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Abstract 
The need for high availability (HA) and disaster recovery (DR) 

in IT environment is more stringent than most of the other sectors 
of enterprises. Many businesses require the availability of 
business-critical applications 24 hours a day, seven days a week, 
and can afford no data loss in the event of a disaster. It is vital 
that the IT infrastructure is resilient with regard to disruption, 
even site failures, and that business operations can continue 
without significant impact. As a result, DR has gained great 
importance in IT.  Clustering of multiple industries standard 
servers together to allow workload sharing and fail-over 
capabilities is a low cost approach. In this paper, we present the 
availability model through Semi-Markov Process (SMP) and also 
analyze the difference in downtime of the SMP model and the 
approximate Continuous Time Markov Chain (CTMC) model. 
To acquire system availability, we perform numerical analysis 
and SHARPE tool evaluation. 

 
Keywords: availability, cluster system, local disaster recovery, 
markov modeling 

1. Introduction 

High availability clusters (also known as HA Clusters or 
failover Clusters) are computer clusters implemented to 
provide high availability of services. They operate by 
having redundant computers or nodes which are used to 
provide service when a system component fails. 

A cluster is a collection of computer nodes -- 
independent, self-contained computer systems working 
together – to provide a more reliable and powerful system 
than a single node alone [8]. Clustering has proven to be a 
very effective method for scaling to larger systems for 
added performance, as well as providing higher levels of 
availability and lower management costs. For this reason, 
software packages such as IBM’s RS/6000 Cluster 
Technology [8] (i.e., Phoenix) and Microsoft’s Cluster 
Services [5] (i.e., Wolf pack) are being used to build high 
availability systems. 

Disaster recovery solutions have gained popularity in 
the past few years because of their ability to tolerate 
disasters and to achieve the reliability and availability.  

 
2. Related Work 
 

Hunter [5] described some system characteristics that 
benefit from clustering and presented a two-node 
Microsoft Cluster Service (MSCS) cluster configuration 
and also presented an availability model of that system 
using Markov modeling techniques. 

In [1] they discussed high availability and disaster 
recovery solutions, and described how HA and DR 
solutions differ from one another and how they can be 
combined to provide the highest levels of resiliency for IT 
infrastructures.  

Trivedi et. al [10] described an availability model for a 
high availability platform using a multi-level hierarchical 
composition approach that mixes reliability block 
diagrams and Markov chains, so as to allow detailed 
behavior to be captured while avoiding state space 
explosion. 

Song et al [9] provided novel solutions with three –key 
components, availability modeling, model evaluation and 
data analysis and examined numerical solutions for 
Markov models on the uniformization method. This paper 
also presents a monitoring and data analysis framework, 
which is responsible for failure analysis and availability 
reconfiguration.       

The semi-Markov decision model is a powerful tool in 
analyzing sequential decision process with random 
decision epochs [2].  They presented the application of 
Markov decision process algorithm, a joint optimization of 
inspection rate and its corresponding maintenance policy 
are also presented. 
 
3. System Architecture 
 

The architecture is based on an active-passive high 
availability solution. Each service under high    availability 
needs at least two identical servers: a primary host, on 
which the service run, one or more secondary hosts, able 
to recover the application. As a result of failure detection, 
the active-passive roles are switched. A heartbeat keep-
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alive system is used to monitor the health of the nodes in 
the cluster. A disaster recovery solution is typically 
composed of two nodes, one active and one passive. The 
active node is usually called master or production node, 
and the passive node is called secondary or standby node. 
During normal operation, the only working node is the 
master node; in the event of a node failover or switchover, 
the standby node takes over the production role, by taking 
its IP number, and completely replacing the master one. 

To maintain the standby node for failover, the standby 
node contains homogenous installations and applications: 
data and configurations must also be constantly 
synchronized with the master node. 

 

             Application
             Server A

Application
Server B

       Heartbeat

LAN/WAN

Boot 
Drive

Boot 
Drive

Private

Data A

Data B

 
Figure1: System Framework 

  
If a crash occurs and if the data is not restored, it can 

have devastating consequences for a business. So it is 
imperative for companies to effectively backup and 
recover data and protect them from huge losses in 
productivity and downtime. 

In this way, hardware exposure is mitigated through 
physical hardware redundancy. Clustering provides high 
availability by protecting against a node failure. However, 
it does not prevent against storage failures. Given the size 
of typical cluster environments, multiple hard disks are 
used to build large storage arrays. In Network and System 
Administration, when large numbers of any one device are 
used, failure is expected. When a hard disk fails, 
application disruption is unavoidable, as all the nodes in 
the cluster could be using that one particular disk as shared 
storage which contains all files. 

With the widespread use of computers, data is becoming 
more and more important in human life. But all kinds of 
accidents and disasters occur frequently. Data corruption 
and data loss by various disasters have become more 
dominant, accounting for over 60% [1] of data loss .Recent 
high-profile data loss has raised awareness of the need to 
plan for recovery of continuity. Many data disaster 
tolerance technologies have been employed to increase the 
availability of data and to reduce the data damage caused 
by disasters [2]. 

A true disaster recovery solution is the ability to restore 
full systems quickly on available computing resources 
which may be local but may also be remote if the situation 
dictates and must allow recovery from site-wide disasters. 
The primary site may be completely down, a secondary 
site located in a non-affected area would be used to restore 
services until the primary site comes back online. 
 
4. Modeling and Analysis 
 

We propose the two-component system, one 
component is considered as active and the other as a 
standby (spare) unit. The failure rates of the active unit and 
the standby unit are different, and also the effect of failure 
of the standby unit is different from that of the active unit. 
Assuming that, the time to restoration and reboot are 
exponentially distributed with rate µ and β respectively.   

We consider a routine diagnostic that is run every T 
time units, intended to detect the latent fault of the standby 
unit. While units’ failure and restoration times are 
exponentially distributed, the routine diagnostic time 
interval is not a continuous time Markov chain. The model 
for the system with the diagnostic routine is called a semi-
Markov chain. To solve this model, we could crudely 
approximate the time to the next diagnostic to be 

exponentially distributed with mean
2
T .Descriptions of the 

state are shown in table (1). 
 
Table (1): State Description for Transitions model 
State Descriptions 
1 Both active and spare units are 

working  
2 Protection switch fails to cover the 

failure of the active unit 

3 When active unit fails, protection 
switch successfully restores service 
by the standby unit  

4 The failure of the standby unit 
while the active unit is still working 
is detected immediately  

5 The failure of the standby unit is not 
detected 

6 The system is in failure state  
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Figure2 : State Transition Model 

 
λ=failure rate of an active unit  
λs=failure rate of a standby unit  
µ=restoration rate of a failed unit  
c =coverage probability of an active unit  
cs=coverage probability of a standby unit  
T =time units to detect the latent fault of the standby unit  
 

We may compute the steady-state probabilities by first 
writing down the steady-state balance equations of figure 2 
are as follows: 
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The conservation equation of figure 2 is obtained by 

summing the probabilities of all states in the system and 
the sum of the equation is 1. 
 

1
1

=∑
=

n

i
iP  

 
(7) 

 
Combining the above-mentioned balance equations with 

the conservation equations, and solving these simultaneous 

equations, we acquire the closed-form solution for the 
system. 
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4.1Semi-Markov Model Analysis  
 

A better approach would be to take the time the next 
diagnostic to be uniformly distributed over [0, T], resulting 
in a semi-Markov chain. This is indicated in fig: 2 the 
transition labeled U (0, T). As occurring in two stages of 
transitions, the SMP is described by a transition probability 
matrix P and the vector of sojourn time distributions, H (t). 
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The one-step transition probability matrix P of the DTMC embedded at the time of transitions and the state probabilities of 
the embedded DTMC are given by the following equations respectively. 
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To obtain the steady state probabilities, solve the 

equation 
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The mean sojourn time ih  in state i is  
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The state probabilities of the semi-Markov chain 
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5. Experimental Results 
 

The exact model parameter values for the model are not 
known, however, a good estimate value for a range of 
model parameter is assumed. Fig: 3 plots the difference 
between downtime (minutes per year) estimates obtained 
using the SMP model and that obtained by approximating 
the U (0, T) distribution by an exponential distribution 
with mean T/2. We take the values c=0.9, cs=0.9, µ=1per 
hour, β=12 per hour, and λs= λ/4. We see that the higher 
the µ/λ ratio, the lower the downtime computed by the two 
models. 

Availability models capture failure and repair behavior 
of systems and their components. States of the underlying 
Markov chain will be classified as up states or down states. 
The system is not available in the state 2 and state 6. The 
system availability in the steady-state is defined as 
follows: 
 
Availability=1-Unavailability 
                   =1-(π2+π6) 

 
(43) 
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Figure3:Difference in downtime of the SMP model and the 
approximate CTMC model 

 
5.1 Validation of Closed-form Results 
 

To verify the validity of our formula derivations, we 
compare the results obtained from the closed-form solution 
and the results obtained from the numerical solution by 
SHARPE. We found that our results are same. 
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Figure4: Downtime of the CTMC model 
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Figure5: Downtime of the SMP model 
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6. Conclusion  
 

Organizations today face a tough challenge in choosing 
an appropriate high availability solution that meets their 
business requirements and IT budgets. To implement this 
requirement, organizations must give high availability and 
disaster recovery. High availability systems require fewer 
failures and faster repair. In this paper we presented high 
availability cluster and failover availability for disaster 
events. . We present a Markov model and express 
availability and downtime in terms of the parameters in the 
model. We evaluate the feasibility of our clustering model 
using SHARPE tools. 
 
References 
 
[1] D. Clitherow, M. Brookbanks, N. Clayton, and G. Spear, 

‘‘Combining High Availability and Disaster Recovery 
Solutions for Critical IT Environments,’’ IBM Systems 
Journal 47, No. 4, 563–575 (2008) 

[2] D.Chen, K.S.Trivedi,”Optimization for condition-based 
maintenance with semi-Markov decision process” 
Available online at www.sciencedirect.com 

[3] R. Gamache, R Short, and Mike Massa, "Windows NT 
Clustering Service," IEEE Computer, October 1998, 
pp.55-61. 

[4] C.Hirel, A. Robin, Sahner, X.Zang, K.S.Trivedi: 
“Reliability and performing modeling using SHARPE 
2000”. Computer Performance Evaluation/TOOLS 2000. 
In Lecture Notes in Computer Science; Vol.1786, 
Springer-Verlag, 2000, pp.345-349. 

[5] S. W. Hunter and W. E. Smith, “Availability Modeling 
and Analysis of a Two Node Cluster,” Proceedings of the 
5th International Conference on Information Systems, 
Analysis and Synthesis, Orlando, FL, October 1999. 

[6] Th. Lumpp, J. Schneider, J. Holtz, M. Mueller, N. Lenz, 
A. Biazetti, and D. Petersen, ‘‘From High Availability 
and Disaster Recovery to Business Continuity 
Solutions,’’ IBM Systems Journal 47, No. 4, 605–619 

[7] M.Malhotra, A.Reibman:”Selecting and Implementing 
Phase Approximations for Semi-Markov Models”, 
Volume 9, Issue 4, 1993, Pages 473-506. 

[8] G.F. Pfister, In Search of Clusters: The Coming Battle in 
Lowly Parallel Computing, Prentice Hall, Englewood 
Cliffs, NJ, 1998. 

[9] H.Song, C.Leangsuksun, R.Nassar, “Availability 
Modeling and Evaluation on High Performance Cluster 
Computing Systems,” Journal of Research and Practice 
in Information Technology, Vol.38, No.4, November 
2006. 

[10] K. S. Trivedi, R. Vasireddy, D. Trindade, S. Nathan, and 
R. Castro. Modeling high availability systems. In Proc. 
Pacific Rim Dependability Conference, 2006. 

[11] K.S.Trivedi:” Probability and Statistics with Reliability, 
Queuing, and Computer Science Applications”, John 
Wiley and Sons, 2002. 

[12] M.Wiboonrat, “Transformation of System Failure Life 
Cycle,” International Journal of Management Science 

and Engineering Management, Vol.4 (2008) No.2, 
pp.143-152. 

 

 

 

 

 

 

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


