

Survey on Multi-Tenant Data Architecture for SaaS

Li heng1, Yang dan2 and Zhang xiaohong3

 1 College of Computer Science, Chongqing University

Chongqing, 401331, China

2 School of Software Engineering, Chongqing University

Chongqing, 401331, China

3 School of Software Engineering, Chongqing University

Chongqing, 401331, China

Abstract
A multi-tenant database is the primary characteristic of SaaS, it

allows SaaS vendors to run a single instance application which

supports multiple tenants on the same hardware and software

infrastructure. This application should be highly customizable to

meet tenants’ expectations and business requirements. This paper

examines current solutions on multi-tenancy that provide flexible

data model, and reviews their architecture, approaches and

performance. Experimental results show that different mapping

technique has its own benefits and drawbacks, and the ideal

database system for SaaS need to be developed.

Keywords: Multi-Tenant, Software as service, Schema mapping,

meta data.

1. Introduction

Software as a Service (SaaS) is an emerging software

application service and one of the hot topics in the

software industry. Expressed most simply, SaaS can be

defined as follows: “Software deployed as a hosted service

and accessed over the Internet” [1]. Instead of paying for

the software license, the end user subscribe for a paid

application. In February 2000, SaaS concept started when

Salesforce.com launched their web-based service and

became the early SaaS adopters. In February 2001 the term

Software as a Service or SaaS published for the first time

in a white paper called "Software as a Service: Strategic

Backgrounder" [2]. SaaS began to flourish in 2005-2006,

because the internet speed had significantly increased, had

become affordable, and customers had started to be more

comfortable to establish business over the internet.

A particularly important challenge in a SaaS

application is concerned with enabling multi-tenancy at the

data tier [3, 4]. Systems at the data tier of a SaaS

application are accessed by the same application for each

tenant, who has own unique needs that a rigid, inextensible

default data model won't be able to address. Put simply, the

challenge is to consolidate multiple tenants onto one data

tier resource, e. g. one database server, which can be

extended for different versions of the application and

dynamically modified while the system is on-line, while at

the same time isolating them among one another, as if they

were running on physically segregated resources.

In this article, first we'll introduce three distinct

approaches for creating data architectures. Then, based on

the above three approaches, we'll explore some multi-

tenant database schema mapping techniques for ensuring

security, creating an extensible data model, and scaling the

data infrastructure. Finally, we make a experimental

comparison of those techniques described in section 3 for

implementing flexible schemas for SaaS.

2. Three Approaches to Managing Multi-

Tenant Data

The typical character of SaaS applications is 'single-

instance multi-tenancy', according to this feature, three

main approaches have been proposed [5].

2.1 Separate Database

Storing tenant data in separate databases is the

simplest approach to data isolation.

Fig. 1 separate databases

In this approach, each tenant has its own set of data

that remains logically isolated from data that belongs to all

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 3, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 198

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

other tenants, database security prevents any tenant from

accidentally or maliciously accessing other tenants' data.

It is very easy to extend the application’s data model

to meet tenant’s individual needs, and can simply restoring

a tenant’s data from backups. However, it costs higher for

the relatively high hardware and maintenance requirements.

This approach is suit for customers who are willing to pay

extra for added security and customizability. For example,

customers in fields such as social security or banking often

have very strong data isolation requirements.

2.2 Shared Database, Separate Schemas

This approach involves housing multiple tenants in the

same database, with each tenant having its own set of

tables that are grouped into a schema created specifically

for the tenant.

Fig. 2 separate schemas

The separate-schema approach is relatively easy to

implement, and tenants can extend the data model as easily

as with the separate-database approach. This approach

offers a moderate degree of logical data isolation for

security-conscious tenants, though not as much as a

completely isolated system would, and can support a larger

number of tenants per database server.

A significant drawback of the separate-schema

approach is that tenant data is harder to restore in the event

of a failure. If each tenant has its own database, restoring a

single tenant's data means simply restoring the database

from the most recent backup. With a separate-schema

application, restoring the entire database would mean

overwriting the data of every tenant on the same database

with backup data, regardless of whether each one has

experienced any loss or not. Therefore, to restore a single

customer's data, the database administrator may have to

restore the database to a temporary server, and then import

the customer's tables into the production server—a

complicated and potentially time-consuming task.

The separate schema approach is appropriate for

applications that use a relatively small number of database

tables, on the order of about 100 tables per tenant or fewer.

This approach can typically accommodate more tenants

per server than the separate-database approach can, so you

can offer the application at a lower cost, as long as your

customers will accept having their data co-located with that

of other tenants.

2.3 Shared Database, Shared Schema

A third approach involves using the same database and

the same set of tables to host multiple tenants' data. A

given table can include records from multiple tenants

stored in any order; a Tenant ID column associates every

record with the appropriate tenant.

Fig. 3 shared schema

Of the three approaches explained here, the shared

schema approach has the lowest hardware and backup

costs, because it allows you to serve the largest number of

tenants per database server. However, because multiple

tenants share the same database tables, this approach may

incur additional development effort in the area of security,

to ensure that tenants can never access other tenants' data,

even in the event of unexpected bugs or attacks.

The procedure for restoring data for a tenant is similar

to that for the shared-schema approach, meanwhile,

individual rows in the production database must be deleted

and then reinserted from the temporary database. All the

tenants that the database serve will be suffer noticeably in

the procedure.

The shared-schema approach is appropriate when it is

important that the application be capable of serving a large

number of tenants with a small number of servers, and

prospective customers are willing to surrender data

isolation in exchange for the lower costs that this approach

makes possible.

3. Multi-Tenant Data Architecture

Techniques

Based on the above three approaches, Several works

have been presented in [6], [7], [8], [9] on design and

implement multi-tenant database schema, such as Private

Table, Extension Table, Universal Table and so on, each

technique has its’ own characteristics and applicable

scenarios, This section will explore eight techniques of

multi-tenant database schema.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 3, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 199

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

app:ds:social
app:ds:security

3.1 Private Table

The most basic way to support extensibility is to give

each tenant their own private tables which can be extended

and changed. Aulbach et al. [8], [9] state that Private

Tables’ technique allows each tenant to have his own

private tables. Simply by renaming tables, we can

transform the query from one tenant to another, and we

don’t need to use extra columns like “ tenantid” to

distinguish and isolate tenants data.

Fig.4 show three tenants, each tenant has different

business requirements, so there exists three different user

tables. In contrast, many tables are required to satisfy each

tenant needs, therefore this technique can be used if there

are few tenants using it, to produce sufficient database load

and good performance.

Fig.4 Private Tables

3.2 Extension Table

Because multiple tenants may use the same base

tables, Aulbach et al. [8], [9] report that the Extension

Tables are separated tables joined with the base tables by

adding tenant column as well as row column to construct a

logical source tables. This approach has its origins in the

Decomposed Storage Model [11], where an n-column table

is broken up into n 2-column tables that are joined through

surrogate values. Multiple tenants can use the base tables

as well as the extension.

The Extension Tables in Fig. 5 show how the columns

of the user tables for the three tenants split-up between the

base table “user” and the two extension tables. All of these

three tables have two fixed common columns “tenantid”

and “row”. The “tenantid” column is used to map data

records in the base table and the extension tables with the

tenant who owns these records. The “row” column is used

to give each record in the base table a row number and

map it with other records in the extension tables. The last

two columns of “user” table are shared between all the

tenants. The table “userext1” is used by tenant 1. The

“userext2” used by tenant2. This technique provides better

consolidation than the Private Tables explained above.

Nevertheless, the number of tables will be increased by

increasing the number of tenants and the variety of their

business requirements.

Fig.5 Extension Tables

3.3 Universal Table

Aulbach et al. [8] refer to Universal Table as a table

that contains additional columns of the base application

schema columns which enable tenants to store their

required columns. A Universal Table is a generic structure

with a Tenant column, a Table column, and a large number

of generic data columns. The data columns have a flexible

type, such as VARCHAR, into which other types can be

converted. The n-th column of each logical source table for

each tenant is mapped into the n-th data column of the

Universal Table. As a result, different tenants can extend

the same table in different ways.

Fig.6 Universal Table

The Universal Table in Fig.6 shows how the tenants

data records are stored in one universal table. The

“tenantid” column is used to map records with their tenants.

The “table” column is used to map records to particular

tables. Columns “col1” until “coln” are the universal

columns that stores any data tenants wish to store. This is a

flexible technique which enables tenants to extend their

tables in different ways according to their needs. However

it has the obvious disadvantage that the rows need to be

very wide, even for narrow source tables, and the database

has to handle many null values. Furthermore, indexes are

not supported in universal table columns, as the shared

tenant’s columns might have different structure and data

type. This issue leads to the necessity of adding additional

structures to make indexes available in this technique.

3.4 Pivot Table

In a Pivot Table, each row field in a logical source

table is given its own row. There are four columns in the

Pivot Table including: tenant, table, column, and row that

specify which row in the logical source table they represent.

In addition, the single data type column that stores the

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 3, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 200

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

values of the logical source table rows according to their

data types in the designated pivot Table. The data column

can be given a flexible type, such as VARCHAR, into

which other types are converted, in which case the Pivot

Table becomes a Universal Table for the Decomposed

Storage Model.

Fig.7 Pivot Tables

The Pivot Tables in Fig. 7 show how data with a

specific data type are stored in a specific pivot table. In our

example we have two tables, the first pivot table is

“pivot_int” which stores integer data values, and the

second one is “pivot_str” which stores String data values.

To efficiently support indexing, two Pivot Tables can be

created for each type: one with indexes and one without.

Each value is placed in exactly one of these tables

depending on whether it needs to be indexed.

The performance benefits from this technique can be

achieved by eliminating NULL values, and from

selectively read from less number of columns. However,

this approach eliminates the need to handle many null

values. However it has more columns of meta-data than

actual data and reconstructing an n-column logical source

table requires (n−1) aligning joins along the Row column.

This leads to a much higher runtime overhead for

interpreting the meta-data than the relatively small number

of joins needed in the Extension Table Layout.

3.5 Chunk Table

A Chunk Table is similar with a Pivot Table except

that it has a set of data columns of various types, with and

without indexes, and the Col column is replaced by a

Chunk column. This technique partitioned logical source

table into groups of columns, each group assigned to a

chunk ID and mapped into an appropriate Chunk Table.

The Chunk Table in Fig. 8 shows how a set of data

columns with a mixture of data types are structured. The

table “ChunkTable” has six columns. The “tenantid”

column is used to map each record in a chunk table with its

tenant. The “table” column is used to map a record to

particular logical table. The “chunkid” column is used to

compound data for more than one logical column for a

particular logical table. The “row” column is used to map a

data value to a particular logical row in a particular logical

table. The “int1” and “str1”column are used to store

integer or string data values for different logical columns

in the logical table.

Fig.8 Chunk Tables

This technique has advantages over Pivot Table as it

reduces metadata storage ratio, and the overhead of

reconstructing the logical source tables, and also has

advantages than Universal tables by providing indexes, and

reducing the number of columns. Although, this technique

is flexible, it adds complexity to the database queries.

3.6 Chunk Folding

Chunk Folding[8] is a technical where the logical

source tables are vertically partitioned into chunks that are

folded together into different physical multi-tenant tables

and joined as needed. Aulbach et al. [8] state that the

performance of this technique enhanced by mapping the

most used tenants’ columns of the logical schema into

conventional tables, and the remaining columns in the

Chunk Tables which are not used by the majority of

tenants.

Fig.9 illustrates a case where base Accounts are

stored in a conventional table and all extensions are placed

in a single Chunk Table. The “tenantid” column in both

tables is used to map each record with its tenant. The

“row” column in both tables is used to map a data value to

a particular logical row in a particular logical table. The

first table consists of four columns. The last column in this

table is shared by the three tenants. The “table” column in

the second table is used to map a record to particular

logical table. The “chunk” column is used to compound

data for more than one logical column for a particular

logical table. The “int1” and “str1” column is used to store

integer or string data values for different logical columns

in the logical table.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 3, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 201

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Fig.9 Chunk Folding tables

3.7 XML Table

The XML database extension technique is a

combination of relational database systems and Extensible

Markup Language (XML) [6,7]. Aulbach et al. [10] state

that the extension of XML can be provided as native XML

data type, or by storing the XML document in the database

as a Character Large Object (CLOB) or Binary Large

Object (BLOB). This technique satisfies tenants’ needs,

because their data can be handled without changing

original database relational schema.

The XML technique in Fig. 10 shows how this

technique combines relational database systems and XML.

The “xml_add” column is used to store an XML structure

which includes the rest of the logical columns which

tenants might need to fulfill their business needs.

Fig.10 XML tables

3.8 Elastic Extension Tables

The Elastic Extension Tables (EET) technique

proposes a new way of designing and creating an elastic

tenant database.

Fig.11 EET tables

Fig.11 shows the EET technique which is designed by

Force.com. The tables in the left area are called “Metadata

tables”. They are used to record the objects which are

customized by the end user and the field structure

contained in the objects. The tables in the center area are

called “Data tables”, in contrast with “Metadata tables”,

they are used to record filed data of those objects. The left

tables are called “Pivot Tables”, which are used to

accelerate the reading of some special data to improve

overall system performance.

4. Experiments

This section describes an experimental comparison of

above techniques for implementing flexible schemas for

SaaS. Since there is no standard data set for this task, we

generate our own multi-tenant data set from table customer

in our student database. We append a tenantid column so

that it can be shared by multiple tenants. Tenants have

different sizes and tenants with more data have more

extension fields. In the experiments, we simulate a real

multi-tenant scenario by sending query and update requests

from many tenants concurrently, and then evaluate the

solutions by analysis the response time data captured

during those experiments. The experiment has 3 requests

classless. In order to avoid influence each other, multiple

copies of the test schema are created. The experiment was

run on a sqlserver database server with a 3.0 GHz Intel

Xeon processor and 1 GB of memory.

S1: Select all attributes of a single entity as if it was being

displayed in a detail page in the browser.

S2：Select all attributes of 1000 entities as if they were

being displayed in a list in the browser.

S3：Select all attributes of 5000 entities as if they were

being displayed in a list in the browser.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 3, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 202

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Fig.12 shows the results of the experiment. The

horizontal axis shows the different request classes, and the

vertical axis shows the response time in milliseconds on a

log scale.

Fig12.experiment results

 From Fig.12 We can see that private table has the

smallest response time while XML table has is the highest.

Universal table is faster than the others except private table.

Pivot Table, Chunk Table and Chunk Folding are slower

because an additional join is required. We can’t say which

technique is better, because each technique has its own

advantages and drawbacks. For example, private table is

the fastest technique, and the tenants can extend their

needs easily, but it is suitable for those applications which

confronted with small tenants. Sometimes, Universal table

is a good choice, for it is fast and can flexible extend. The

disadvantage of this technique is that the database has to

handle many null values in wide table. The left techniques

seemingly make a balance in efficiency, space and flexible,

but they are just in the theory stage, and lack of an

effective vertical partitioning algorithm to get the most

appropriate results.

5. Conclusions

 In this paper a short survey of Multi-Tenant Data

Architecture was presented. First we introduced three

approaches to managing multi-tenant data, then, we

concluded 8 techniques on design and implement multi-

tenant database schema, finally, we presented the results of

several experiments designed to measure the efficacy of

those techniques and made a comparison.

 The conclusion we draw from this paper is that the ideal

database system for SaaS has not yet been

developed .Choose which technique or what approach

depend on the Circumstances alter cases , for example,

how many tenants use the system, or how to extension a

data mode a tenant need. A goal of our on-going work is to

develop algorithms that implement a schema mapping

technique which is suitable for different circumstances.

Acknowledgment

 This work is supported by State Natural Sciences

Foundation Projects of China under Grant (91118005),

Natural Science Foundation Project of Chongqing under

Grant (CSTC 2011BA2022).

References

[1] F. Burno. "Exeuting an IP Protection Strategy in a SaaS
Environment", http://www.slideshare.net/Rinky25/saas-environment, Jul.
22, 2011.

[2] Nitue, "Configurability in SaaS (software as a service) applications",
ISEC , 2009, pp. 19-26.

[3] F. Chong and G. Carraro. Architecture Strategies for Catching the
Long Tail. Microsoft Corp. Webs ite, 2006

[4] G. C . Freder ick Chong and R . Wolter. M ulti-Tenant Data
Architecture. Microsoft Corp . Website, 2006.

[5] D. J acobs and S . Aulbach. Ruminations on Multi-Tenant Databases .
In Proc. of BTW Conf., pages 514–521, 2007.

[6] F. S. Foping, I. M. Dokas, J. Feehan, and S. Imran, "A new hybrid
schema-sharing technique for multitenant applications", ICDIM , 2009,
pp. 1-6.

[7] D. Jia, W. Hao-yu, and Y. Zhao-jun, “Research on data layer
structure of multi-tenant e-commerce system”, IE&EM, 2010, pp. 362 –
365.

[8] S. Aulbach, T. Grust, D. Jacobs, A. Kemper, and J. Rittinger,
“Multitenant databases for software as a service: Schema mapping
techniques”, SIGMOD , 2008, pp. 1195-1206.

[9] S. Aulbach, T. Grust, D. Jacobs, A. Kemper, and M. Seibold, “A
Comparison of Flexible Schemas for Software as a Service”, SIGMOD ,
2009, pp. 881-888.

[10] G. P. Copeland and S. N. Khoshafian. A decomposition storage
model. InSIGMOD ’85:Proceedings of the 1985 ACM SIGMOD
international conference on Management of data, pages 268–279, New
York, NY, USA, 1985. ACM

[11] R.Mietzner, T.Unger, R.Titze, and F.Leymann, “Combining
Different Multi-tenancy Patterns in Service-Oriented Applications”,
EDOC, 2009, pp. 131 -140.

(a)Overall

(b)100 tenants

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 3, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 203

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Li Heng is a lecture in Chongqing University. Currently, he is a

PhD student in College of Computer Science of Chongqing
University. His interests are in cloud computing, data mining &
machine learning .

Yang Dan is a professor of Chongqing University. Current

research interests: data mining, computer vision, machine learning,
enterprise informatization .

Zhang Xiao Hong is a professor of Chongqing University.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 3, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 204

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

