A New Signal Denoising Method using Iterative Thresholding of the Spectral Intrinsic Decomposition

Oumar Niang¹,², Abdoulaye Thioune¹,³, Mouhamed Cheikh El Gueirea², Éric Deléchelle¹ and Jacques Lemoine¹

¹Laboratoire Images, Signaux et Systèmes Intelligents (LISSI- E.A.3956)
Université Paris Est Créteil Val-de-Marne, France

² Laboratoire d’Analyse Numérique et d’Informatique (LANI),
Université Gaston Berger (UGB) Sénégal

³ Faculté des Sciences et Techniques,
Université Cheikh Anta Diop de Dakar (UCAD)

oniang@ucad.sn, niangom@yahoo.fr, thiouneelaye@yahoo.fr, lemoine@u-pec.fr, delechelle@u-pec.fr

Abstract — This paper presents a new signal denoising method based on the classical three step procedure analysis-threshold-synthesis and the Spectral Intrinsic Decomposition (SID). This method consists of an iterative thresholding of the SID components. If the wavelets denoising approach depends on the choice of the wavelet family, the SID-denoising proposed in this paper is self adaptive. The SID-based removal method reduces noise and can retain useful discontinuities of the signal as effectively as the wavelet techniques based on soft thresholding.

keywords

1 Introduction

The Spectral Intrinsic Decomposition Method [1] is an adaptive decomposition technique with which any complicated signal can be decomposed into a definite number of high frequency and low frequency components called Spectral Proper Mode Functions (SPMFs). The decomposition procedure is adaptive and data-driven. The SPMFs are stationary and suitable for signal analysis. Assume that an observed data \(s(t) = y(t) + n(t) \), contains the true signal \(y(t) \) with additive noise \(n(t) \) as function in time \(t \) to be sampled. Some time series denoising algorithms like wavelet transform model are widely used to deal with noise within the data observations. However, for non-linear and non-stationary time series, wavelet approaches can fail. In the \(L \)-level wavelet decomposition of a signal, the number of coefficients with significant energy is small. This is a direct consequence of the approximation property of the wavelets. The signal can be accurately represented by a small number of coefficients. Wavelet shrinkage, developed by Johnstone and Donoho [2], selects these coefficients by thresholding. In the same spirit of wavelet denoising approach and following the work published in [4], where the authors show how Empirical Mode Decomposition (EMD) [3] reveals an equivalent filter bank structure which shares most properties of a wavelet decomposition, O.Niang in [5] and K. Khaldi and al. in [6] proposed EMD-based shrinkage method for signal denoising. In the same vein, this paper introduces and tests a new approach based on SID thresholding for signal denoising. In section 2, we describe the Spectral Intrinsic Decomposition principle and recall the wavelets decomposition principle. Section 3 concerns some wavelets thresholding denoising methods. Section 4 exposes the SID-based denoising method. Some test results are presented in section 5, and we finish by conclusions and perspectives to this work in section 6.

2 The Spectral Intrinsic Decomposition

SID method decomposes a complex signal (e.g. a signal with coexisting several characteristic time scales) into elementary AM-FM type components, called Spectral Proper Mode Functions (SPMFs). The Spectral Intrinsic Decomposition express an non-linear signal into a linear combination of the eigenvectors of all the PDE- envelope operator defined in [1]. Let us denote by \(E \) (see [1]) the envelope of any one-dimensional discrete signal \(S \), the eigen decomposition of \(E \) gives : \([V_E, L_E] = eig(E)\), where \(V_E = [V_1, \ldots, V_{size(S)}] \) and \(L_E = [L_1, \ldots, L_{size(S)}] \). The reconstruction coefficient of \(S \) is given by : \(C = L_E V_E^{-1} S \).
Algorithm 1: Spectral Intrinsic Decomposition [1]

1. compute the diffusivity function \(g^2 \) from \(S_0 \).
2. compute matrix operator \(L^{-1} = E \).
3. perform eigen decomposition of \(E \), \([V_E, L_E] = eig(E)\).
4. perform Reconstruction Coefficients of \(S_0 \), \(C = L_E V_E^{-1} S_0^{-1} \).
5. set \([V_k], \text{and } [L_k]\) for \(k = 1 \ldots N \), \(S_0 \leftarrow \sum_{k=1}^{N} V_k * C_k \).

Result

So, SID of \(S \) as defined in algorithm 1, can finally be presented with the following representation

\[
S = \sum_{k \in \{j/\lambda_j=1\}} V_k C_k + \sum_{k \notin \{j/\lambda_j=1\}} V_k C_k. \quad (1)
\]

Hence

\[
S = \sum_{k=1}^{N} SPMF_k,
\]

where \(SPMF_k = V_k C_k \) is the \(k \)-th spectral proper mode (or SPMF) of the signal. In all cases, an SPMFs can be viewed as a (nonlinear) frequency narrow-band wavelet \(\varphi \) with Amplitude Modulation by a lower frequency signal \(A[n] \)

\[
SPMF_k[n] = A_k[n] \varphi_k[n].
\]

In stochastic situations involving broadband noise, one can make an interpretation of SID in terms of a constant – \(\lambda \) filter bank [8, 7] and as a data-driven wavelet-like expansion [4] or as a sparse representation of non linear signal [1].

3 Some wavelet Denoising methods

Denoising by thresholding in the wavelet domain has been developed principally by Donoho et al. in [2, 9, 10, 11].

Wavelet transforms express the signal in terms of wavelet coefficients, describing the signal variation at different scales. The discrete wavelet transform represents a one-dimensional signal \(s \) into shifted versions of a dilated low-pass scaling function \(\varphi \), and shifted and dilated versions of a bandpass wavelet function \(\psi \). In case of orthonormal wavelets, we have

\[
s = \sum_{i \in Z} \langle s, \varphi^j_i \rangle \varphi^j_i + \sum_{j=\infty}^{J} \sum_{i \in Z} \langle s, \psi^j_i \rangle \psi^j_i,
\]

where the lower index \(i \) stands for spatial position, upper index \(j \) represents the level of scale, up to a chosen maximum \(J \), and where \(\psi^j_i(t) = 2^{-j/2} \psi(2^{-j}t - i) \), and with \(\langle \cdot, \cdot \rangle \) denoting the inner product in \(L_2(\mathbb{R}) \).

If the wavelet basis is chosen properly, a signal will be generally described by only a few significant wavelet coefficients, while moderate white Gaussian noise pollutes all the wavelet coefficients by a small amount. Signal denoising by wavelet shrinkage starts from this assumption, and creates a smoothed version of the processed signal by the following three-step procedure analysis-shrinkage-synthesis.

Various shrinkage functions leading to qualitatively different denoised functions \(\hat{s} \) were considered in literature, e.g. linear shrinkage, and nonlinear shrinkage functions such as soft, garrote, firm and hard shrinkage. For example the soft wavelets shrinkage function

\[
S_0 (x) = \text{sgn}(x) (|x| - \theta)_+,
\]

where the threshold \(\theta \) can be estimated by the following expression [2, 9, 10, 11]

\[
\theta = \sqrt{2 \log(N)} \sigma,
\]

where \(N \) is the signal length, and where \(\sigma \) is the noise level (standard deviation). The shrinkage parameter \(\theta \) is chosen with respect to the amount of noise in the input signal. In general, the denoised solution \(\hat{s} \) is obtained from \(s \) using a single step of this multiscale procedure, e.g. the method is applied noniteratively and is known as the classical Multiple Level Single Iteration (MLSI) scheme. Other schemes exist where the method is applied iteratively [12], like Single Level Iterated (SLI) and Multiple level Iterated (MLI). When the noise level \(\sigma \) is unknown, an estimation can be proceed via the median absolute deviation of the wavelet coefficients at the finest scale of resolution, \(j=1 \), such that \(\hat{\sigma} = \sigma_1 = 1.4826 \text{median}(|d_1^j|) \). According to [13], different threshold \(\theta_j \) are used at each level \(j \) according to the rule

\[
\theta_j = \theta_1 / \sqrt{2^{j-1}},
\]

where \(\theta_1 = \sqrt{2 \log(N)} \sigma_1 \). This choice leads to significantly reduced oscillations (Gibbs phenomenon) near discontinuities of the reconstructed signal.

4 Iterative SID Denoising Method

Following the above wavelet shrinkage method, one can adopt a similar process in order to suppress small fluctuations in the SPMFs resulting from Spectral Intrinsic Decomposition of a noisy signal. When wavelet shrinkage depends on the choice of wavelet basis or mother wavelet, the SID is adaptive and generally, can gives most of the dynamic of a noisy signal by the SPMFs corresponding to higher eigenvalue (nearest to 1). Signal denoising by iterative SID threshold principle comes from this assumption, and creates a smoothed version of the processed data by the following three-step procedure, analysis-threshold-synthesis. The iterative SID thresholding method for noise removal is described in algorithm 2. First we compute the SID decomposition of an noisy signal \(S \), and choose all the SPMF components corresponding to eigenvalues equal to 1 that gives the first scale of the restored input signal e.g
To test the applicability of the proposed denoising approach, we perform experiments on input signals Blocks, Wave form and Heavy-Sine, which are of the standard signals in wavelet denoising (see WaveLab package in [15]). The signals, of length $L = 2048$ points, and their noise versions are shown in Fig. 1, 2 and 3. In tests, SID-based denoising (Algorithm 2) uses the threshold L_{med} which can be estimated by an Tykhonov regularization applied to the sequence of all the eigenvalues. Maximum levels of the multiscale SID denoising method in our tests is fixed to $p = 3$. In Figure 5, we summarize the parameters of our tests, the Signal-to-Noise-Ratio is improved with two iterations. In Fig 1 and 2, the first iteration gives better results while the second iteration $p = 2$ leads a loss of data. In Fig 3 the same work is performed and we can see that SID-based denoising method gives a gain from approximately 5 to 9 dB at the iteration $p = 2$, see Table 5 Generally at $p = 3$, only the SPMFs associated to 1 are retained. For $p > 3$, the process leads to a significant loss of information.

6 Conclusion

We have shown that the denoising approach consisting to iterative soft thresholding in SID components is suitable for noise removal. SID denoising method is adaptive contrary to wavelet methods. The results in this paper can be extended in several directions. One can study iterated single- or multi-level SID shrinkage to make extensive comparisons with iterated single- or multi-scale wavelet shrinkage. In our ongoing work, we will also consider the two-dimensional case.

Références

Oumar Niang received the Ph.D. degree in computer sciences - actual biomedical engineering - from the Laboratoire Images, Signaux et Systèmes Intelligents (LISSI-E.A. 3956), Université Paris Est Créteil Val-de-Marne, ex Paris 12 Val-de-Marne -. Créteil, France, in 2007. He is a Research Professor at the Ecole Polytechnique de Thies Sénégal. He is member of Laboratoire d’Analyse Numérique et d’Informatique (LANI) UGB Sénégal with research interests focused on mathematical modeling in signal processing, images processing and complex systems, time frequency analysis, biomedical signal and medical image analysis.

Abdoulaye Thioune received the master thesis in Transmission de Données et Sécurité de l’Information at Laboratoire d’Algèbre, de Cryptologie, de Géométrie Algébrique et Applications de la faculté des Sciences et Technique, Université Cheikh Anta Diop de Dakar Sénégal, in 2009. He prepare actually the Phd degree in biomedical engineering at the Laboratoire Images, Signaux et Systèmes Intelligents (LISSI-E.A. 3956), Université Paris 12 Val-de-Marne, Créteil, France.

Mouhamed Cheikh El Gueirea received the master thesis at UFR Sciences Appliquées et de Technologie de l’Université Gastion Berger (UGB) de Saint-Louis, and is member of Laboratoire d’Analyse Numérique et d’Informatique (LANI) UGB Sénégal, in 2007. He prepare actually the Phd degree in Numerical Analysis at the same university.
Éric Deléchelle received the Ph.D. degree in biomedical engineering from the Université Paris Est Créteil Val-de-Marne, France, in 1997. He is with the Laboratoire Images, Signaux et Systèmes Intelligents (LiSSi-EA 3956), Université Paris 12 Val-deMarne, Créteil. Since 1999, he has been Maître de Conférences at the Institut Universitaire de Technologie, Créteil, with research interests focused on stochastic signal analysis, biomedical signal, and medical image processing.

Jacques Lemoine received the Ph.D. degree in biomedical engineering from the Université Paris Est Créteil Val-de-Marne, France, in 1981. He is a Distinguished Professor in the Laboratoire Images, Signaux et Systèmes Intelligents (LiSSi-EA 3956), UFR des Sciences et Technologies, Université Paris Est Créteil Val-de-Marne, France. His research interests are focused on stochastic signal analysis, biomedical signal, and medical image processing.
Figure 1 – SID denoising with two iterations for the signal Blocks. In (a) original signal. In (b) the corrupted signal by Gaussian noise. In (c), the denoised signal obtained after the first iteration with their associated signal-to-noise ratio (SNR) 23.46 in dB.
Figure 2 – SID denoising for wave form signal with $p = 2$. In (a) original signal. In (b) the corrupted signal by Gaussien noise. In (c), the denoised signal obtained after the first iteration with their associated signal-to-noise ratio (SNR) 23, 82 in dB.
Figure 3 – SID denoising for Heavy-Sine signal with two iterations. In (a) original signal. In (b) the corrupted signal by Gaussian noise. In (c), the denoised signal obtained using after two iterations with the associated signal-to-noise ratio (SNR) 29.72 in dB.