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Abstract 
 
The major problem of e-learning is often stopped during training. 
Due to the fact that it is necessary to ensure an individualized 
and continuous learner’s follow-up during the learning process. 
Our work in this field develops the design and implementation of 
a Multi-Agents System Based on Dynamic Case Based 
Reasoning which can initiate learning and provide an 
individualized follow-up of a learner. When interacting with the 
platform, every learner leaves his/her traces in the machine. 
These traces are stored in the memory bank, this operation 
enriches collective past experiences. Via monitoring, comparing 
and analyzing these traces, the system keeps a constant intelligent 
watch on the platform, and therefore it detects the difficulties 
hindering progress, and/or it avoids possible dropping out. The 
system can support any learning subject. The success of a case-
based reasoning system depends critically on the performance of 
the retrieval step used and, more particularly, on similarity 
measure used to retrieve source cases that are similar to the 
learners' traces (traces in progress). We propose a dynamic 
retrieving method based on a complementary similarity measure, 
named Inverse Longest Common Sub-Sequence (ILCSS). To 
guide and help the learner, the system is equipped with 
combination of human and virtual tutors. 
 
Keywords: Multi-Agent Systems (MAS), Intelligent Tutoring 
Systems (ITS), Computer Environment for Human Learning 
(CEHL), Dynamic and Incremental Case-Based Reasoning 
(DICBR), Similarity Measure, Inverse Longest Common Sub-
Sequence (ILCSS), Traces. 

1. Introduction 

E-learning or Computing Environment for Human 
Learning (CEHL) is a computer tool which offers learners 
another medium of learning. Indeed, it allows learners to 
break free from the constraints of time and place during the 
training. It relies only on the learner’s availability. In 

addition, the physical presence of the instructor is not 
compulsory; while the training usually takes place 
asynchronously. However, most E-learning platforms 
allow the transfer of knowledge in digital format, without 
integrating the latest teaching approaches in the field of 
education (e. g. constructivism, [26],). Consequently, in 
most cases distance learning systems degenerate into tools 
for downloading courses in different formats (pdf, word ...) 
or into sending homework to teachers on servers. These 
platforms also cause significant overload and cognitive 
disorientation for learners. Today, it is necessary to design 
a CEHL that provides an individualized follow-up to meet 
the pace and process of learning for the learners who 
become the pilots of the training. The system will also 
respond to the learner’s specific needs. Our contribution in 
this field is to design and implement a computer system (i. 
e. intelligent tutor) able to initiate the learning and provide 
an individualized monitoring of the learner. 
Solving these problems involves first of all understanding 
the learner’s behavior, or group of learners, who use 
CEHL as a way to identify the causes behind the problems 
and the difficulties which a learner can encounter. This can 
be accomplished via leaning on the traces of the learner’s 
interactions with the CEHL, which includes history, 
chronology of the interactions and productions left by the 
learner during his/her learning process. This will allow us 
the reconstruction of perception elements of the activity 
performed by the learner. According to Marty and Mille 
[20] the digital traces of interactions represent a major 
resource customization of the CEHL. The same authors 
also add that all of the theory, the practice, the protocols’ 
development, generic tools, etc., can significantly alter the 
supply of human learning activities mediated by a 
computing environment for human learning. The traces are 
generally numerous, coming from different sources and 
with different levels of granularity. Therefore, the 
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observation process-based traces suggest both the 
collection of traces together with their structure [29].  
Considering a system Intelligent Tutoring Systems (ITS), 
which is able to represent, follow and analyze the 
evolution of a learning situation through the exploitation 
and the treatment of the traces left by the learner during 
his/her learning on the platform. This system is based, 
firstly on the traces to feed the system and secondly on the 
reconciliation between the course of the learner (traces in 
progress) and past courses (or past traces).  The past traces 
are stored in the form of scenarios in a database called 
“base of scenarios”. The analysis of the course must be 
executed continuously and in real time which leads us to 
choose a Multi-Agent architecture allowing the 
implementation of a dynamic case-based reasoning. 
Recently, several research works have been focused on the 
dynamic case based reasoning in order to push the limits of 
case based reasoning system dealing with situations known 
as “static”, reactive and responsive to users. All these 
works are based on the observation that the current tools 
are limited in capabilities, and are not able of evolving to 
fit the non-anticipated or emerging needs. Indeed the reuse 
of past experiences causes several problems, such as: 

• Modeling: formalization of experience acquired 
(cases), indeed a few CBR systems are able to 
change over time the way of representing a case [7]. 
According to Alain Mille, a case has to describe its 
context of use, which is very difficult to decide 
before any reuse and can change in time [22]. 

• Reuse: the selection of past experiences which are 
similar to the current situation. 

• Treatment: the use of the classic reasoning cycle 
seems to be insufficient, even not adequate in 
dynamic or emerging situations, unknown in 
advance. 

In order to deal with this issue, we propose a Dynamic 
Case Based Reasoning based on a dynamic retrieving 
method, and we propose also a complementary similarity 
measure, named Inverse Longest Common Sub-Sequence.  
Our work in this field develops the design and 
implementation of a Dynamic Case Based Reasoning 
founded on the Multi-Agent Systems (MAS), which is 
constantly able to keep the traces of the learner’s progress 
and analyze it, in order to ensure an automatic and a 
continuous monitoring of the learner.  
Several questions arise: How to ensure an individualized 
and continuous learner’s follow-up during the learning 
process? How to represent the current situation using the 
traces of the interaction and how to define its structure? 
How to implement the case-based reasoning in our 
situation? Other problems that are related to our choice of 
case based reasoning approach also arise, such as how to 
define the structure of cases, case base and the case based 
reasoning cycle? Finally, we must analyze how to 

implement the reasoning process of our particular dynamic 
situation.  
 
The rest of this paper is organized as follows: In the 
second section, we give a general presentation of the 
intelligent tutoring systems. The third section is devoted to 
the introduction of the design and implementation of our 
approach. We will give an overview of the analysis and 
decomposition needs. So we will introduce the general 
architecture of the system and we will propose the 
description of the MAS and its objectives, together with 
the architecture of our MAS which can implement the 
approach of Dynamic and Incremental Case-Based 
Reasoning (DICBR). In section four, we will describe the 
approach of Case-Based Reasoning and Multi-Agent Case 
Based Reasoning, in the following part, we will propose 
the description of our approach as the Multi-Agent 
Dynamic and Incremental Case Based Reasoning. The 
interpretation Layer will also be presented. In section five, 
we will propose the description of our contribution in 
similarity measure entitled the Inverse Longest Common 
Sub-Sequence (ILCSS). In the sixth section we discuss the 
traces which are left by the learner and feed our system. In 
addition, we describe the ontology of the learner’s course, 
semantic features and the proximity measure in order to 
structure the learner’s activities. Finally, we will give the 
conclusion and future work. 

2. Intelligent Tutoring Systems  

Intelligent Tutoring Systems (ITS) are computer systems 
designed to assist and facilitate the task of learning for the 
learner. They have expertise in so far as they know the 
subject matter taught (domain knowledge), how to teach 
(pedagogical knowledge) and also how to acquire 
information on the learner (learner representative). In 
summary, as noted above, the ITS are computer systems 
designed for supporting and improving learning together 
with teaching process in the domain knowledge. The 
Architecture modules that make up an ITS can be 
represented schematically as follows (Figure 1): 
 

 

Fig. 1 Architecture modules that make up an ITS 
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There is much research concerned with the design and 
implementation of computer systems to assist a learner in 
learning. There are, for example, tutors or teaching agents 
who accompany learners by proposing remedial activities 
[11]. There are also the agents of support to the group 
collaboration in the learning [8] encouraging, the learners’ 
participation and facilitating discussion between them. 
Other solutions are based on agents that incorporate and 
seek to make cooperation among various Intelligent 
Tutoring Systems [6]. The Baghera platform [33], which is 
a “distance” CEHL exploits the concepts and methods of 
Multi-Agent approach. Baghera assists learners in their 
work solving exercise in geometry. They can interact with 
other learners or teachers (tutors).  The teachers can know 
the progress status of the learner’s work in order to 
intervene if necessary. These tools of distance learning do 
not allow an individualized, continuous and real-time 
learner’s follow-up. They adopt a traditional pedagogical 
approach (behaviorist) instead of integrating the latest 
teaching approaches (constructivism and social 
constructivism [24], [32]). Finally, given the large number 
of learners who leave their training, the adaptation of 
learning according to the learner’s profile has become 
indispensable today.  
Our contribution consists in proposing an adaptive system 
to ensure an automatic and a continuous monitoring of the 
learner. This monitoring is based on cases (dropping out, 
difficulties met, etc.) past and similar. Moreover, the 
system is open, scalable and generic to support any 
learning subject. 

3. Design and Implementation: Our Approach 

3.1 Analysis and Decomposition Needs 

We reconcile analysis of the traces left by the learner’s 
activity in e-learning, and the decision support systems, 
able to represent, follow in real-time and analyze the 
evolution of a dynamic situation. Such a system must: 

• Represent the current situation; 
• Take into account the dynamic changes of the current 

situation; 
• Predict the possible evolution of this situation;  
• React according to particular situations (which 

depend on the learner’s profile).  
 
This can be realized with a study of the traces (past 
experiences) left by the learner in interaction with the 
learning platform. Nonetheless, for those past situations we 
know the consequences that are stored in the memory of 
our system. This leads us to choose a tool for the 
formalization of the experience: case-based reasoning 

(CBR) [17]. In fact, CBR is an approach of artificial 
intelligence, considered as the most privileged method 
modeling users’ past experience and incremental learning 
from this experience. 
 
One of the goals of the learner’s follow-up individualized 
is to predict and reduce the number of dropping out, which 
leads us to seek a flexible and adaptive solution. Such a 
solution, a decision support system (as indicated in [38]) 
allows to analyze the course of the learner in order to 
anticipate a possible dropping-out of the learner or the 
learning difficulties of the latter. But such a system must 
take into account: 

• The complexity of the situations to be treated;  
• The dynamic representation of the current situation;  
• The representation of past situations (scenarios); 
• The link between current situation (current situation 

analysis) and scenarios (previous situations).  
 

We propose a system, which analyzes the traces of learners 
in a continuous way. Moreover, the system must take into 
account the evolving and dynamic character of the course 
to be analyzed. The analysis is based on the link, between 
the course of learner (traces in progress) and the past 
courses (traces). The traces of past learning activities will 
be the source of knowledge for the learning adaptation 
process. They are stored in a database called “base of 
scenarios”. Each scenario contains all the key aspects of its 
development, that is to say the facts that have played an 
effective role in how events are unfolded.  

3.2 General Architecture of the System 

Description of the System and its Objectives: One of the 
main objectives of the individualized monitoring of the 
learner is to envisage, to anticipate and to reduce the 
number of dropping out, which makes us seek a flexible 
and adaptive solution [10]. The complexity of the 
situations to be treated leads us to choose an approach 
based on a Multi-Agent Systems (MAS), able to cooperate 
and coordinate their actions to provide a pedagogical 
adaptation for the learner’s profile. We reconcile the 
problems of the analysis of the traces left by the learner’s 
activity in e-learning, and the decision support systems, 
able to represent, follow in real-time and analyze the 
evolution of a dynamic situation. Such a system must 
represent the current situation, take into account the 
dynamic change of the current situation, predict the 
possible evolution of this situation, and react depending on 
the particular situations and also depend on the learners’ 
profiles. This can be done by using past situations which 
consequences are known. It is then a question of reasoning 
by analogy. This type of reasoning can allow solving new 
problems, using already solved problems available in 
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memory. We often resort to our experience to solve new 
problems. 
 
The system we propose, allows to analyze the learner’s 
course (trace) in order to anticipate a possible dropping-
out. The learning activities past traces will be the source of 
knowledge for the learning adaptation process, they are 
stored in a database called ‘’base of scenarios’’. Each 
scenario contains all determining aspects in its 
development, i.e, the facts that have played an effective 
role in the way the events preceded. The analysis of the 
current situation must be continuous and dynamic. Indeed, 
the target case is a plot that evolves, therefore the system 
must take this incremental evolution into account. 
 

 

Fig. 2 General architecture of the intelligent tutor 

The intelligent tutoring system we propose consists of the 
three following components (as indicated in Figure 2): 

• The graphical interfaces for learners (who are the 
users for whom the system is developed), for course 
designers (who must structure the teaching contents) 
and finally the developers (Human and Computer 
Interface ‘’HCI’’ knowledge engineer for the 
knowledge module, and a tree Dimension Human and 
Computer Interface‘’3D HCI’’  for the behavior of 
the Multi-Agent Systems); 

• The Knowledge module containing: Base of 
Scenarios, Factual Semantic Features, Semantic 
Proximity Measure and Domain Ontology; 

• The hierarchical MAS with four layers. 
Research tasks related to the hierarchical structuring of this 
MAS were conducted on crisis management [4], 
emergency logistics [15] and E-learning [10]. 
The architecture of the intelligent tutor, given in Figure 2, 
is based on the four components proposed by Wenger [34]:  

• The interface with learners; 
• The structuring of the domain knowledge in the 

ontology; 

• The modeling of the learner using case based 
reasoning [38]. This is left to the interpretation layer 
of the MAS with a supervised learning step of 
learner’s profile; 

•  Teaching strategies are associated to the different 
learners’ profiles. Profiles and teaching strategies are 
stored in the base of scenarios. The choice of the 
strategy must be adapted to the situation left to 
decision layer of the MAS. 

The possible recourse to a human tutor is expected. This 
supposes to detect that the learner is in a situation such as 
the intervention by human tutor is necessary. 
 
The analysis of the current situation must be carried out in 
a continuous and dynamic way. Indeed, the treated 
situation is a layout which evolves over time. The system 
based on the case based reasoning which we propose, must 
take this evolution into account. This brings us to the 
implementation of a system of case based reasoning for 
dynamic situations. The case based reasoning is the subject 
of the following section. 

4. Case-Based Reasoning 

Case-Based Reasoning (CBR) is an artificial intelligence 
methodology which aims at solving new problems based 
on past experience or the solutions of similar previous 
problems in the available memory [17]. The solved 
problems are called source cases and are stored in a 
database (called a case-base or base of scenarios). The 
problem to be solved is stored as a new case and is called 
target case. A CBR is a combination of knowledge and 
processes to manage and re-use past experience. 
 
The process of Case-Based Reasoning is generally 
composed of five phases as given in Figure 3: presentation, 
retrieval, adaptation, validation and update. In the first 
phase the current problem is identified and completed in 
such a way that it becomes compatible with the contents 
and retrieval methods of the case-base. The task of 
retrieving phase is to find the most similar case(s) to the 
current problem in the case-base. The goal of the 
adaptation phase is to modify the solution of case source 
found in order to build a solution for the target case. The 
phase of revision, is the step in which the solution 
suggested in the preceding phase will be evaluated. If the 
solution is unsatisfactory, then it will be corrected. Finally, 
the retained step allows to update the knowledge of the 
system following the reasoning [12], [1]. 
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Fig. 3 The CBR Components (Source [1], [12]). 

The systems based on the case-based reasoning can be 
classified into two categories of applications [19]: 

• Applications dealing with situations known as 
“static”. This first model was used with the first CBR 
systems. Indeed, for this type of system, the CBR 
static method designer must have all the 
characteristics describing a case, in advance, in order 
to be able to realize its model. A data model of the 
field is thus refined through an expertise in the field 
of application which can characterize a given 
situation. Thus, the cases are completely structured in 
this data model and often represented in a list (a: 
attributes, v: values) when an attribute is an 
important specification of the studied field and “v” is 
the value that is associated with attribute “a” in this 
case. For example CHIEF [13]. 
 

We do not exploit this type of CBR to develop our system. 
We justify this choice by the fact that in the approach 
oriented static situation, a problem must be completely 
described before the search begins in the case base. 
However in our situation, the traces left by the learner 
during learning session (the target case) evolve 
dynamically over time, so we must treat a dynamic 
situation with some important features. 

• Applications with dynamic situations. They differ 
when we compare them to static cases by the fact that 
they deal with temporal target cases (the situation), 
by looking for similar cases (better cases) based on a 
resemblance between histories (for more details on 
the subject, the reader may refer to [19])). Several 
works relate to dynamic case based reasoning such as 
REBECAS [19]. 

4.1 Multi-Agent Case Based Reasoning 

Several architectures case-based reasoning has been 
applied in Multi-Agent Systems to solve some problems. 
For example, [14] applies case based reasoning to the 
predator/prey problem, where each predator can learn 
cases of the behavior of other agents. Working with the 
stored case, a predator can predict the movement of other 
predators so as to enhance their coordination [27]. 
 
The Multi-Agent Systems based on case based reasoning 
are used in many applications areas. They can be classified 
by several criteria:  

• How knowledge is organized within the system (i.e., 
single vs multiple case bases) [25] ? 

• How knowledge is processed by the system (i.e., 
single vs Multi-Agent execution of the case based 
reasoning cycle) ? 

In the field of Multi-Agent Systems based on case based 
reasoning, one of the fundamental themes is the autonomy 
of the agents. Two key factors that govern agent autonomy 
are (1) its capability to identify whether it is qualified to 
solve a problem, and (2) its capability to interact with other 
agents by negotiation and collaboration in order to get a 
solution for a given problem [25]. 
In the knowledge processing system, which is the most 
important criteria, we can distinguish two types of 
applications: 

• The Multi-Agent Systems in which each agent uses 
the case based reasoning internally to their own 
needs (level agent case based reasoning) : This type 
is the first model that was applied in Multi-Agent 
CBR Systems.  For this type of system, each agent is 
able to find similar cases to the target case in their 
own case base, also able to accomplish the other 
steps of CBR cycle. For example we have the system 
POMAESS in e-service field [36], CCBR framework 
to personalized route planning [21], and MCBR [18] 
for distributed systems. 

• The Multi-Agent Systems whose approach is a case 
based reasoning (level Multi-Agent Case Based 
Reasoning) : For this types of applications, the Multi-
Agent Case Based Reasoning System distribute the 
some/all steps of the CBR cycle (Representation, 
Retrieve, Reuse, Revise, Retain) among several 
agents. This type of approach might be better than 
the first. Indeed the individual agents experience may 
be limited, therefore their knowledge and predictions 
too, thus the agents can benefit from the other agents 
capabilities, cooperate with each other for better 
prediction of the situation. For example we have the 
example PROCLAIM [30] in argumentation field, 
and the Multi-Agent Systems CBR-TEAM [26] 
approach that uses a set of heterogeneous cooperative 
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agents in a parametric design task (steam-condenser 
component design). 

4.2 Multi-Agent Dynamic and Incremental Case 
Based Reasoning 

Our problem is similar to the CBR for dynamic and 
incremental situations. Indeed, the traces left by the learner 
during the learning session evolve dynamically over time; 
the case-based reasoning must take into account this 
evolution in an incremental way. In other words, we do not 
consider each evolution of the traces as a new target.  
The case-based reasoning which we propose offer 
important features: 

• It is dynamic. Indeed we must continually acquire 
new knowledge to better reproduce human behavior 
in each situation. 

•  It is incremental; this is its major feature because the 
trace evolves in a dynamic way for the same target 
case. 

The main benefits of our approach are the distributed 
capabilities of the Multi-Agent Systems and the self-
adaption ability to the changes that occur in each situation. 

Each action of the learner is represented by a data structure 
called semantic features that are supported by factual 
agents.  The course of the learner is well represented by a 
set of trace agents [10]. Therefore, the various actions of 
the learner (learner traces) can be represented as a 
collection of semantic features. These will feed the 
representation layer (Layer 1). The role of this layer is to 
be both, a picture of the current situation being analyzed 
and to represent the dynamics of its evolutions over time. 

 

Fig. 4 DICBR cycle in our approach 

The goal of the characterization layer (Layer 2) is to 
provide a synthetic vision of the organization of agents of 
the representation layer by classifying them in several 
subsets according to their activity degrees. A part of the 

target case in the Dynamic and Incremental Case-Based 
Reasoning (DICBR) is developed by this layer.  
 
The interpretation, or prediction, layer (Layer 3) will 
associate the agents’ characterization subsets layer with a 
scenario. The interpretation agents also allow to update the 
system knowledge by the learning of new cases. In fact, 
they store and manage new scenarios [10]. 
 
The decision layer (Layer 4) selects similar scenarios in 
the base of scenarios and chooses one to propose to the 
learner. For each particular situation, the decision agents 
can react differently depending on the learner’s profile 
concerned, for example, deciding to initiate a 
communication session with a learner’s experiencing 
difficulties. The human tutor is needed if the system 
detects a learning situation requiring his/her intervention. 

4.3 Interpretation Layer 

Retrieval of Scenarios is one important step within the 
case-based reasoning paradigm. The success of retrieval 
step will depend on three factors: the case representation, 
case memory and similarity measure used to retrieve 
scenarios that are similar to the target case (the situation).  
A several similarity measuring approch have been used in 
different systems. There is no similarity measure that can 
accomplish all areas.   
There are two ways research for the case in dynamic 
situations: 

• Research by evaluating similarity between the current 
problem and the already solved problems (the 
scenarios) in a single dimension [19]. Research in 
single dimension runs in several stages. Each is used 
to evaluate the similarity between the current 
problem and scenarios in a single variable or 
parameter [2]. Choosing the best case for reuse 
depends on the results obtained in different steps. 
Several systems have been used this type of approach 
such as REBECAS [19] and SAPED [2]. 

Research will be conducted by evaluating the similarities 
between the current problem and the already solved 
problems (the scenarios) in a multiple dimension [2]. The 
multidimensional research, it is realized in a single step by 
taking into account all the parameters describing the 
current problem at the same time. The multidimensional 
research is also used in several systems, such as CASEP2 
[37]. 

The goal is to define the future situations from the time ti+1, 
knowing that we have previous situations at time ti. 
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      Past situations                  Future situations? 
 
S0      S1   ..............  Si        Si+1 ………………. 

 
  t0      t1    ...............  ti        ti+1 ……………….       Time 
 
We propose a Dynamic and Incremental system DICBR 
founded of a dynamic retrieve method as indicated in 
Figure 4: 

• Upon the arrival of new information the system 
(layer1,2) update the target case at the same time 
update the distance table (table1) based on 
similarity measure, Inverse Longest Common 
Sub-Sequence (ILCSS). 

• If there is a change on the distance table (layer3, 
table1), i.e. there is a new similar source cases to 
the target case, then the future prediction of the 
target case will be similar to the situation of the 
new source cases founded previously. Else the 
system verify if  there is a new presentation 
(layer1,2) 

Table 1. Distance table 
Time/ Source cases Source case 1 …. Source case n 

t0 D0,1 …. D0,n 
t1 D1,1 …. D1,n 
… … …. … 
ti Di,1 …. Di,1 

Calculate the distances between the target case and all the 
source cases are based on the similarity measure Inverse 
Longest Common Sub-Sequence. The ILCSS will be the 
subject of the following section. 

5. Inverse Longest Common Sub-Sequence  
 
Search for similar scenarios are based on the similarity 
measure. In this part, we present the principles similarity 
measures often used in case based reasoning, for more 
details on the subject, the reader may refer to [2]. We was 
also, basing on references [31], [16], and [2], in our article 
[38], given more details concerning the State of the Art on 
Similarity Measures. 
The main goal of the retrieval phase in our system is to 
predict the behavior of the learner, by the reconciliation 
between the course of the learner (traces in progress or the 
situation) and past courses (past traces or scenarios). The 
success of a case-based reasoning system depends 
primarily on the performance of the retrieval step used and, 
more particularly, on similarity measure used to retrieve 
scenarios that are similar to the course of the learner 
(traces in progress). Several research works have been 
focused on the similarity measure. Furthermore, these 

methods are not well suited when we compare two 
heterogeneous sequences containing textual data (we need 
semantic distance). In addition we must begin to compare 
the sequences from tail. 
In order to deal with this issue, we propose a 
complementary similarity measure entitled the Inverse 
Longest Common Sub-Sequence an extension of the 
Longest Common Sub-Sequence measure [31]. 
The various actions of the learner (learner traces) can be 
represented as a collection of semantic features 
SF=(object, (qualification, value) +), we note object=O, 
qualification=Q and value=V, SF=(O,(Q,V)+), so the 
learner traces at time i, can be defined by the formula: 
 

      (1) 
Where SFk = (Ok, (Qk,1, V1),…, (Qk,d, Vd)) is a sequence of 
d+1 dimension. Finally the learner traces at time i is a 
multidimensional sequence. 
Let A and B two Traces with size n x d and m x d 
respectively, where: 
A = ((OA,1, (Q A,1,1, VA,1,1),…, (QA,1,d, VA,1,d), (OA,2, (QA,2,1, 
VA,2,1),…,(QA,2,d, VA,2,d)),….., (OA,n,

 (QA,n,1, VA,n,1),…, 
(QA,n,d, VA,n,d))) 
and 
B = ((OB,1, (QB,1,1, VB,11),…,(QB,1,d, VB,1,d), (OB,2, (QB,2,1, 
VB,21), …, (QB,2,d, VB,2,d)),….., (OB,m, (QB,m,1, 
VB,m,1),…,(QB,m,d, V B,m,d))). 
For a Trace A, let Tail(A) be the Trace: 
Tail(A) = (OA,2,(QA,2,1,VA,2,1),…, (QA,2,d, VA,2,d)),….., (OA,n, 
(QA,n,1,VA,n,1),…, (QA,n,d, VA,n,d))). 
Given a real numbers α, β, ε, �, we define the 
ILCSSα,β,�,ε(A,B) as follows : 

 

Where: DS(OA,1, OB,1)   is a Symantec distance between 
the concepts OA,1, OB,1 and DS(QA,1,i, QB,1,i)   is a Symantec 
distance between the concepts QA,1,i, QB,1,i  for 1≤i≤d. 

We define the distance between the two Traces A and B as 

follows:  where   

verify the proprieties of the distance such as: 
 

  Is read A and B are two similar traces 

 
The CEHL personalization is primarily depending on the 
ability to produce relevant and exploitable traces of the 
learner’s activity. These traces allow us to describe and to 
document the learner’s activity. They are re-used as a 
learning support, in order to be able to react during a 
teaching activity. The learner’s traces which feed our 
system will be the subject of the following section. 
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6. Learner’s Traces and Ontology of Course 

On the one hand, for the first part of this section, we will 
describe in more detail the Learner’s Traces. Concerning 
the general definition of a trace as given in [25], we refer 
the interested, for more details, to our paper [38]. Note that, 
in CEHL literature, a digital trace is an observed collection, 
all structured information resulting from an interaction 
observation temporally located [22]. 
In our context, a digital trace is resulting from an activity 
observation representing a process interactional signature. 
Indeed, it is composed of the objects which are 
respectively located the ones compared to the others when 
observed and registered on a support. That means that a 
trace is explicitly composed of the structured objects and 
registered compared to a time representation of the traced 
activity. The structuring can be sequentially explicit (each 
trace observed is followed and/or preceded by another) or 
can also come from the temporal characteristic of the 
traces objects [32]. Indeed, the structuring depends on the 
type of the time representation and the time of the traced 
activity. We can distinguish two types of representations: 

• They can be a temporal interval determined by two 
dates, (start and end of observation). In this case, the 
observed traces activity may be associated with an 
instant or an interval of time. Then we will be able to 
take into account chronological relationships 
between observations’; 

• They can be a sequence of unspecified elements (for 
example a sub-part of the whole of the set of 
integers). In this case, we will focus on the 
succession or the precedence of the trace observed. 
Here there is no chronological time. 

In the current uses of the traces for the CEHL, collected 
situations are contrasted: from “we take what we have in 
well specified formats, what is called the logs” to “we 
scrupulously instruments the environment to recover the 
observed controlled and useful for different actors (learner 
and tutor). The first step consists of modeling the raw data 
contained in the log file. It is necessary to be able to collect 
files of traces containing at least, the following elements: 
time for the start date of the action, codes action which 
consists in codifying the learner’s actions and learner 
concerned.  
 
Solving the problem of the CEHL personalization is 
primarily dependent on the capacity to produce relevant 
and exploitable traces of individual or collective activity of 
the learner which interacts with a CEHL. For this, we will 
combine the concepts which can represent all the 
knowledge of a domain in an explicit and formal 
specification, by using the domain ontology [10], [38]. 

On the other hand, for the second part of this section, we 
will talk about the Learner’s Ontology of Course. The 
Ontology of the Domain is defined as an ontology 
containing the concepts that represent all the knowledge of 
a domain in an explicit and formal specification [10]. In 
addition, it shows the relationships and rules of 
associations between these concepts to allow both the 
system, the production of new knowledge through an 
inference that the human and system granting of common 
sense to the terms used in a field of activity to remove any 
ambiguity during the treatments. 

The ontology becomes a theme of topical interest within 
the research conducted in the CEHL. The knowledge 
diffusion motivation and their acquisitions by learners is 
central for the CEHL. In this context, the ontology has a 
main and indispensable role to take, for sharing and 
dissemination of the knowledge. The CEHL literature 
proposes several types of ontology for the description of 
the domain application, the resources and learners. There 
is thus an resource ontology, an learner ontology and field 
ontology [10]. 
 
Our system needs the knowledge on the learner course to 
represent it, for this reason, we suggest an ontology of the 
learner course, able to describe the concepts related to the 
activities and the traces carried out by the learner at the 
time of his learning, and recorded on the learning platform: 
course and its various parts; average and the difficult 
exercises, lab, the evaluation form, homework, etc. 
To build this ontology, we rely on the method developed 
by [3], which is based on three steps: 

• Specify the terms to be collected. 
• Organize the terms by using the meta-categories: 

concepts, attributes, etc. 
Refine ontology and structure it under a hierarchical 
organization. 

The continuous information processing coming from the 
CEHL allows suggesting to the actors the possible 
evolutions of the learner work. For that reason, we proceed 
to the formalization of the information representation 
received from the environment. To represent the learner 
activities, it is enough to categorize the various semantic 
features while being based on ontology. 
Semantic Features and Proximity Measures: The semantic 
feature (SF) is the most basic information which can result 
from the observation. In other words, the SF cannot be 
reduced because it is subatomic information and it is 
structured by respecting an established format. The 
semantic feature specification allows the viewer to 
formalize the information communicated to the system. 
 
A SF is a three-part-relation SF= (object, (qualification, 
value) +) representing a partial aspect of the situation [6]. 
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The SF is composed of the object called selector and its 
associated qualifiers and their values on the moment of 
observation. These qualifiers refer to the statements of 
objects and are incorporated into the ontology of the field. 
The SF can be enriched in order to situate it in time and 
space. We can also classify the various SF. 
 
The observations must be grouped, compared, calibrated 
and differentiated by measuring the similarity and 
proximity [6], [38]. To bring the same object of a semantic 
feature observed with two different learners, we must 
compare the SF on the one hand, by bringing their objects 
then their qualifiers, and their associated values, on the 
other hand. 
The use of semantic features as subatomic granules of 
information: at a given time, allows to represent the current 
situation in the form of a collection of semantic features 
related to the different actions of a learner. These features 
are the carried by the agents of the representation layer 
(factual agents) in our system. 

7.  Conclusion and Outlook 

Our system allows connecting and comparing the scenario 
found (current situation) to past scenarios that are stored in 
a database. The continuous analysis of information coming 
from the environment (learner’s traces) makes it possible 
to suggest to various actors (learners and tutor) possible 
evolutions of the current situation. 
The Multi-Agent architecture that we propose is based on 
four layers of agents with a pyramidal relation. The lower 
layer allows building a representation of the target case, i.e. 
the current situation. The second layer allows 
implementing a dynamic and incremental elaboration of 
the target case. The third layer implements a dynamic 
process of the source cases recall allowing the search for 
past situations similar to the current one. Finally, the 
decision layer captures the responses sent by the 
interpretation agents to transform them into actions 
proposed either by machine tutor, virtual tutor, or/and 
human tutor. 
We have presented systems founded of Dynamic and 
Incremental Case Based Reasoning and we have also 
clarified that the CBR-based applications can be classified 
according to the study area: CBR for static situations and 
CBR for dynamic and incremental situations. In our 
situation, we have used a Dynamic and Incremental system 
DICBR, which the third step of our DICBR cycle is 
dynamic in order to push the limits of CBR cycle static.  In 
fact, the current situation (target case) is a trace that 
evolves; the case based reasoning must take into account 
this evolution incrementally. In other words, it shouldn’t 
consider each evolution of the trace as a new target case. In 

addition, we made a comparison of different existing 
similarity measures between sequences and we have 
proposed our new similarity measure (a complementary 
similarity measure), named the Inverse Longest Common 
Sub-Sequence (ILCSS). In the near future, we will realize 
a real experiment in a platform e-learning and a 
comparative study, (or the benchmarking), between our 
system and other tools existing. For other our future work, 
we will explore techniques, (the methodology and tools), 
for modeling the ITS-MAS.  
 

References 
[1] A. Aamodt and E. Plaza, “Case-Based Reasoning : 

Foundational Issues, Methodological Variations, and 
System Approaches”, AI Communications, 7(i), 1994. 

[2] A. Aich, Reconnaissance et prédiction de situations 
dynamiques : application à l'assistance de personnes 
handicapées moteur, Thèse de doctorat, Université de 
Technologie de Troyes, 2007. 

[3] A. Bernaras, I. Laresgoiti and J. Corera, “Building and 
Reusing Ontologies for Electrical Network Applications”. 
Paper presented at the Proc. of the 12th ECAI96, 1996.   

[4] H. Boukachour, “Système de veille préventive pour la 
gestion de situations d'urgence: une modélisation par 
organisation d'agents, application aux risques industriels”, 
PhD Thesis, University of Le Havre, 2002. 

[5] H. Boukachour, T. Galinho, P. Gravé, P. Person and F. 
Serin, ‘Vers un système Multi-Agent multicouche pour la 
pédagogie de la formation à distance’ CIRTAI-NTIC, 
Université du Havre, 2005. 

[6] P. Brusilovski, “Distributed Intelligent Tutoring on the 
Web”. 8th World Conference of Artificial Intelligence in 
Education. IOS Press. pp.482-489, 1997. 

[7] A. Cordier, B. Mascret, A. Mille, “Dynamic Case Based 
Reasoning for Contextual Reuse of Experience”, Case-
Based Reasoning Workshop, ICCBR 2010, Cindy Marling 
ed. Alessandria, Italy. pp. 69-78.   2010. 

[8] G. Constantino, D. Suthers and J-I. Icaza, “Designing and 
Evaluating a Collaboration Coach: Knowledge and 
Reasoning”. Proceedings of the Artificial Intelligence in 
Education, AI-ED, J.D. Moore et al (Eds). The Netherlands: 
IOS Press. pp. 176-187, 2001.  

[9] A. El Hassan and A. Lazrek, “Des ontologies pour la 
description des ressources pédagogiques et des profils des 
apprenants dans l'e-learning”, 1ere Journées Francophones 
sur les ontologies, 2007. 

[10] M. Ennaji, H. Boukachour and P. Gravé, “Une architecture 
Multi-Agent pour la pédagogie de la formation à distance”, 
MOSIM'06, Rabat, Maroc, 2006. 

[11] C. Frasson, L. Martin, G. Gouarderes and E. Aïmeur, “A 
distance learning Architecture Based on Networked 
Cognitive Agents”, Intelligent Tutoring Systems, 1998. 

[12] B. Fuchs, J. Lieber, A. Mille and A. Napoli, “Une première 
formalisation de la phase d’élaboration du raisonnement à 
partir de cas”, Actes du 14ième atelier du raisonnement à 
partir de cas, Besançon, mars, 2006. 

[13] K.J. Hammond, “CHEF: a model of case-based planning”. 
Proc. Of AAAI’86, Morgan Kaufman, pp. 267-271, 1986. 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 3, November 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 120

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



 

[14] T. Haynes, K. Lau, and S. Sen, Learning cases to 
compliment rules for conflict resolution in Multi-Agent 
systems. In Sandip Sen, editor, AAAI Symposium on 
Adaptation, Co-evolution and Learning in Multi-agents 
Systems, pages 51–56, 1998. 

[15] F. Kebair, “Modélisation Multi-Agents de postes de 
commande coordonnateurs de prise de décisions 
stratégiques. Application au système de simulation de 
RoboCupRescue” , PhD Thesis, Univ. of le Havre, 2009. 

[16] E. Keogh, and M. Pazzani. Derivative Dynamic Time 
Warping. In Proc. of the First Intl. SIAM Intl. Conf. on 
DataMining, Chicago, Illinois, 2001. 

[17] J. Kolodner, “Case-Based Reasoning”. Morgan Kaufmann, 
San Mateo, UCA, 1993. 

[18] D. Leake and R. Sooriamurthi, When two case bases are 
better than one: Exploiting multiple case bases. In ICCBR, 
pages 321–335, 2001. 

[19] S. Loriette-Rougegrez, “Raisonnement à partir de cas pour 
des évolutions spatiotemporelles deprocessus”, revue 
internationale de géomatique, vol 8, n° 1-2, 1998. 

[20] J-C. Marty and A. Mille, “Analyse de traces et 
personnalisations des environnements informatiques pour 
l’apprentissage humain”, Edition Lavoisier, 2009.  

[21] L. McGinty and B. smyth, Collaborative case-based 
reasoning: Applications in personalized route planning. In 
ICCBR, pages 362–376, 2001. 

[22] A. Mille, “From case-based reasoning to traces-based 
reasoning”, Annual Reviews in Control 30(2):223-232, 
ELSEVIER, ISSN 1367-5788.   2006. 

[23] Petit robert, on line dictionary, consulted on December-
2005. 

[24] J. Piaget, Psychologie et pédagogie. Paris: Denoël-Gonthier, 
1969. 

[25] E. Plaza and L. Mcginty, “Distributed case-based reasoning, 
The Knowledge Engineering” Review, Vol. 00:0, 1–4.c 
2005, Cambridge University Press, 2005. 

[26] M. Prassad, V. Lesser, and S. Lander, Retrieval and 
reasoning in distributed case bases. Technical report, UMass 
Computer Science Department, 1995. 

[27] S. Ontañón, PhD, “Ensemble Case Based Learning for 
Multi-Agents Systems”,The University of Barcelona, Higher 
Technical School of Engineering, Bellaterra, 2005. 

[28] S. Ontañón and E. Plaza, Learning and Joint Deliberation 
through Argumentation in Multi-Agents Systems, in 
AAMAS'07 Proceedings of the 6th international joint 
conference on Autonomous agents and Multi-Agents 
systems, Honolulu, HI, USA, 2007 

[29] L. Settouti, Y. Prié, J-C. Marty, and A. Mille, “Vers des 
Systèmes à Base de Traces modélisées pour les EIAH”, 
Rapport de recherche RR-LIRIS-2007-016, 2007. 

[30] P. Tolchinsky, S. Modgil, U. Cortes, and M. Sanchez-marre, 
Cbr and argument schemes for collaborative decision 
making. In Conference on computational models of 
argument, COMMA-06 (Vol. 144, pp. 71–82), 2006. 

[31] M. Vlachos, K. Kollios, and G. Gunopulos, Discovery 
similar multidimensional trajectories. The 18th International 
Conference on Data Engineering (ICDE02), pages 673–684, 
San Jose, CA, 2002. 

[32] Vygotski L-S., Mind in society: the development of higher 
psychological processes, Harvard University Press, 
Cambridge, MA, 1978. 

[33] C. Webber and S. Pesty, “Emergence de diagnostic par 
formation de coalitions - Application au diagnostic des 
conceptions  d'un apprenant”, Journées Francophones pour 
l'Intelligence Artificielle Distribuée et les Systèmes Multi-
Agents, Hermes, Lille, pp.45-57, 2002. 

[34] E. Wenger, Artificial Intelligence and Tutoring Systems, 
Morgan Kaufmann, 1987. 

[35] H. C. Yehia, P.E. Rubin, and E. Vatikiotis-Bateson, 
Quantitative association of vocal-tract and facial behavior. 
Speech Communication, 26 :23-34, 1998. 

[36] R. Yua, B. Iunga, H. Panetto, A multi-agents based E-
maintenance system with case-based reasoning decision 
support, Faculté des Sciences, CRAN-Universit de Nancy I, 
and  Faculty of Hydroelectric Power, Huazhong University 
of Science and Technology, Wuhan, China,  in Engineering 
Applications of Artificial Intelligence 16 (2003) 321–333. 

[37] F. Zehraoui, Systèmes d’apprentissage connexionnistes et 
raisonnement à partir de cas pour la classification et le 
classement de séquences, PhD Thesis, Univ. Paris13, 2004. 

[38] A. Zouhair, E. M. En-Naimi, B. Amami, H. Boukachour, P. 
Person and C. Bertelle, “Multi-Agents Dynamic Case Based 
Reasoning & The Inverse Longest Common Sub-Sequence 
And Individualized Follow-up of Learners in The CEHL”,   
The IJCSI, Vol. 9, Issue 4, No 2, July 2012. 

 
El Mokhtar EN-NAIMI is a Professor in Faculty of Sciences and 
Technologies of Tangier, Department of Computer Science. He is 
a member of the Laboratory LIST (Laboratoire d'Informatique, 
Systèmes et Télécommunications), the University of Abdelmalek 
Essaâdi, FST of Tangier, Morocco. Mr. EN-NAIMI is also 
responsible of "License Science and Technology - Computer 
Science (LST - CS)" in Department of Computer Science, FST of 
Tangier. In addition, he is an associate member of the ISCN - 
Institute of Complex Systems in Normandy, the University of Le 
Havre, France. 
 
Abdelhamid ZOUHAIR is a PhD student in Cotutelle between the 
Laboratory LIST, FST of Tangier, Morocco and the Laboratory 
LITIS, the University of Le Havre, France, since September 2009. 
 
Benaissa AMAMI is a Professor in Faculty of Sciences and 
Technologies of Tangier. He is a Director of the Laboratory LIST 
(Laboratoire d'Informatique, Systèmes et Télécommunications), 
the University of Abdelmalek Essaâdi, FST of Tangier, Morocco. 
 
Hadhoum BOUKACHOUR and Patrick PERSON are Professors 
in the University of Le Havre, France. They are members in the 
Laboratory LITIS (Laboratoire d’Informatique, de Traitement de 
l’Information et Système), The University of le Havre, France. 
 
Cyrille BERTELLE is Professor in the University of Le Havre, 
France. He is a Deputy Director of the Research Laboratory LITIS 
at the University of Le Havre and Co-founder of ISCN - Institute of 
Complex Systems in Normandy, the University of Le Havre, 
France.  

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 3, November 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 121

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.




