

Parallelization Research of Circle Detection Based on Hough
Transform

Suping Wu1, Xiangjiao Liu2

1School of Mathematics and Computer Science Ningxia University
Yinchuan, 750021, China

Abstract
There is a problem of too long computation time in Circle
detection of Hough transform. In this paper, two paralleled
methods are given based on Threading Building Blocks (TBB)
and CUDA, by utilizing multi-core and GPU, the most time-
consuming part of circle detection is coped with
parallelization. Experimental results show that the circle
detection algorithms proposed in this paper has extremely good
result of acceleration.
Keywords: Hough Transform, CUDA, Circle Detection,
Threading Building Blocks (TBB).

1. Introduction

Hough transform is an effective method of binary image
detection on straight line, circle, ellipse and other graphics.
Later, it was proposed that generalized Hough
transform can detect arbitrary shape graphics. Hough
transform has been applied not only to graphical boundary
recognition identification, it also in biomedical, office
document image processing, SAR/ the ISAR image
processing and automatic interpretation of aerial
images [1-2].

Traditional Hough transform can achieve very
good results in the case of relatively simple image
detection, but there is the drawback of long
computing time and the large cost of memory space,
which has been proposed many kinds of efficient solutions.
Hough transform in a variety of computing models are
suggested in the reference[3-15], reference[16-19] propose
a variety parallel Hough transform algorithm based
on special processor or programmable logic hardware .
Although these methods can improve Hough
transform efficiency, the higher hardware requirements
make these methods inaccessible under normal
circumstances. Paper [20] gives a Hough transform line
detection method based on GPU, but the acceleration rate
is less than 3 times. Paper [21] gives a multi-
core parallelization method; the acceleration effect is not
significantly obvious with paper [20].

In this paper, Hough transform circle detection parallel
methods based on Threading Building Blocks (TBB) and
CUDA are given and higher acceleration is achieved.

2. Sequential Algorithm of Circle Detection

Circular contour detection plays a very important role in
the field of image pattern recognition [22]. In the Circle
Hough Transform (CHT), the center and the radius of the
circle are two basic parameters; CHT on the circle
extraction is to use the accumulation of three dimensional
parameter [23-24].

Under normal circumstances, the circle in the image space
after Hough transform, which is mapped onto the
parameter space, is three-dimensional; therefore, it is
needed to establish a three-
dimensional accumulation array A (a, b, r) in the
parameter space for each edge point in the image
to accumulate after the calculation. The algorithm steps
are as follows:

1) The image edge detection and binarization.
2) To calculate the minimum and maximum values

of parameters a, b, r according to the size of the image
, and to establish three-dimensional discrete parameter
space, the size of the parameter space is determined by the
minimum and maximum values of a, b, r.

3) To create an accumulator array A (a, b, r) in the
parameter space, and each element set to 0.

4)To act Hough transform on the boundary point of
the image, that is to calculate the corresponding curve of
the point (a, b, r) in three-dimensional grid by the
formula (1), and the corresponding accumulator adds 1,
namely,

1),,(),,(rbaArbaA (1)

5) To find out the local maxima value of
the corresponding image circle point accumulator, the
value of the radius of the circumference point on
the image plane, and the center of the circle parameters.
This value provides the parameters of the radius and the
center of the circle on the image plane.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 3, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 481

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Because of discretization of the image, and in order to
reduce errors, the formula (1) can be rewritten into
the formula (2) in the actual calculations.
 22

0
2

0)()(rybxa ii (2)

Where is the compensation of image quantization and

digitization, r is set to be incremental variable in the
calculation. Before every step iteration, r must
be fixed, then to seek the point of the circumference of the
center (xi, yi), these points are in the plane (a, b), which is
perpendicular to r, and to accumulate points of the track
and corresponding points of the three-dimensional
accumulation array A (a, b, r) of the plane mapping.
r progressively increases from 0 to the upper
limit of the image plane, increment of r each
time corresponds to a flat image, for the point(xi, yi), a
and b vary between [0,2r][24].

When the Hough transform parameter space is less than
two dimensional, the transformation can achieve the
desirable results. However, once the parameter space is
more than two-dimensional, it will need a lot of storage
space and time, which makes the Hough
transformation only in theory, can not be applied in
practice. Only by reducing the dimension of the parameter
space, can Hough transformation be achieved in practice.
It is assumed that by a prior knowledge to determine
the radius of the circle or the radius range [25], can
effectively reduce the space and time overhead in the
calculation process [24].

For the circle in the image, the center (a, b), the gradient
direction of the edge point (xi, yi) is , and the gradient
direction of each edge point points to the center of the
circle. Easy to know the gradient information of the point
is:

Then the center of a circle formula can be expressed as the
follow formula:

Which sin ， cos can be directly expressed
as: gg ysin , ggxcos .

Therefore, the local gradient information of edge
pixels can reduce the computation [25], and can improve
the accuracy of the center coordinates. First to detect edge

of the original image , and to do gray value variation and
gradient solution of the pixel, then to do gradient image
binarization according to given gradient threshold.
Recorded the pixel of the gradient amplitude is large than
the threshold, and gradient direction of the pixel is set
to 1, gradient direction of the pixel of the gradient
amplitude is smaller than the threshold and is set to 0.
Scan all nonzero pixels and along the gradient
direction on the corresponding two-dimensional
accumulation array unit to add 1, the local maximum
value in the accumulation array is the center coordinates.
The fact that this method makes the dimensional number
of accumulation array in Hough transform circle detection
algorithm is reduced to two-dimensional from the three-
dimensional. And to change the traditional method of one-
to-many mapping into one-to-one mapping, this method
has been the default standard Hough transform circle
detection method [24].

3. Parallel Circle Detection Method Based on
TBB

TBB (Threading Building Blocks) is a set of C++
template
library. It provides the appropriate abstractions, and more
content. In parallel programming, such contents the task
concept, automatic load balancing features, mature,
achievement of commonly algorithm, flexibility and
scalability of no bound to the number of CPUs and so on.

TBB programming uses a template as the usual parallel
iterative model. TTB is a paralleled programming model
for the program scalability can be improved, and fully
supports the nested. It can run on Windows, MacX and
Linux, and Support Intel C++, VC7 / and gcc compiler.
In order to build a large-scale paralleled program,
allowing programmers to create their own paralleled
components [26].

3.1 Algorithm Implementation

According to the circle detection serial algorithm, the most
time-consuming in the detection process is the fourth step
of the algorithm, and this process is loop iteration, we can
parallel the step of the algorithm. In this loop iteration,
every iteration is independent from each other, so we can
make loop parallel. Parallel reduction of TBB template
classes can be achieved. Because cycle accumulation
in the program is reentrant, previous running results will
not affect next results, so the template class paralleled for
can be used.
For the loop parallelization, the first is the loop body
converted into the form of a small space to operate.

)arctan(

22

xy

yx

gg

ggg

cos

sin
i

i

a x r

b y r

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 3, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 482

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

The form is function object of the standard template
library-style, known as the body object, an operator
() deals with a little space. Note the iteration spatial
parameter of the method operator(), blocked_range <T>
is a template class defined in the library, which
indicates the one-dimensional iteration space on the type T.
iteration space of other types in class parallel for can also
be used. Defined blocked_range 2d in the library is used
to represent the two-dimensional iteration space.
Opfor need to include a number of member variables to
save the local variables defined outside the loop, but used
inside the loop. Generally, these member variables are
initialized in the constructor of body object, but parallel
for does not need to care about the body object is how to
be created. Template function parallel for requires that the
body object has a constructor copy. This constructor is
used to create a separate copy for each working thread,
and the parallel for will call destructor to destroy those
copies.

In most cases, the implicitly generated copy of the
constructor and destructor can work correctly. If the
design requires the destructor to perform some other
operations, such as free memory, then you need to
define an explicit destructor. If copies of the constructor
And destructor are generated by default, then it can not be
achieved these additional operations. However,
if the destructor is explicit, the constructor
copies usually need to be explicit. As the body object
may be copied, therefore, it should not be modified in
its operator () method, so parallel _for will declare
operator () method of the body object as const.

3.2 Experimental Results and Analysis

Experiment has been performed on one platform with
sequential program and parallel program so as to testify
the efficiency of parallel algorithm. The specific
environment is given below.

Software environment: Windows XP, Microsoft Visual
Studio 2008，tbb30_20100915oss.

Hardware platform: Intel Core2 Quad Q9400 2.66GHz,
memory of DDR3 4G.

Table 1 and figure 1 show the experimental results which
gives the speed-up for different problems. Picture
1 is an office picture; Picture 2 is a personal photo, it
contains less amount of information ; Picture 3 is 1/16 of
292M China map from Internet; Picture 4 is 1/8 of
China map; Picture 6 is 1/4 of China map; Picture
6 is 1/2 of China map. The amount of
information contained in the China map is relatively large,

sequential processing required for a long time, Execution
time is given in seconds.

Table 1: Experimental results

E
xa
m
pl
e

Image
size
(M)

Image
width and
height
(pixels)

Serial
time
(S)

Parallel
time
(S)

Speed
-up

1 1.48 868*600 0.468 0.180 2.600

2 34.3
4000*
3000

3.781 1.461 2.588

3 18.1
2772*
2286

20.204 6.602 3.060

4 35.8
2795*
4481

85.422 24.562 3.478

5 60.1
5973*
4481

285.093 80.344 3.548

6 152
11922*
4481

876.016 240.156 3.648

Figure 1 TBB circle detection speedup.

Based on the table 1 experimental results, some
phenomena can be concluded.

1) Although the image size and the number of pixels of the
picture 2 are larger than the picture 3’s, the selected
picture is relatively simple, and round number is much
less than the picture 3’s, so the execution time is less than
the picture 3.

2) Though TBB task scheduling mechanism, the
program is mapped to the four physical threads,
the speed can, in

theory, be increased by four times. However, due
to communication synchronization and thread overhead
consumption, and the program still exists the part of
the serial procedures and other system overhead, Lead
to the improvement program running speed will
not reach the theoretical value.

0
0.5

1
1.5

2
2.5

3
3.5

4

Im
ag
e
1

Im
ag
e
2

Im
ag
e
3

Im
ag
e
4

Im
ag
e
5

Im
ag
e
6

Speed up

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 3, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 483

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

3) Start multiple threads, when the scale of the problem is
smaller, switching between threads frequent
and initializing multiple threads will take up more time, so
the speedup is not very large. With the expansion of the
scale of the problem, the CPU usage is also growing, and
multi-core advantage is gradually reflected,
The proportion of time to start multiple
threads in the program and the total execution
time is getting smaller and smaller, so
the speedup increasing.

4. Parallel Circle Detection Method Based on
CUDA

4.1 Algorithm Principle

For the most time-consuming part of circle detection of
sequential program, recorded the pixel of the gradient
amplitude is larger than the threshold, and gradient
direction of the pixel is set to 1, gradient direction of the
pixel of the gradient amplitude smaller than
the threshold is set to 0. Scan all non-zero pixels and
along the gradient direction on the corresponding two-
dimensional accumulation array unit to add 1, the local
maximum value in the accumulation array is the center
coordinates. This part can do parallel processing on the
GPU, The steps of the algorithm are as follows:

Step1: open space and pass data to memory for the
graphics card.

//Open space
CUDA_SAFE_CALL

(cudaMalloc((void**)&d_edges_data_ptr,
sizeof(uchar)*edges->height *edges->width));

// pass data to memory for the graphics card
CUDA_SAFE_CALL

(cudaMemcpy(d_edges_data_ptr,edges_data_ptr,
sizeof(uchar)*edges-> height*edges-
>width,cudaMemcpyHostToDevice));

Step 2: set the thread number and the number of blocks:
int THREAD_NUM = 512;
int blockNum = (width*height)/THREADS_NUM
+ ((width*height)%THREADS_NUM==0?0:1);
Step 3: calling kernel functions Hough2,
function prototype is as follows:
__global__ static void Hough2 (float idp,int rows, int

cols,uchar* edges_data_ptr,int edges_step,uchar*
dx_data_ptr, int dx_step, int dy_step,uchar* dy_data_ptr,

int min_radius, int max_radius,int acols, int arows, int*
adata, int astep)

Step 4: copy the execution result of the kernel
function on the graphics card back to memory

//Pass the result to memory
CUDA_SAFE_CALL(cudaMemcpy(adata,d_adata,

sizeof(int)*accum->height*accum ->width, cudaMemcpy-
DeviceToHost));;
Step 5: free memory space. Such as:
CUDA_SAFE_CALL(cudaFree(d_edges_data_ptr));

4.2 Experimental Results and Analysis

Experiment has been performed on one platform with
sequential program and parallel program so as to testify
the efficiency of parallel algorithm. The specific
environment is given below.

Software environment: Windows XP, Microsoft Visual
Studio 2008，devdriver_3.2.

Hardware platform: Intel Core2 Quad Q9400 2.66GHz,
memory of DDR3 4G, NVIDIA GeForce GTX 260, 896
MB graphics memory,192 processing cores, 16KB shared
memory, 8192 available registers in each Block, 32 Warps,
the maximum number of threads each block is 512.

Table 2 and figure 2 show the experimental results which
gives the speed-up for different problems.
The experimental pictures are the same picture with
TBB experimental pictures. Execution time is given in
seconds.

Table 2: Experimental results

E
x
a
m
p
l
e

Image
size
(M)

Image
width
and
height
(pixels)

Serial
time
(S)

Paralle
l time
(S)

Speed
-up

1 1.48 868*600 0.468 0.818 0.572

2 34.3
4000*
3000

3.781 0.710 5.325

3 18.1
2772*
2286

20.20
4

2.317 8.720

4 35.8
2795*
4481

85.42
2

4.154 20.564

5 60.1
5973*
4481

285.0
93

6.236 45.717

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 3, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 484

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Figure 1 CUDA circles detection speedup.

Based on table 2 experimental results, some phenomena
can be concluded. With the increase in the amount of data,
the parallel algorithm speedup on GPU increasing,
however, the table shows two strange phenomenon: 1)
Picture 1 sequential program execution time is faster than
parallel program; 2) Picture 2 sequential program
execution time is slower than picture 1, parallel execution
time is faster than the picture 1. The reason of the
phenomenon 1 : When the amount of data is small,
Telecommunication transmission time of GPU and CPU is
greater than the shortened time of the program executed
on GPU.

The reason of the phenomenon 2: sequential
program detects picture 2, the time consumption in CUDA
parallel part, once this part uses the CUDA
parallel execution, execution time is significantly
shortened. While the parallel execution time of
detecting Picture 1 is greater than the sequential
detection time.

4. Conclusions

There is the problem of long computation time of Hough
transform, This paper presents two parallel algorithm
based on multi-core and GPU, Experimental result shows
the maximum speedup can be achieved 3.648x based on 4-
core system, the Maximum speedup can be achieved 45.7x
based on GPU. Experiment results demonstrate the
feasibility and efficiency of the parallel algorithms.

Acknowledgments

This research was supported by the National Natural
Science Foundation of China (NSFC 60963004), and
National Xinghuo project of China (No. 2011GA880001).

References
 [1] J ． Illingworth and J ． Kittler ， “The Adaptive Hough

Transform”, IEEE Trans, Pattem Analysis and Machine
Intelligenee，1987，9 (5): 690-698．

[2] Wang Guohong, Kong Ming, He You, “Hough Transform
and its application in information processing Hough”,
Bengjing: Ordnance Industry Press，2005 (In Chinese).

[3] HAH ， Kender J R ， Shaw D E, “The analysis and
performanceof two middle-level vision tasks on a fine-
grained SIMD tree machine ”, Binford T O．Proceedings
IEEE Computer Society Confe rence on Computer Vision
and Pattern Recognition[C]．Los Alamitos: IEEE Computer
Society Press，1985, pp. 387-393．

[4] Fisher A L，Highnam P T, “Computing the hough transform
on a scan line array processor”, IEEE Transactions on PAMI
，1989，11 (3), pp. 262-265．

[5] Jolion J ， Rosenfeld A, “An O (logn) pyramid Hough
transform”, Pattern Recognition Letters，1989，9 (5), pp.
343-349．

[6] Pan Y，Chung H Y H, “Faster line detection algorithms on
enhanced mesh connected arrays”, IEEE Proceeding-E，

1993，2(140), pp. 95-100．
[7] Chung KL，Lin H Y, “Hough transform on reconfigurable

meshes”, Computer Vision and Image Understanding，1995
，61(2), pp. 278-284．

[8] Kao TW ， HorngS J ， WangYL, “An O(1) time
algorighmsfor computing histogram and the Hough
transform on a crossbridge reconfigurable array of
processors”, IEEE Transactions on Systems ， Man and
Cyber-netics，1995，25(4), pp. 681-687．

[9] Lin S S, “Constanttime Hough transform on the processor
arraywith reconfigurable bus systems ”,computing，1994，
52, pp. 1-15．

[10] Merry M ， Baker J W, “Constant time algorithm for
computing Houghtransform on a reconfigurable mesh”,
Image and Vision Computing， 1996，14, pp. 35-37．

[11] Pan Y, “A more efficient constant time algorithm for
computing the hough transform”, Parallel Processing Letters
，1994，4 (1/2), pp. 45-52．

[12] Pan Y，Li K，Hamdi M, “An improved constant time
algorithm for computing the Radon and Hough transforms on
a reconfigurable mesh”, IEEE Transactions on Systems，
Man，and Cybernetics，(Part A)，1999，29(4), pp. 417-
421．

[14] Pan Y, “Constant-time Hough transform a 3D
reconfigurable mesh using fewer processors”, Proceedings of
2000 Work-shops on Parallel and Distributed Processing，
LNCS 1800 [C] Heidel-berg: Springer-Verlag，2000, pp.
966-973．

[15] Pavel S，Akl S G, “Computing the Hough transformation
on arrays with reconfigurable optical buse s [A]”, Bosto
n:Kluwer Academic Publishers，1998, pp. 205-226．

[16] Li K，Pan Y，Zheng S Q, “Parallel Computing Using
Optical Interconnections”, Boston:Kluwer Academic
Publishers，1998, pp. 227-2 47．

0

10

20

30

40

50

Im
ag
e
1

Im
ag
e
2

Im
ag
e
3

Im
ag
e
4

Im
ag
e
5

Speed
up

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 3, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 485

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

[17]FISHER A L，HIGHNAM PT, “Computing the Hough
transform on a scan line array processor”, IEEE Transactions
on Pattern Analysis and Machine Intelligence，1989，11 (3),
pp. 262-265．

[18] LI ZE-NIAN，TONG F，LAUGHLIN R G, “Parallel
algorithms for line detection on a 1×N array processor”,
Proceedings of the 1991 IEEE International Conference on
Robotics and Automatio- n．Washington，DC: IEEE Press
，1991, pp. 2312-2318．

[19] CHUANG HYH，CHEN LING, “An efficient Hough
transform algorithm on SIMD hypercube”, Proceedings of
the 1994 International Conference on Parallel and
Distributed Systems．Washing- ton，DC: IEEE Press，
1994, pp. 236-241．

[20] ChenYu,Chen Jianhong,Xu Xiaohua, “A fast and
efficient parallel algorithm for Hough transform”,
Electronics Journal, ， 2004 ， 32(5), pp. 759 -762 ． (In
Chinese)

[21] Zhang Tong, Liu Zhao, Ouyang Ning, “Real-time line
detection based on GPU”, Computer application.．2009, 5
Vol 29, No5, pp. 1359-1361．(In Chinese)

[22] CHEN Y-K ， LIWEN-LONG ， LI JIAN-GUO ， etal,
“Novel parallel Hough transform on multicore processors”,
IEEE International Conference on Acoustics，Speech and
Signal Processing: ICA SSP 2008．Washington，DC: IEEE
Press，2008, pp. 1457-1460．

[23] Zhang Jie, Yang Xiaofei, Zhao Ruilian, “Precise positioning
of the human eye based on Hough transform circle
detection”, Computer Engineering and Application, 2005,41,
pp. 43-44．

[24] Yang Quanying, “Image shape feature detection based on
Hough transform”, Shandong University master
degree thesis. (In Chinese)

[25] D．J．Kerbyson，T．J．Atherton, “Circle detection using
Hough transforms filters”, In5th Int ． Conf ． On Image
Processing and its Applications，Edinburgh，1995，410,
pp. 370-374．

[26] Wang Qiang, Lu Zhimin, “A fast circle detection Hough
algorithm”, Small micro-computer system. 2000, 21, pp.
970-973.

[27]James Reimnders, Nie Xuejun (translation) , “Intel
Threading Building Blocks compile Guide”, Machinery
Industry Press, January 2009, first edition.

Suping Wu received the computer soft and theory degree from
Beijing Normal University. Currently, she is a professor at Ningxia
University. Her interests are in parallel computer.

Xiangjiao Liu is a research student in computer soft and theory at
Ningxia university . Her research interests in parallel computer.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 3, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 486

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

