [6, 8, 13]) and under the hypothesis

\[u(t) = u_i \quad \forall t \in [t_i, t_{i+1}], \]

(1) the hypothesis (2) means that, \(u(t) \) is assumed to be constant in the interval \([t_i, t_{i+1}]\), the sampling of system (S) leads to the difference equation

\[x_{i+1} = Lx_i + Mu_i \]

where \(L = \phi \) and \(M = \int_{t_i}^{t_{i+1}} B_i(r)dr. \)

This last discrete version has been used by several authors ([5, 3, 7, 11, 15, 16]). In some situations, the control law could have fast variations during time. Consequently the hypothesis (2) becomes inappropriate, this shows the importance of our system (S).

In this chapter, we use a technique similar to the Hilbert Uniqueness Method, introduced by Lions J.L. (see [9, 10]), in order to treat the controllability problem. The section 4 contain a method for approximating the optimal control and an example that illustrate the developed results. In the section 5, we study this problem in finite dimensional case.

2 Preliminary results

The final state of system (S) can be written as follows

\[x_N = \phi^N x_0 + Hu \]

where

\[H : L^2(0, T, U) \rightarrow X \]

\[u \mapsto \sum_{j=1}^{N} \int_{t_{j-1}}^{t_j} \phi^{N-j} B_{j-1}(\theta)u(\theta)d\theta. \]

\[(3) \]

Definition 2.1 We say that (S) is weakly controllable on \([0, \ldots, N]\) if \(\text{Im} H = X \). \(\text{Im} H \) means the range of \(H \).

Remark 1 (S) is weakly controllable if and only if \(\text{Ker} H^* = \{0\} \).

Lemma 1 The operator \(H \) is bounded and its adjoint operator \(H^* \) is given by , for all \(x \in X \)

\[H^*x(\theta) = B^*_{j-1}(\theta)(\phi^*)^{N-j}x, \]

(4)

for all \(\theta \in [t_{j-1}, t_j] \) and all \(j = 1, \ldots, N \).

Proof

Let \(u \in L^2(0, T, U), \ x \in X \)

\[< Hu, x > = < \sum_{j=1}^{N} \int_{t_{j-1}}^{t_j} \phi^{N-j} B_{j-1}(\theta)u(\theta)d\theta, x > \]

\[= \sum_{j=1}^{N} \int_{t_{j-1}}^{t_j} < u(\theta), B^*_{j-1}(\theta)(\phi^*)^{N-j}x > d\theta \]

\[= \sum_{j=1}^{N} \int_{0}^{T} < u(\theta), B^*_{j-1}(\theta)(\phi^*)^{N-j}x.X_{[t_{j-1}, t_j]}(\theta) > d\theta \]

\[= \int_{0}^{T} < u(\theta), H^*x(\theta) > d\theta \]

hence

\[H^*x(\theta) = \sum_{j=1}^{N} B^*_{j-1}(\theta)(\phi^*)^{N-j}x.X_{[t_{j-1}, t_j]}(\theta) \]

(5)

which implies (4).

Consider on \(X \times X \) the bilinear form given by

\[< x, y >_F = < H^*x, H^*y >, \quad \forall x, y \in X \]

(6)

clearly, if (S) is weakly controllable, then \(< \cdot, \cdot >_F \) describes an inner product on \(X \). Let \(\| x \|_F \) be the corresponding norm and \(F \) the completion of \(X \) with respect to the norm \(\| \cdot \|_F \).
Remark 2
\[\|x\|_F \leq \|H^*\| \|x\|, \forall x \in X. \]

In the following, we suppose that (S) is weakly controllable.

Define the operator \(\Lambda \) by
\[\Lambda : X \to X \]
\[x \mapsto HH^* x \]
then
\[\text{Ker} \Lambda = \text{Ker} H^* \]
moreover
\[\|H^* x\| = \|x\|_F, \forall x \in X \]
then, it is classical that \(\Lambda \) can be extended, in a single way by an isomorphism, denoted also \(\Lambda \), defined from \(F \) onto \(F' \) (see [10, 14]). Moreover, \(F \) is a Hilbert space with respect to the inner product
\[\langle x, y \rangle_F = \langle \Lambda x, y \rangle_F, \forall x, y \in F \]
where \(\langle \Lambda x, y \rangle_F \) means the range of \(y \) by the operator \(\Lambda x \). From (6) we deduce that
\[\|H^* x\| = \|x\|_F, \forall x \in X \]
hence \(H^* \) is a bounded operator from \((X, \|\cdot\|_F)\) onto \((L^2(0, T, U), \|\cdot\|)\), so it has a bounded extension, denoted \(H_* \), defined from \(F \) onto \(L^2(0, T, U) \).

Lemma 2 \(\text{Im} H \) can be identified to a subset of \(F' \).

Proof
Let \(x \in \text{Im} H \), and consider the map
\[\varphi_x : X \to \mathbb{R} \]
\[y \mapsto \langle x, y \rangle \]
there exists \(u \in L^2(0, T, U) \) such that \(x = Hu \), hence forall \(y \in X \) we have
\[|\varphi_x(y)| = |\langle x, y \rangle| = |\langle Hu, y \rangle| \]
\[= |\langle u, H^* y \rangle| \leq \|u\| \|y\|_F. \]
Consequently, \(\varphi_x \) has a bounded extension, denoted by \(\varphi_x^* \), which belongs to \(F' \). Let \(j \) be the map defined by
\[j : \text{Im} H \to F' \]
\[x \mapsto \varphi_x^* \]
clearly \(j \) is linear and injective.

The operator \(HH_* \) is defined from \(F \) onto \(\text{Im} H \), using lemma, (2) we can consider that \(HH_* \) is defined from \(F \) onto \(F' \).

Proposition 2.1 The operators \(\Lambda \) and \(HH_* \) are equal.

Proof
Let \(\pi \in F \) be arbitrary, we have
\[|\langle HH_* \varphi, y \rangle_F| = |\langle HH_* \pi, y \rangle_F|, \forall y \in X \]
\[= |\langle H_* \pi, H^* y \rangle| \]
\[\leq \|H_* \pi\| \|H^* y\| \]
\[\leq \|H_* \pi\| \|y\|_F \]
by density of \(X \) on \(F \), we deduce that
\[|\langle HH_* \varphi, y \rangle_F| \leq \|H_* \varphi\| \|y\|_F, \forall y \in F \]
hence
\[\|HH_* \varphi\|_F \leq \|H_* \varphi\| \leq \|H_* \| \|\varphi\|_F \]
which implies that \(HH_* \) is bounded. On the other hand
\[HH_* x = H_* x = \Lambda x, \forall x \in X \]
by density of \(X \) and continuity of both \(HH_* \) and \(\Lambda \) from \(F \) onto \(F' \), we deduce that
\[HH_* \varphi = \Lambda \varphi, \forall \varphi \in F. \]

Lemma 3 The inner product corresponding to \(\|\cdot\|_F \) is
\[\langle x, y \rangle_F = \langle H_* x, H_* y \rangle, \forall x, y \in F \]

Proof
From (7) and Proposition 2.1, we deduce
\[\langle x, y \rangle_F = \langle HH_* x, y \rangle_F, \forall x, y \in F \]
but
\[\langle HH_* x, y \rangle_F = \langle HH_* x, y \rangle, \forall y \in X \]
\[= \langle H_* x, H^* y \rangle \]
\[= \langle H_* x, H_* y \rangle. \]
if \(y \in F \), \(\exists (y_n) \subset X \) such that \(\|y_n - y\| \to 0 \). We have,
\[\langle HH_* x, y_n \rangle_F = \langle H_* x, H_* y_n \rangle, \forall n \in \mathbb{N} \]
when \(n \to +\infty \), we obtain
\[\langle HH_* x, y \rangle_F = \langle H_* x, H_* y \rangle, \forall y \in F \]

Remark 3
From lemma 3, we deduce that if (S) is weakly controllable then \(\text{Ker} H_* = \{0\} \).

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.
3 The optimal control

We first characterize the set of all reachable states at time \(N\) from a given initial state \(x_0\).

Proposition 3.1 The reachable set at time \(N\), from a given initial state \(x_0\), is given by

\[
R(N) = \phi^N x_0 + F'.
\]

Proof

If \(z \in \phi^N x_0 + F',\) then \(z - \phi^N x_0 \in F',\) hence there exists \(f \in F\) such that \(z - \phi^N x_0 = \Lambda f,\) which implies that

\[
z = \phi^N x_0 + H H_* f = \phi^N x_0 + H u
\]

where \(u = H_* f,\) thus \(z\) is reachable.

Conversely, if \(z\) is reachable, say that \(z = \phi^N x_0 + H u,\) then

\[
z - \phi^N x_0 = H u
\]

that is \(z - \phi^N x_0 \in Im H \subset F'\) hence \(z \in \phi^N x_0 + F'.\)

\(\blacksquare\)

Theorem 3.1 If \(x_d - \phi^N x_0 \in F',\) then the control \(u^* = H_* f,\) where \(f\) is the unique solution of the algebraic equation

\[
\Lambda f = x_d - \phi^N x_0
\]

steers the system from the initial state \(x_0\) to the final state \(x_d\) at time \(N\) with a minimal cost \(J(u) = \|u\|,\) moreover \(\|u^*\| = \|f\|_F.\)

Proof

Let \(u^* = H_* f,\) where \(f\) verify \((8),\) \(f\) exists since \(x_d - \phi^N x_0 \in F'.\) We have,

\[
\phi^N x_0 + H u^* = \phi^N x_0 + \Lambda f = x_d
\]

hence \(u^*\) steers \((S)\) from \(x_0\) to \(x_d\) at time \(N.\) Suppose that \(v\) steers \((S)\) from \(x_0\) to \(x_d\) at time \(N,\) then

\[
\phi^N x_0 + H v = x_d = \phi^N x_0 + H u^*
\]

hence,

\[
H v = H u^*
\]

which implies that

\[
< H(v - u^*), f_n > = 0; \ \forall n
\]

where \((f_n)_n\) is a sequence, of elements in \(X,\) which converges towards \(f\) with respect to the norm \(\|\|_F.\) Consequently,

\[
< v - u^*, H_* f_n > = 0, \ \forall n
\]

or

\[
< v - u^*, H_* f_n > = 0, \ \forall n
\]

when \(n \to +\infty,\) we deduce that

\[
< v - u^*, H_* f > = 0
\]

or

\[
< v - u^*, u^* > = 0
\]

thus

\[
< v, u^* > = \|u^*\|^2
\]

which implies that

\[
\|u^*\|^2 \leq \|v\| \|u^*\|
\]

\[
\|u^*\| \leq \|v\|
\]

\(\blacksquare\)

4 A numerical approach

In order to determine the optimal control \(u^*,\) we need to resolve the algebraic equation

\[
\Lambda f = x_d - \phi^N x_0 \ \text{on} \ F'.
\]

In this section, we propose a numerical approach to approximate \(f.\) Suppose that \(x_d - \phi^N x_0 \in F'\) and that \(X\) is a separable space. Let \((w_i)_{i \geq 1}\) be a basis of \(X.\)

Equation \((9)\) is equivalent to

\[
< \Lambda f, y >_{F', F} = < x_d - \phi^N x_0, y >_{F', F}, \ \forall y \in X
\]

Remark 4 Since the bilinear form

\[
(u, v) \to < \Lambda u, v >_{F', F}
\]

is coercive on \(F \times F\) and the map

\[
y \to < x_d - \phi^N x_0, y >_{F', F}
\]

belongs to \(F',\) one can think to apply the Galerkin method to approximate \(f.\) But this involves some difficulties because the map \(y \to < x_d - \phi^N x_0, y >_{F', F}\) is known on \(X\) but almost unknown on \(F,\) also \((u, v) \to < u, v >_F\) is known on \(X \times X\) but almost unknown on \(F \times F.\)
Equation (10) is equivalent to
\[< f, y >_F = < x_d - \phi^N x_0, y >, \quad \forall y \in X \]
(11)

Remark that in equation (11), the solution \(f \) belongs to \(F \) and the variable \(y \) is in \(X \). In the following, we will prove that by applying the Galerkin method to equation (11), we can construct a sequence \((f_m) \) which converges strongly on \(F \) towards \(f \).

Let \(X_m \) be the subspace of \(X \) spanned by the vector \(w_1, w_2, \ldots, w_m \) and \(f_m \in X \), the solution of
\[< f_m, y >_F = < x_d - \phi^N x_0, y >, \quad \forall y \in X_m \]
(12)

Since \(\| \cdot \| \) and \(\| \cdot \|_F \) are equivalent on \(X_m \), the bilinear form \((u, v) \mapsto < u, v >_F\) is continuous and coercive on \(X_m \times X_m \), moreover, \(y \mapsto < x_d - \phi^N x_0, y > \) is bounded on \(X_m \). From the Lax-Milgram theorem, see [1, 2], we deduce that \(f_m \) exists and is unique. Using (12) we have
\[< f_m, f_m >_F = < x_d - \phi^N x_0, f_m > \]
(13)

Since \(x_d - \phi^N x_0 \in F' \), there exists a constant \(c \) such that
\[| < x_d - \phi^N x_0, y >_{F', F} | \leq c \| y \|_F, \quad \forall y \in F \]
(14)

hence,
\[| < x_d - \phi^N x_0, y > | \leq c \| y \|_F, \quad \forall y \in X \]
(15)

From (13) and (14), we deduce that
\[\| f_m \|_F^2 \leq < f_m, f_m > \leq \| f_m \|_F \]
(16)

i.e.,
\[\| f_m \|_F \leq c, \quad \forall m. \]

Consequently, \((f_m) \) admits a subsequence \((f_{m'})_{m'} \), which converges weakly to a certain \(f_* \in F \), we will denote this weak convergence by
\[f_m \rightharpoonup f_* \]
(17)

Let \(C \) denote the set of all finite combinations of \(w_i \), \(i \geq 1 \). Suppose that \(v \in C \), then \(v \) belongs to \(X_{m'} \) for \(m' \) sufficiently large, hence
\[< f_{m'}, v >_F = < x_d - \phi^N x_0, v >. \]

From (15), we deduce that
\[\lim_{m' \to +\infty} < f_{m'}, v >_F = < f_*, v >_F \]
\[= < x_d - \phi^N x_0, v >, \quad v \in C \]

let \(x \in X \), since \(C \) is dense on \((X, \| \cdot \|) \), then there exists a sequence \((x_n) \) such that \(\| x_n - x \|_F \to 0 \), which implies that \(\| x_n - x \|_F \to 0 \), using Remark (2). On the other hand,
\[< f_*, x_n >_F = < x_d - \phi^N x_0, x_n >, \quad \forall n \]

when \(n \to +\infty \), we obtain
\[< f_*, x >_F = < x_d - \phi^N x_0, x >, \quad \forall x \in X \]

hence \(f_* \) is solution of (11), by uniqueness we deduce that \(f_* = f \). Hence \((f_m)_m \) has a subsequence \((f_{m'})_{m'} \) which converges weakly on \((F, \| \cdot \|_F) \) towards \(f \). Suppose that \((f_m)_m \) doesn’t converge weakly, on \((F, \| \cdot \|_F) \), towards \(f \), then there exists \(v \in F \) such that
\[< f_m, v >_F \rightharpoonup f, v >_F \]

i.e.,
\[\exists \epsilon, \forall N \exists n > N | < f_n, v >_F - < f, v >_F | > \epsilon \]

From this we deduce that, for all \(N \in \mathbb{N} \), there exists \(\varphi(N) \in N \) such that
\[| < f_{\varphi(N)}, v >_F - < f, v >_F | > \epsilon \]

but \((f_{\varphi(N)})_N \) is bounded on \(F \), hence \((f_{\varphi(N)})_N \) has a subsequence \((f_{\varphi(N')})_{N'} \), which converges weakly towards \(f \), hence
\[< f_{\varphi(N')}, v >_F \rightharpoonup < f, v >_F \]

which contradicts (16) thus
\[f_m \rightharpoonup f. \]

To prove that \(f_m \to f \) strongly on \(F \), we consider
\[< f_m - f, f_m - f >_F = < f_m, f_m >_F - < f, f_m >_F - < f, f_m >_F + < f, f >_F \]

recall that
\[< f_m, f_m >_F = < x_d - \phi^N x_0, f_m > \]

hence
\[\lim_{m \to +\infty} < f_m, f_m >_F = < x_d - \phi^N x_0, f >_F, F \]

On the other hand,
\[\lim_{m \to +\infty} < f_m, f > = < f, f >_F \]

\[\lim_{m \to +\infty} < f, f_m > = < f, f >_F \]
consequently,
\[
\lim_{m \to +\infty} < f_m - f, f_m - f > = \int_{0}^{\infty} \sigma(x) \phi^{N} x_0 f >_{F,F} - < f, f >_{F} = \int_{0}^{\infty} \sigma(x) \phi^{N} x_0 \Lambda f >_{F,F} = 0
\]
thus \(f_m \to f \) strongly on \(F \).

Remark 5 To determine \((f_m) \), we don’t need the expression of \(H_s \) nor the completion space \(F \).

Remark 6 The sequence of inputs \(u_n = H^* f_n \) converges strongly, on \(L^2(0,T,U) \), towards the optimal control \(u^* = H_s f \).

4.1 Example

Consider the system
\[
\dot{x} = Ax + \sum_{i=1}^{m} b_i u_i
\]
where \(x(t) \in X = L^2(0,1) \), \(b_i \in X \), \(u_i \in L^2(0,T) \),
\(A = \frac{\partial^2}{\partial x^2} \) and \(D(A) = \{ x \in L^2(0,1), \frac{\partial^2 x}{\partial t^2} \in L^2(0,1), \ x(0) = x(1) = 0 \} \). \(A \) is self-adjoint and has respectively eigenvalues and eigenvectors given by \(\lambda_n = -n^2 \pi^2 \) and \(\Phi_j(t) = \sqrt{2} \sin(j \pi t), \ t \in [0,1] \) and \(j = 1,2, \ldots \).

We suppose for example that \(\int_{0}^{1} b_1(\alpha) \sin(n \alpha) d\alpha \neq 0, \ \forall n \geq 1 \), this implies that the system (17) is weakly controllable, (see [4]). If we introduce the operator \(B \)
\[
B : \mathbb{R}^m \to X \quad (u_1, \ldots, u_m) \mapsto \sum_{i=1}^{m} b_i u_i
\]
then the system (17) becomes
\[
\dot{x} = Ax + Bu.
\]

Now, consider the discrete version of (18) obtained by a similar way as presented in the introduction of this paper,
\[
x_i+1 = \Phi x_i + \int_{t_i}^{t_{i+1}} B_i(\theta) u(\theta) d\theta
\]
where \(t_i = i \Delta, i = 0, \ldots, N \) with \(\Delta \) is a sampling of \([0,T], x_i = x(t_i), B_i(\theta) = T(t_i+1 - \theta) B, \Phi = T(\Delta)\)
where \(T(t) \) is the strongly continuous semi group, generated by \(A \), given by
\[
T(t) z = \sum_{n=1}^{\infty} e^{-n^2 \pi^2 t} \Phi_n > \Phi_n^* \ , \ \forall z \in X.
\]
Since the system (18) is weakly controllable on \([0,T], \forall T > 0 \) we deduce that
\[
\forall x_d \in X, \exists u \in L^2(0,T,U) : ||x(T) - x_d|| < \epsilon
\]
which implies that
\[
\forall x_d \in X, \exists u \in L^2(0,T,U) : ||x(T) - x_d|| < \epsilon
\]
which implies that
\[
\forall x_d \in X, \exists u \in L^2(0,T,U) : ||x(T) - x_d|| < \epsilon
\]
hence (19) is also weakly controllable on \([0, T_N], \forall N \).

Since \(X \) is reflexive, then \(T^*(\Delta) \) is generated by \(A^* = A \), i.e. \(T^*(\Delta) = T(\Delta) \), which gives \(\phi^* = \phi \), and \(\phi^* = \phi^* = T(i \Delta) \).

Let’s denote \(T_N^{\Delta} = T((N-j)\Delta) \), then for any \(x \in X \), it follows from equations (3) and (4) that
\[
H H^* x = H(H^* x)
\]
\[
= \sum_{j=1}^{N} \int_{t_{j-1}}^{t_j} \phi^{N-j} B_{j-1}(\theta) B_{j-1}(\theta)^* e^{N-j} x d\theta
\]
\[
= \sum_{j=1}^{N} \int_{t_{j-1}}^{t_j} T_{N-j}^{\Delta} T(t_j - \theta) B B^* T(t_j - \theta) T_{N-j}^{\Delta} x d\theta
\]
\[
= \sum_{j=1}^{N} \int_{t_{j-1}}^{t_j} W_j(\theta) B B^* W_j(\theta) x d\theta
\]
where \(W_j(\theta) = T((N-j)\Delta + t_j - \theta) \). On the other hand, the adjoint operator \(B^* \) of \(B \) is given by
\[
B^* : X \to \mathbb{R}^m
\]
\[
x \mapsto (b_1 x, \ldots, b_m x)
\]
If we define
\[
\alpha(n,j,\theta) = e^{-n^2 \pi^2 [t_1 - \theta + (N-j)\Delta]}
\]
\[
\phi_j^* = x, \phi_j > , x \in X, j \in \mathbb{N}
\]
then
\[
B^* T((N-j)\Delta + t_j - \theta) x
\]
\[
= (\sum_{n=1}^{\infty} \alpha(n,j,\theta) \phi^* \phi_n^* b_n + \ldots) + (\sum_{n=1}^{\infty} \alpha(n,j,\theta) \phi^* \phi_n^* b_n)
\]
thus
\[
B B^* W_j(\theta) x = \sum_{i=1}^{m} \sum_{n=1}^{\infty} e^{-n^2 \pi^2 [t_1 - \theta + (N-j)\Delta] b_i^* \phi_n^* \phi_n^* b_n}
\]
We have
\[W_{j}(\theta)BB^{*}W_{j}(\theta)x = \sum_{k=1}^{\infty} e^{-k^{2}\pi^{2}[t_{j}-\theta+(N-j)\Delta]} < BB^{*}W_{j}(\theta)x, \Phi_{k} > \Phi_{k} \]
hence
\[HH^{*}x = \sum_{j=1}^{N} \int_{t_{j}-1}^{t_{j}} \sum_{k=1}^{\infty} \alpha(k,j,\theta) h_{j}(x), \Phi_{k} > \Phi_{k} d\theta \]

where
\[h_{j}(x) = \sum_{i=1}^{m} \sum_{n=1}^{\infty} \alpha(n,j,\theta) \phi_{n}^{x} \phi_{n}^{b_{i}} b_{i} \]
\[g_{j}(x) = \sum_{i=1}^{m} \sum_{n=1}^{\infty} \alpha(n,j,\theta) \phi_{n}^{x} \phi_{n}^{b_{i}} \phi_{n}^{b_{k}} \]

Therefore
\[< HH^{*}\Phi_{r}, \Phi_{s} > = \sum_{j=1}^{N} \int_{t_{j}-1}^{t_{j}} \sum_{r=1}^{N} \sum_{s=1}^{\infty} \alpha(r,j,\theta) \phi_{n}^{r} \phi_{n}^{b_{i}} \phi_{n}^{b_{j}} d\theta \]

Let \(\gamma_{sr} = \sum_{j=1}^{N} \int_{t_{j}-1}^{t_{j}} e^{-(s^{2}+r^{2}) \pi^{2} [t_{j}-\theta+(N-j)\Delta]} d\theta \), hence
\[\gamma_{sr} = \sum_{j=1}^{N} \int_{t_{j}-1}^{t_{j}} e^{-(s^{2}+r^{2}) \pi^{2} [t_{j}-\theta+(N-j)\Delta]} d\theta = \frac{1}{(s^{2}+r^{2}) \pi^{2}} \left(1 - e^{-(s^{2}+r^{2}) \pi^{2} \Delta} \right) \]

It follows from Theorem 3.1 and Remark 6 that the optimal control can be approximated by \(u_{i} = H^{*} f_{i} \)
where \(f_{i} = \sum_{l=1}^{t_{i}} z_{l} \Phi_{i} \) is the unique solution of the algebraic system
\[< HH^{*}f_{i}, \Phi_{i} > = < x_{d} - \phi^{N} x_{0}, \Phi_{i} >, \forall i = 1,\ldots,l, \]
or equivalently
\[A_{l} Z_{l} = X_{d} \]
where \(Z_{l} = (z_{1},\ldots,z_{l})^{t} \), \(X_{d} = (x_{d} - \phi^{N} x_{0}, \Phi_{1} >,\ldots,< x_{d} - \phi^{N} x_{0}, \Phi_{l} >)^{t} \) and \(A_{l} \) the matrix
\[A_{l} = (\gamma_{sr} \sum_{i=1}^{m} < b_{i}, \Phi_{r} > < b_{i}, \Phi_{s} >) \mathbb{I} \]

On the other hand, from lemma 1, it follows that
\[u_{l}(\theta) = B_{l}^{*}(\theta) (\phi^{N})^{N-j} f_{l} \]
\[= B_{l}^{*} T(\theta) T((N-j)\Delta) f_{l} \]
\[= B_{l}^{*} T(\theta - \theta + (N-j)\Delta) f_{l} \]
\[= B_{l}^{*} (N\Delta - \theta) f_{l} \]

for simplicity, if we take \(m = 1 \) then,
\[u_{l}(\theta) = b_{1}, T(N\Delta - \theta) f_{l} > \sum_{n=1}^{\infty} e^{-n^{2}\pi^{2}(N\Delta - \theta)} < f_{l}, \Phi_{n} > < b_{1}, \Phi_{n} > \]

hence, the optimal control can be approximated by for all \(\theta \in [0,T] \),
\[u_{l}(\theta) = \sum_{n=1}^{l} e^{-n^{2}\pi^{2}(N\Delta - \theta)} < f_{l}, \Phi_{n} > < b_{1}, \Phi_{n} > . \]

\[(20) \]

Numerical simulation : We take \(m = 1, b_{1}(t) = t^{2} + 1, N = 10, t_{i} = i\delta, \delta = 0.1, x_{0} = 0, \) then \(t_{N} = 1 \).
To have \(x_{d} \) reachable, we take \(x_{d} = Hu \) where \(u(\theta) = 1, \forall \theta \in [0,1] \), then \(x_{d} = (x_{d} - \Phi_{i} >)_{1 \leq l \leq l} \) where
\[< x_{d}, \Phi_{i} > = \frac{b_{1} \Phi_{i} (1 - e^{-i^{2}\pi^{2} N\delta})}{\gamma_{sr}} \]

An approximation of the optimal control is then given by figure 1.
5 Finite dimensional case

In this section we take $X = \mathbb{R}^n$ and $U = \mathbb{R}$. Since ImH is finite dimensional, the weak controllability of (S) is equivalent to $Im H = X$, i.e., the exact controllability of (S). If (S) is controllable, then $\text{Ker } H^* = \{0\}$ and $\|\cdot\|_F$ is a norm on X equivalent to $\|\cdot\|$, so the completion of X with respect to $\|\cdot\|_F$ is X, i.e., $F = X$.

On the other hand, since $\Lambda = HH^*$ and $\text{Ker } \Lambda = \text{Ker } H^* = \{0\}$, then the controllability of (S) implies that Λ is an isomorphism on X.

Proposition 5.1 If $B_i(\theta)$, $i = 0, \ldots, N - 1$, are constant operators, say that $B_i(\theta) = B_i$, then

$$\text{Ker } H^* = \text{Ker } \begin{bmatrix} B_{N-1}^* \\ B_{N-2}^* \phi^* \\ \vdots \\ B_0^* (\phi^*)^{N-1} \end{bmatrix}$$

Proof.

If $x \in \text{Ker } H^*$, then $H^*x = 0$. From (5) it follows that

$$\sum_{j=1}^{N} B_{j-1}^* (\phi^*)^{N-j} \mathcal{X}_{t_{j-1}, t_j}(\theta)x = 0, \quad \forall \theta \in [0,T]$$

if we consider respectively $\theta \in [t_0, t_1[\ldots, \theta \in [t_{N-1}, t_N]$, then

$$B_{j-1}^* (\phi^*)^{N-j}x = 0, \quad \forall j = 1, 2, \ldots, N$$

if we take respectively $j = 1, 2, \ldots, j = N$, then we obtain

$$B_{N-1}^* x = 0, B_{N-2}^* \phi^* x = 0, \ldots, B_0^* (\phi^*)^{N-1} x = 0,$$

which means that

$$x \in \text{Ker } \begin{bmatrix} B_{N-1}^* \\ B_{N-2}^* \phi^* \\ \vdots \\ B_0^* (\phi^*)^{N-1} \end{bmatrix}.$$ \hfill (21)

Conversely, suppose (21), then

$$B_{N-1}^* x = B_{N-2}^* \phi^* x = \ldots = B_0^* (\phi^*)^{N-1} x = 0,$$

which implies that

$$\sum_{j=1}^{N} B_{j-1}^* (\phi^*)^{N-j} \mathcal{X}_{t_{j-1}, t_j}(\theta)x = 0, \quad \forall \theta \in [0,T]$$

hence $x \in \text{ker } H^*$. \hfill \blacksquare

The operator Λ is given by

$$\Lambda : X \rightarrow X$$

$$x \mapsto HH^* x$$

from (3) it follows that

$$HH^* x = \sum_{j=1}^{N} \int_{t_{j-1}}^{t_j} \phi^{N-j} B_{j-1}(\theta)H^* x(\theta)d\theta$$

using (4) we deduce that

$$\Lambda x = HH^* x$$

$$= \sum_{j=1}^{N} \int_{t_{j-1}}^{t_j} \phi^{N-j} B_{j-1}(\theta)(\phi^*)^{N-j} x d\theta.$$

Finally, from theorem 3.1 we deduce the expression of the optimal control as follows.

Proposition 5.2 The control $u^* \in L^2(0,T,\mathbb{R}^p)$ given by

$$u^*(\theta) = B_{j-1}(\theta)(\phi^*)^{N-j} f, \quad \forall \theta \in [t_{j-1}, t_j[, \quad j = 1, \ldots, N$$

where $f \in \mathbb{R}^n$ is the unique solution of the algebraic equation

$$\Lambda f = x_d - \phi^N x_0$$

steers the system from the initial state x_0 to the final state x_d at time N with a minimal cost $J(u) = \|u\|$.

Figure 1: Approximation of the optimal control

if we take respectively $j = 1, 2, \ldots, j = N$, then we obtain

$$B_{N-1}^* x = 0, B_{N-2}^* \phi^* x = 0, \ldots, B_0^* (\phi^*)^{N-1} x = 0,$$
6 Conclusion

In this paper, we have studied an optimal control problem for systems having discrete state variables and continuous-time control. We have shown that techniques similar to Hilbert Uniqueness Method can be used to resolve the problem. A numerical approach of the solution have been also developed.

References