
IJCSI International Journal of Computer Science Issues, Vol. 6, No. 2, 2009
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

33

A Brief History of Context

Kaiyu Wan

 Computer Science Department, East China Normal University
Shanghai, 200, China

Abstract
Context is a rich concept and is an elusive concept to define. The
concept of context has been studied by philosophers, linguists,
psychologists, and recently by computer scientists. Within each
research community the term context was interpreted in a certain
way that is well-suited for their goals, however no attempt was
made to define context. In many areas of research in computer
science, notably on web-based services, human-computer
interaction (HCI), ubiquitous computing applications, and
context-aware systems there is a need to provide a formal
operational definition of context. In this brief survey an account
of the early work on context, as well as the recent work on many
working definitions of context, context modeling, and a
formalization of context are given. An attempt is made to unify
the different context models within the formalization. A brief
commentary on the usefulness of the formalization in the
development of context-aware and dependable systems is
included.

Keywords: Context, Context Theory, Context-Awareness.

1. Introduction

According to the Oxford English Dictionary (OED),
context denotes “the circumstances that form the setting
for an event”. To emphasize a common social usage of the
word context OED includes the quotation [12] “I wish
honorable gentlemen would have the fairness of what I did
say, and not pick out detached words”. Although the word
context has been used for a long time in many scientific
descriptions, literary essays, and in philosophical
discourses, its meaning was always left to the reader’s
understanding. In one of the earlier papers, Clark and
Carlson [11] state that Context has become a favorite word
in the vocabulary of cognitive psychologists and that it has
appeared in the titles of a vast number of articles. They
then complain that the denotation of the word has become
murkier as its uses have been extended in many directions
and deliver the now widespread opinion that context has
become some sort of “conceptual garbage can”. That
context has changed now. The importance of context in
information retrieval, knowledge representation, reasoning

in AI, and analysis of computer programs have been
recognized and there is a serious effort to make a precise
technical working definition of the notion of context.
More recently, the importance of context was picked up by
researchers in many areas of computer science, most
importantly those working in Human-Computer
Interaction (HCI), semantic web, and trustworthy systems.
This intense interest has produced many operational
definitions of context, but almost all of them are either
informal or use ad hoc notation. We review in this paper
the different types of notations and interpretations used for
context. The review is classified into Context in Logic,
Context in Languages, and Context in Systems. This
classification and review are not exhaustive. It is used
mainly to trace the historical progression of the systematic
study of context in different, but related, areas.

1.1 Structure and Interpretation

The word “context” is derived from the Latin words con
(meaning “together”) and texere (meaning “to weave”).
The raw meaning of it is therefore “weaving together”. A
circumstance is a weaving together of many types of
entities. Thus, in describing a context we must define a
finite set of entities, a finite set of properties for each
entity, and the inter-weaving of the properties. As an
example, the setting for a “seminar event” is the weaving
together of the entities speaker, topic, audience, time,
location and their properties such as name and affiliation
for the speaker, title and abstract for the topic, size and
status for audience, clocktime for time, and building-
address and room-number for locality. We need to
associate with each property a value from its domain and
bind each entity with the instantiated properties in order to
describe the context of seminar. The choice of entities, the
choice of properties, and the notation used for binding
them are crucial for system development. This choice for
context definition has the effect of narrowing down the
possible interpretations of declared policies and
constraints for system development. Context description
also eliminates ambiguities. It should be possible to define
contexts in programming languages independent of how it

IJCSI International Journal of Computer Science Issues, Vol. 6, No. 2, 2009

34

should be used. For example, if a context is defined by
locality and time, then many events may happen in a
specific context, and each event may produce a different
experience in one context. Therefore, the structural
definition of a context is only part of its specification, its
other part being the semantics of the world associated with
the context. The world may be defined by a set of states in
programming or by a set of logical formulas in a formal
specification. Motivated by a need to specify context as a
first class citizen in languages and systems, a formal
representation of it was developed in [45].

2. Context in Logic

In this section we review the study of context in logic as a
formal object and reasoning. We review intensional logic
and some variations of propositional and predicate logic in
which context has been embedded as first class citizens.

2.1 Intensional Logic

Intensional Logic [14, 42], a family of mathematical
formal systems that permits expressions whose value
depends on hidden context, came into being from research
in natural language understanding. According to Carnap
[9], the real meaning of a natural language expression
whose truth-value depends on the context in which it is
uttered is its intension. The extension of that expression is
its actual truth-value in the different possible contexts of
utterance, where this expression can be evaluated.
Basically, intensional logics add dimensions to logical
expressions, and non-intensional logics can be viewed as
constant in all possible dimensions, i.e. their valuation
does not vary according to their context of utterance.
Intensional operators are defined to navigate in the
context space. In order to navigate, some dimension tags
(or indexes) are required to provide placeholders along
dimensions. These dimension tags, along with the
dimension names they belong to, are used to define the
context for evaluating intensional expressions.
Example 1 E: Beijing is now the capital of China.
This expression is intensional because the truth value of
this expression depends on the context in which it is
evaluated. The intensional natural language operator in
this expression is now, which refers to the time dimension.
Today it is certainly true, but there existed time points in
the past when China had a different capital. For example,
before 1949, the capital of China was NanJing. Those
different values (i.e. True or False) along different time
points are extensions of this expression. In other words,
the evaluation of the above expression is time-dependent.
A natural extension is to consider expressions that depend
on more than one dimension, such as time, space, audience,

and so on.
Example 2 The meaning of the expression:
E: the overseas indexes during this period close 10%
below their highs can be interpreted when the possible
worlds spanned by the dimensions overseas and period are
defined. The Table below gives a possible extension of the
expression E when the periods are months in a given year,
and overseas stock markets are Amsterdam, Brussels,
Frankfurt, and London. By varying the year we get 3-
dimensional extension.

Table 1: Example 1

 Ja Fe Mr Ap Ma Jn Jl Au Se Oc No De
Amsterda F F F F T T T T T F F F
Brussels F F F T T T T T T F F F

Frankfurt F F T T T T T T T T F F
London F T T T T T T T T T T T

2.2 Formalizing Context in AI

Contexts in AI were introduced by Weyhrauch (1980) [51]
and subsequently developed by McCarthy and Buva c
(1998) [28] and Giunchiglia (1993) [17]. Surveys of the
formalizations and the usage of contexts can be found in
Sharma (1995) [38], Akman and Surav (1996) [2],
Bouquet et al. (1999) [5], Bonzon et al. (2000) [6] and
Akman et al. (2001) [3]. Context serves an important
purpose in AI and Intelligent Information Processing (IIP).
The classic example of the earliest IIP that failed to meet
safety criteria is MYCIN [39]. It was observed by
McCarthy [2]. MYCIN system advises physicians on
treating bacterial infections of the blood and meningitis.
When MYCIN was first introduced context was not part of
system’s query processing phase. When it was given the
query “what is the treatment for Chlorae Vibrio” it
recommended “two weeks of tetracycline” treatment.
What it failed to inform the physician was that a massive
dehydration during the course of the treatment would
occur. While the administration of tetracycline would cure
the bacteria, the patient would die long before that due to
diarrhea. Here is an instance where the context of correct
usage was not given to the physician, which ultimately
made the system unsafe and hence not trustworthy. A
contextual MYCIN will explicitly state the context for
correct administration of medications. In AI context is
formalized using propositional or predicate logic.

Contexts are abstract objects (representation free) and
are first-class citizens. Consequently, contexts are freely
used in logical formulas, without explicitly defining
contexts. In some sense, in the logical approach a context
itself is defined by a set of formulas that are true by the
truth assignments in that context. In [28] McCarthy, who
introduced a logical framework in AI for studying context,

IJCSI International Journal of Computer Science Issues, Vol. 6, No. 2, 2009

35

gave three reasons justifying his approach.
 Axiomatization: The use of contexts simplifies

axiomatizations. Axioms from one context can be
lifted to more general contexts.

 Vocabulary and Interpretation: Contexts allow the
use of specific vocabulary and information. Terms
that are used in one context have particular meaning,
which they will not have in general.

 Building AI Systems: A hierarchy of AI systems can
be built be transcending from one context to another.

According to Giunchiglia (1993) [17], the notion of

context formalizes the idea of localization of knowledge
and reasoning. Intuitively speaking, a context is a set of
facts (expressed in a suitable language, usually different
for each different set of facts) used locally to prove a
given goal, plus the inference routines used to reason
about them (which can be different for different sets of
facts). A context encodes a perspective about the world. It
is a partial perspective as the complete description of the
world is given by the set of all the contexts. It is an
approximate perspective, in the sense described in
McCarthy (1979) [27], as we never describe the world in
full detail. Finally, different contexts, in general, are not
independent of one another as the different perspectives
are about the same world, and, as a consequence, the facts
in a context are related to the facts in other contexts.

The work in Giunchiglia and Serafini (1994) provides
a logic, called Multi Language Systems (ML Systems),
formalizing the principles of reasoning with contexts
informally described in Giunchiglia (1993). In ML
systems, contexts are formalized using multiple distinct
languages, each language being associated with its own
theory (a set of formulas closed under a set of inference
rules). Relations among different contexts are formalized
using bridge rules, namely inference rules with premises
and consequences in distinct languages. Recently, Ghidini
and Giunchiglia (2001) proposed Local Models Semantics
(LMS) as a model-theoretic framework for contextual
reasoning, and use ML systems to axiomatize many
important classes of LMS. From a conceptual point of
view, Ghidini and Giunchiglia argued that contextual
reasoning can be analyzed as the result of the interaction
of two very general principles: the principle of locality
(reasoning always happens in a context); and the principle
of compatibility (there can be relationships between
reasoning processes in different contexts). In other words,
contextual reasoning is the result of the (constrained)
interaction between distinct local structures. A good
survey of context formalization in AI and a comparison
between different formalizations can be found in [2].
According to this exposition, context is either treated
within some logical framework or within situation theory.
Both approaches deal with abstract contexts and focus

only on contextual reasoning.

3. Context in Languages

We review the role of context in intensional programming
languages (IPL) and in ¸λ calculus.

3.1 Formalizing Context in AI

The intensional programming paradigm has its
foundations on intensional logic. It retains two aspects
from intensional logic: first, at the syntactic level, are
contextswitching operators, called intensional operators;
second, at the semantic level, is the use of possible world
semantics. By making difference between intension and
extension, IPL provides two different levels for
programming. On the higher level, it allows to
represent/express problems in a declarative manner; on the
lower level, it solves problems without loss of accuracy.

IPL deals with streams of entities which could be
numbers, or strings of characters, or any computable
structure. These streams are first class objects in
intensional languages and functions can be applied to
these streams. Because of the infinite nature of IPL, it is
especially appropriate for describing the behavior of
systems that change with time or physical phenomena that
depend on more than one parameter (such as time, space,
temperature, etc). It is also an appropriate language for use
in business applications that generate data streams, or
textual streams, or media streams. Examples include stock
market transactions and credit card transactions which are
mostly data streams of records where each record contains
information on a transaction, call center transactions that
generate textual streams of conversations, and multi-media
streams that are generated by cable companies to distribute
movies on demand. The streams are processed by
accessing certain semantic units and interpreting it in
different contexts.

There is no notion of type in an IPL. The operators
on the stream contents are assumed to be given when one
writes the stream functions. The natural logical view of a
stream is an infinite sequence, and in writing programs
one does not worry about the physical representations of
stream contents. This abstraction enables one to
understand an IPL program from the statements in it,
without any reference to its implementation. The
computational model for IPLs is known as eduction. That
is, an implementation starts computing the first element
that satisfies a given context, then the second, and so on.
A context for expression evaluation, as informally
understood in Example 2, is described by a set of
dimensions (attributes) and a finality (goal). The finality is
domain-dependent and is chosen so that a finite set of

IJCSI International Journal of Computer Science Issues, Vol. 6, No. 2, 2009

36

dimensions would suffice to realize that goal. For example
in processing call center streams understanding a
conversation may be the finality, and the attributes may be
a set of key words chosen in advance to meet the goal. As
another example, in processing streams of user
interactions with web, the finality may be understanding
user patterns and the attributes may be ActivityLocation,
ActivityDuration, and VolumeofDataTransfer. Both
finality and the attributes defining a context are implicitly
used in evaluating the extensions from a stream.

3.2 Lambda Calculus

In programming languages, context is a meta concept:
static context introduces constants, definitions, and
constraints, and dynamic context processes the executable
information for evaluating expressions. In [35] context is
introduced in the lambda calculus and an argument is
made for introducing context as first class objects in
programming languages. Their motivation for introducing
context in the theory of lambda calculus is to develop a
programming language with first-class contexts that has
advanced programming features for manipulating open
terms. We are motivated along similar lines for
introducing context in Lucid. However there are
significant differences in the semantics of context between
the two approaches.

A context in the lambda calculus is defined as a term with
a“hole” in it. The hole in a context can be filled with a term
which may involve free variables. To avoid inconsistent hole
filling within the scope of lambda binding the holes are labeled,
hole abstraction, and context application are separated.
Informally, a context C with a hole in it, written C[•], will
become the term C[M] when the hole is filled with the term M.
The formal way of writing this in calculus is M’ M , where
the term M’ abstracts the hole in the context. The term M that
abstracts the hole labeled X itself is written as X.M’. For
example, the context C[•] = (x.[•] +y)3 is represented by
the term M’= (X(x.X + y)3). The term obtained by filling
the hole in M’ with x+ z is written (X.(x.X+y)3)
(x+z).

In our theory context plays two roles: one role is as a
reference to an item in a multi-dimensional stream, and the
other role is as a descriptor of situations at which
expressions are evaluated. A stream of contexts may be
constructed and a context expression may be evaluated at
a context. In Lucx expressions and contexts exist
independently. A context may be defined without any
regard to any specific expression and hence it may be used
to evaluate different Lucx expressions. Similarly, an
expression can be evaluated at different contexts. It is
possible to define context dependent expressions in Lucx.
Such expressions may be evaluated at a context distinct

from any other context used in its definition. We can
define nested contexts, and dependent contexts. These
features offer a variety of flexible ways to programming
different applications.

3.3 Lucid and Lucx

Lucid was originally invented as a Program Verification
Language by Ashcroft and Wadge [1]. And later it
evolved into a dataflow language [52]. The basic
intensional operators are first, next, and fby. The four
operators derived from the basic ones are wvr, asa, upon,
and prev, where wvr stands for whenever, asa stands for
as soon as, upon stands for advances upon, and prev
stands for previous. Lucid is a stream (i.e. infinite entity)
manipulation language. All the above operators are
applied to streams to produce new streams. The definitions
of these operators [30] are shown as follows
Definition 1 If X = (x0 ,x1 ,…, xi,…) and Y =
(y0 ,y1 ,…,yi,…), then

(1) f i r s t X = (x0 ,x0 ,…,x0 ,…)

(2) next X = (x1 ,x2 ,…,xi+1 ,…)

(3) X fby Y = (x0 ,y0 ,y1 ,…,y i - 1 ,…)

(4) X wvr Y = if f i r s t Y then X
Fby (nextX wvr next Y)

Else (next X wvr next Y)
(5) X asa Y = f i r s t (X wvr Y)
(6) X upon Y = X fby (if f i r s t Y

then (next X upon next Y)
else (X upon next Y))

(7) prev X = X@(#1) 2

Example 3 illustrates the definitions on a stream A whose
elements are integers, and a stream B whose elements are
boolean. In a boolean stream the symbols 1 and 0 indicate
true and false respectively. The symbol nil indicates an
undefined value.

Example 3 :

A = 1 2 3 4 5
B = 0 0 1 0 1

first A = 1 1 1 1 1
next A = 2 3 4 5
prev A = nil 1 2 3 4 5
AfbyB = 1 0 0 1 0 1
A wvr B = 3 5
A asa B = 3 3 3
A upon B 1 1 1 3 3 5

IJCSI International Journal of Computer Science Issues, Vol. 6, No. 2, 2009

37

With the operators defined above, Lucid only allows
sequential access into streams. That is, the (i + 1)th
element in a stream is only computed once the ith element
has been computed. To enable subcomputations to take
place in arbitrary dimensions and all indexical operators to
be parameterized by one or several dimensions, two basic
intensional operators are added. One is intensional
navigation (@.d), which allows the values of a stream to
vary along the dimension d. Another is intensional query
(#.d), which refers to the current position (i.e. tag value)
along the dimension d. This way, it is possible to access
streams randomly.
Example 4 illustrates the definitions of these two operators
on two streams A and B along the time dimension.
Example 4
A = 1 2 4 8 16 32 64 128 …
B = 1 2 3 0 6 7 4 5 …
A @.time B = 2 4 8 1 64 128 16 32 …
#.time = 0 1 2 3 4 5 6 7 …
The major distinction between contexts in AI and in IPL is
that in the former case they are rich objects that are not
completely expressible and in the later case they are
implicitly expressible. Hence it is possible to write an
expression in Lucid whose evaluation is context-
dependent. However, a context in the current version of
Lucid can not be explicitly manipulated. This restricts the
ability of Lucid to be an effective programming language
for programming diverse applications. So we have
extended Lucid by adding the capability to explicitly
manipulate contexts. This is achieved by introducing
context as a first class object in the language. That is,
contexts can be declared, assigned values, used in
expressions, and passed as function parameters. The
language thus extended, is called as Lucx [45] (Lucid
extended with contexts)(the x is used as the x in TeX).
Thus, the rationale for introducing context in Lucid is
quite analogous to the introduction of context to enrich
knowledge base in AI. However, our notion of context
differs significantly from McCarthy’s. In our study context
is both finite and concrete. It is finite in the sense that only
a finite number of dimensions are allowed in defining a
context. However it does not impose any limitation on
handling infinite streams, because with every dimension
an infinite tag set is introduced in the language. A full
account of context-based evaluation of expressions in
Lucx is given in [45].

4. Context in Systems

Context-aware adaptation is regarded as the most
important feature for pervasive and ubiquitous services
[50, 20, 25]. Web services [26] and mobile computing
applications [53, 24] immensely benefit with a formal
context model. It is in this context that we review the role

of context. Context modeling and context-dependent
interpretive actions are important in HCI [13, 15, 49].
However in all these works context is not formalized. In
this section, after we review context formalism, we
explain how our formal definition provides a rigorous
platform for developing context-aware systems.

4.1 Formalizing Context

We formalize context as a typed relation, a set of ordered
pairs of (d, x) where d is a dimension, Td is the type of d
and x : Td.
Definition 2 Let DIM denote the set of all possible
dimensions, and T = {Td |d ∈DIM} be the set of types
associated with the dimensions. A context c is a finite
relation {f(d, x) | d ∈ DIM ∧ x : Td }. The degree of the
context c is |dom c|. The empty relation corresponds to
Null context. The degree of Null context is 0.
A context having only one (dimension, tag) pair is called a
micro context. Let G denote the set of contexts over {DIM,
T}. The set of micro contexts is M = {c| c∈ G; | c|= 1}.
The set of simple contexts is S = {c| c ∈ G, c is a partial
function}. Clearly, a simple context c of degree 1 is a
micro context. A context which is not simple is referred to
a non-simple context. The basic functions dim and tag are
to extract the set of dimensions and the values associated
with the dimensions in a context. That is, if c =
f<d1,x1>,…,<dk,, xk>}, then we may write c = {mi |mi =
<di.,xi>}, dim(c) = {d1, d2,…dk,}, and tag(c) = {x1, x2,…
xk }. For the tuple (d, x) in a micro context c we use the
functions dimm and tagm to extract the tuple components:
dimm(c) = d and tagm(c) = x.

4.2 Context Operators

In this section, context operators are discussed. A
context being a relation we borrow the notation and
meaning of those relational operators that are available in
mathematics. Rest of them we define, using set theory
notation. Using these context operators contexts can be
managed dynamically and flexibly. The syntax of context
expressions are also formally defined. In order to evaluate
context expression correctly, precedence rules for context
operators are provided as well.
Context operators are : override ⊕ , difference , choice
| , conjunction I , disjunction U , undirected range

, directed range , projection ↓ , hiding ↑ ,
substitution / , comparison =, ⊆ , ⊇ . The difference ,
conjunction I , disjunction U , and comparison =, ⊆ ,
⊇ operators are set operators. The rest of the operators
are explained and formally defined below.

IJCSI International Journal of Computer Science Issues, Vol. 6, No. 2, 2009

38

Definition 3 Override ⊕ This operator takes two
contexts c1∈ G, and c2∈ S and returns a context c
∈G, which is the result of the conflict -free union of c1
and c2, as defined below:

_⊕ _ : G× S→G,
c= c1 ⊕ c2 ={m | (m∈ c1 ∧ dimm(m) ∉ dim(c2))
∨m∈ c2}
Definition 4 Choice | This operator accepts a finite
number of c1ck of contexts and non-deterministically return
one of the cis. The definition c= c1|c2|…,|ck implies
that c is one of the ci, where 1≤ i≤ k:

| : G×G×…×G →G,
Definition 5 Projection. This operator takes a context
c∈G and a set of dimensions D⊂ DIM as arguments
and filters only those micro contexts in c that have their
dimensions in set D.

_↓ _ : G ×D →G
c ↓ D = {m| m ∈c ∧ dimm(m) ∈ D}.

Example 5 :
Let c1 = { (d,1) , (e,4) , (f,3)}, D={d,e}
then c1 ↓ D= { (d,1) , (e,4)}

Definition 6 Hiding. This operator enables a set of
dimensions D to be applied on a context c∈G to
remove all the micro context s in c whose dimensions
are in D:

_↑ _ : G ×D →G ,
c↑ D={m| m∈ c ∧ dimm(m) ∉D}

Example 6 :
Let c1 = { (d,1) , (e,4) , (f,3)}, D={d,e}
then c1 ↑ D = {(f,3)}

Definition 7 Substitution. This operator takes a general
context and a simple context as arguments and produces
a context which is the result of replacing a sub-context
of the general context with a sub-context of the simple
context if their domains are equal.

/ : G ×S →G ,
c/s = (c ↑ dim s) U (s ↓ dim c)

Example 7 :
Let c1 ={(d, 1), (e, 4),(d, 3)},
c2 ={(d, 4),(f, 3)}, then c1/c2 = {(e,4),(d,4)}

Definition 8 Undirected range. This operator takes two
contexts c1, c2∈ G as arguments and returns a set of
simple contexts. The tag set U is assumed to be totally or-
dered. We give a constructive definition here.

_ _ : G× G→ Ρ S
Steps for constructing the final result are shown as fol-

lows:
1. Let S’ be the set of simple contexts, which is the result

of (c1 c2).
2. For each pair of m1∈ c1, m2∈ c2, and dimm(m1) =

dimm (m2), do the following:

(a) Define a = min{tagm (m1), tagm (m2)} and b =
max{tagm(m1), tagm(m2)}

(b) Define the subrange tba = a..b.
(c) Construct the set Y1:

Y1 ={ (dba ,x)| dba = dimm(m1) = dimm(m2),
x∈ tba}

3., Y={Y1,Y2,…Yp}, Where Yi(i = 1,…,p), are the sets
of micro context s constructed in Step 2. Define for
Yi ∈ Y, first(Yi) ={dimm(m) | m ∈ Yi}, and,
second(Yi) ={tagm(m)| m∈Yi}. If there exists Yi,
Yj∈ Y such that first(Yi) = first(Yj), for i≠ j, we
replace the sets Yi and Yj by their union Yi U Yj,
and repeat this process until the first(Yi)s for Yi Y
are distinct

4. For Yi ∈ Y, construct the set Z of contexts:
Z={{(first(Y1),x1), (first(Y2), x2),…, (first(Yp),
xp)}| (x1, x2, …, xp) ∈∏ p

i=1second(Yi))}.

5. Define: Xc1 = c1↑ U Yi ∈Y first(Yi).

6. Define: Xc2 = c2↑ U Yi ∈Y first(Yi)..
7. Construct S’: S’= {{z}U Xc1U Xc2 | z ∈Z}.
Basically, the result consists of three parts:
1. For each pair m1∈ c1, m2∈ c2 which shares the

same dimension, constructs a set Yi, this is done in
step 2 and step 3. The result of union the set Yi,
done in step 4, consists of the first part : Z.

2. All the other micro context s of c1 which have
different dimensions consists of the second part :
Xc1.

3. Similarly, all the other micro context s of c2 which
have different dimensions consists of the third part :
Xc2.

Example 8 :
Let c1 ={(e, 3), (d, 1)}, c2 ={(e, 1),(d, 3)},

c3 ={(e, 3)}, c4 ={(f, 4)},
c5 ={(e, 1), (f, 4)}
then c1 c2={{(e,1),(d,1)}, {(e,1),(d,2)},
{ (e,1),(d,3)}, {(e,2),(d,1)},{(e,2),(d,2)}, { (e,2),(d,3)},
{(e,3),(d,1)}, {(e,3),(d,2)}, { (e,3),(d,3)}
c3 c4 ={(e,3),(f,4)}
c3 c5 ={{(e,1),(f,4)},{(e,2),(f,4)},

{(e,3),(f,4)}}
Definition 9 Directed Range. This operator takes two con-

texts c1∈ G and c2 ∈ S and returns a set of
contexts:
_ _ : G× S→ ΡG

We change only Step 2 of the method described for the
undirected range(Page 7) to obtain the result:
(a) Define a = tagm (m1), b = tagm (m2), if tagm (m1) <
tagm(m2), else ignore the pair m1, m2.
(b) Define the subrange tba = a..b.
Example 9 :
Let c1 = {(d,1)}, c2 = {(d,3), (f,4)},

IJCSI International Journal of Computer Science Issues, Vol. 6, No. 2, 2009

39

then c1 c2 = c1 c2 ={(d,1),(f,4)}, {(d,2) , (
f,4)}, {(d,3) , (f,4)}} ,

c2 c1 = {(f,4)}

4.2 Context Expression

Informally, a context expression is an expression involving
context variables and context operators. Let c be a context
variable, and D be a set of dimensions. A formal syntax for
context expression C is shown in Figure 1(left column). A context
expression that satisfies those syntactic rules is a well-formed
context expression.

In order to provide a precise meaning for a context expression,
we define the precedence rules for all the operators. Figure
1(right column) shows the operator precedence from the highest
(top row) to the lowest (bottom row). Parentheses will be used to
override this precedence when needed. Operators having the same
precedence will be applied from left to right.

Fig. 1 Formal Syntax of Context Expressions and Precedence Rules for
Context Operators.

Example 11 Given a well -formed context expression
c3 ↑ D ⊕ c1| c2, where c1 ={(x,3),(y,4),(z,5)}, c2 =
{(y,5)}, and c3 ={(x,5),(y,6),(w,5), D={w}, the evaluation
steps are shown as follows:

[Step1]. c3 ↑ D={(x,5),(y,6)}[Definition 6, Page 6]
[Step2]. c1|c2 = c1 or c2 [Page 6] [Step3].
Suppose in Step2, c1 is chosen,
c3↑ D⊕ c1 ={(x,3),(y,4),(z,5)} [Definition 3, Page 6]
else if c2 is chosen,

c3↑ D⊕ c2 ={(x,5),(y,5)}[Definition 3, Page 6]

4.3 Context Set Operators

In Lucx we avoid higher-order sets of contexts, and allow only
sets of simple contexts. Hereafter, by “set of contexts” we refer
only to “set of simple contexts”. There are two kinds of such
operators: lifting operators, and relational operators.

4.3.1 Lifting Operators

Definition 11 Projection. For s ∈ Ρ S, and D
⊆ DIM. The projection operator constructs a set of
contexts s’ ∈ Ρ S, where s’ is obtained by projecting
each context from s on to the dimension set D.

_↓ _ : Ρ S × ΡDIM → Ρ S
s’=s↓ D={c↓ D|c∈s}

Definition 12 Hiding. For s ∈ Ρ S, and D ⊆ DIM.
The hiding operator constructs s’ ∈ S2, where s’ is
obtained by hiding each context in s on the dimension
set D.

_↑ _ : Ρ S × ΡDIM → Ρ S
s’=s↑ D={c↑ D|c∈s}
Definition 13 Substitution. This operator produces a set of
contexts s, sP S, for a given set of contexts s, s P S, a
dimension and a tag value belonging to that dimension:

/ : Ρ S × (DIM ×U)→ Ρ S
s’= s /<d’,t’>={c/<d’,t’>|c∈ s}

Definition 14 Choice. This operator accepts two sets
of contexts s1, s2 and non-deterministically returns
one of them. The definition s= s1|s2 implies that s is
either s1 or s2.
| : Ρ S × Ρ S → Ρ S
 Definition 15 Override. For every pair of context
sets s1, s2, s1, s2 ∈P S this operator returns a set of
contexts s, s ∈ P S, where every context c∈ s is
computed as c1 ⊕ c2, c1∈ s1, c2∈ s2.

_⊕ _ : Ρ S × Ρ S → Ρ S
s=s1⊕ s2={c1⊕ c2| c1∈s1 ∧ c2∈s2}

Definition 16 Difference. For every pair of context
sets s1, s2, s1, s2∈ P S this operator returns a set of
contexts s, s ∈ P S, where every context c∈ s is
computed as c1 c2, c1∈ s1, c2∈ s2.

_ _ : Ρ S × Ρ S → Ρ S
 s= s1 s2 ={c1 c2| c1∈ s1, c2∈ s2}

Lifting the undirected range and directed range
to sets of contexts will produce higher-order sets. So,

we do not define lifting for these two operators.
However, since the results of applying these two
operators are sets of contexts, the lifting operators can be
applied to the results.

4.3.2 Relational Operators

We define the three relational operations (join),
(intersection), and (union) for sets of contexts. In
the following definitions, c denotes a context, si∈P S
and ∆ i=Uc’ ∈ si dim(c’).
Definition 17 Join.

_ _ : Ρ S × Ρ S→ Ρ S

IJCSI International Journal of Computer Science Issues, Vol. 6, No. 2, 2009

40

s=s1 s2={c1 ∪ c2|c1∈ s1 ∧ c2∈ s2 ∧ c1 ↓ ∆ 3=
c2↓ ∆ 3}, where ∆ 3 = ∆ 1∩ ∆ 2.

Definition 18 Intersection.

_ _ : Ρ S × Ρ S→ Ρ S
s=s1 s2={c1∩ c2|c1∈c2∧ c2∈s2}.
We can prove that s= s1 s2 =(s1 s2) ↓ ∆ 3, where

∆ 3=∆ 1 ∩ ∆ 2.
Definition 19 Union.

_ _ : Ρ S × Ρ S→ Ρ S
s= s1 s2 is computed as follows:

∆ 1 = U c∈s1 dim(c), ∆ 2 = U c∈s2 dim(c), and ∆ 3 =∆ 1

∩ ∆ 2
1. Compute X1:X1={ci ∪ cj ↑ ∆ 3 |ci ∈s1∧ cj∈ s2}
2. Compute X2: X2 ={cj ∪ ci ↑ ∆ 3 |ci ∈s1∧ cj∈ s2}
3. The result is : s= X1 U X2.
Earlier we have shown that the results of ci cj and

ci cj are sets of contexts. So the relational operators
(join), (intersection), and (union) can also be applied
to the expressions ci cj and ci cj, where ci and cj are
contexts.

4.4 Context Set Expressions

Informally, a context set expression is an expression involving
sets of contexts and context set operators. Let s ranges over a set
of contexts, S over a context set expression and D over a
dimension set. A formal syntax for context set expression S is
shown in Figure 2(left column).

 Fig. 2 Formal Syntax of Context Set Expressions and Precedence
Rules for Context Set Operators.

In order to precisely calculate a context set expression, we
define the precedence rules for the context set operators.
These are shown in Figure 2(right column) (from the highest
precedence at the row to the lowest precedence in the bottom
row). Parentheses will be used to override this precedence
when needed. Operators having the same precedence will be
applied from left to right.

4.5 Box Notation

In many applications it is of special interest to consider a
set of contexts, all of which have the same dimension set
and the tags corresponding to the dimensions in each
context satisfy a given constraint. We use the notation Box
to denote such a set when the dimension set is ∆ ={d1,…,
dk} ⊂DIM and p is a logical expression.
Note that in p, we are allowing the dimensions as variables,
denoting the current tags. That is, if p(d1, d2) = d1 < d2, it
means the current tag of d1 is less than the current tag of d2

in the context that has dimensions d1 and d2. A formal
definition follows:
Definition 20 A Box set (or a Box for short) is a set of
simple contexts with the same domain. Let φ ≠ {d1, …, dk}
⊆ DIM be a set of dimensions and p be an expression in
which the di (1 ≤ i ≤ k) may occur as variables. Then
Box[d1, …, dk | p] = {c∈ S | dim(c) ={d1, …, dk} and p is
true when, for each I, di is assigned the value c(di)}.
The dimension ∆ (b) of an nonempty box b is the
dimension of any (all) its elements.
The set of Box sets (or Boxes for short) are all sets of
simple contexts all of which have the same domain. It is
easy to show that anything defined by the Box notation is
a Box.

4.6 Using Context Formalism in System
Development

The two key terms in the study of context-aware systems
are context and awareness. Awareness is of two kinds. One kind
is the internal monitoring of the system, called self-
awareness or internal awareness. System contexts are
dynamic and consequently self-awareness varies from context to
context. The other kind is the external monitoring of the system,
called external-awareness. External awareness, also known as
perception, is normally achieved through sensors and other
stimuli, say from users or other system elements. External
contexts change as and when the system environment changes,
and such changes cause changes to external awareness. The
system must use the knowledge it gained from its perception,
apply it to the changing internals, and react by either triggering
an internal state change or providing an external service. Hence,
we must use a context formalism in which both self-awareness
and externalawareness can be represented and reasoned about.
Using context calculus we can compute dynamically different
contexts, combine external and internal context, and calculate an
internal context corresponding to an observed external context.
Without the formalism such calculations can only be done in
an ad hoc manner.

Context calculus has been implemented in C#. This context
toolkit is portable and can be used as a plug-in for any context-
aware application development. The component-based
architecture given in [43] illustrates our approach to using
context formalism for developing context-aware systems. Such

IJCSI International Journal of Computer Science Issues, Vol. 6, No. 2, 2009

41

an approach can be adapted to any context-aware application,
including service-oriented systems [47], web services [48], and
trustworthy systems [46].

References

[1] Edward A. Ashcroft, William W. Wadge. Lucid - A Formal
System for Writing and Proving Programs. SIAM J.
Comput. 5(3): 336-354, 1976.

[2] V. Akman, and M. Surav. Steps toward formalizing context AI
Magazine 17, 55C72,1996.

[3] V. Akman, P. Bouquet, R. Thomason, and R. Young, eds.
Modeling and Using Context Proceedings of CONTEXT2001:
Third International and Interdisciplinary Conference on Modeling
and Using Context (Dundee, Scotland, 27C30 July 2001), Lecture
Notes in Artificial Intelligence, Vol. 2116, Berlin: Springer
Verlag.

[4] V. Alagar, and K. Wan. Context Based Enforcement of
Authorization for Privacy and Security in Identity Management.
IFIP International Federation for Information Processing.
Springer Series Vol. 261, Editors: de Leeuw, E., Fischer Hubner,
S., Tseng J. C. and Borking, J. p. 25-38, 2008.

[5] P. Bouquet, L. Serafini, P. Brezillon, M. Benerecetti, and F.
Castellani, eds. Modelling and Using Context. Proceedings of
CONTEXT99: Second International and Interdisciplinary
Conference on Modelling and Using Context (Trento, Italy, 9C11
September 1999), Lecture Notes in Artificial Intelligence, Vol.
1688, Berlin: Springer-Verlag.

[6] P. Bonzon, M. Cavalcanti, and R. Nossum, eds. Formal Aspects
of Context. Applied Logic Series, Dordrecht: Kluwer
Academic Publishers,2000.

[7] B. Brumitt, B. Meyers, J. Krumm, A. Kern, S. Shafer. Easy-
Living: Technologies for Intelligent Environments. Proceeding
of the 2nd International Symposium on Handheld and
Ubiquitous Computing (HUC 2000), Bristol, England, 2000.

[8] O. Bucur, P. Beaune, and O. Boissier. Representing Context in an
Agent Architecture for Context-Based Decision Making. In
Proceedings of CRR’05 Workshop on Context
Representation and Reasoning. 2005.

[9] R. Carnap. Meaning and Necessity. Chicago University Press,
1947. Enlarged Edition 1956.

[10] K. Cheverst, K. Mitchell, and N. Davies. Design of an object
model for a context sensitive tourist GUIDE. Computers &
Graphics, 6(23):883-891, 1999.

[11] H.H. Clark and T.B. Carlson. Context for Comprehension. In J.
Long and A. Baddeley, editors, Attention and Performance IX,
pp.313-330, Lawrence Erlbaum Associates, Hillside, NJ, 1981.

[12] E. Cobden. Speeches46, 1849.

[13] A. K. Dey, G. D. Abowd, D. Salber. A Conceptual framework
and a toolkit for supporting the rapid prototyping of context-aware

applications. Human-Computer Interaction, Vol. 16, pp. 97-
166, 2001.

[14] D.Dowty, R.Wall, and S.Peters. Introduction to Montague
Semantics. Reidel Publishing Company, 1981.

[15] W. K. Edwards. Putting Computing in Context: A Infrastructure
to Support Extensible Context-Enhanced Collaborative
Applications. ACM Transactions on Computer-Human
Interactions, Vol. 12, No.4, pp. 446-474, 2005.

[16] F. Giunchiglia, L. Serafini, E. Giunchiglia, and M. Frixione. Non-
omniscient belief as context-based reasoning, pp. 548C554 in
Proceedings of the 13th International Joint Conference on
Artificial Intelligence, Chambery, France, 1993.

[17] F. Giunchiglia. Contextual reasoning. Epistemologia, Special
Issue on I Linguaggi e le Macchine XVI, 345:C364, 1993.

[18] P. D. Gray, and D. Salber. Modeling and Using Sensed Context
Information in the Design of Interactive Applications.
Proceedings of the 8th IFIP International Conference on
Engineering for Human-Computer Interaction (EHCI
2001), Toronto, Canada, May 2001.

[19] W. G. Griswold, R. Boyer, S. W. Brown, and T. M. Truong. A
Component Architecture for an Extensible, Highly Integrated
Context-Aware Computing Infrastructure. Proceedings of the
25th International Conference on Software Engineering
(ICSE 2003), Portland, USA, May 2003.

[20] V. Grassi, and A. Sindico. Towards Model Driven Design of
Service-Based Context-Aware Applications. ESSPE’07,
Dubrovnik, Croatia, pp. 69-74, September 2007.

[21] A. Held, E. Schill, and S. Buchholz. Modeling of context
information for pervasive computing applications. In
International Conference on Information Systems, Analysis
and Synthesis, 2002.

[21] A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster.
The Anatomy of a Context-Aware Application. Mobile
Computing and Networking, pp. 59-68, 1999.

[22] K. Henricksen, J. Indulska. A Software Engineering Framework

for Context-Aware Pervasive Computing. Proceedings of the
2nd IEEE Conference on Pervasive Computing and
Communications (PerCom 2004), Orlando, USA, Mar 2004.

[23] K. Henricksen, J. Indulska, and A. Rakotonirainy. Modeling
Context Information in Pervasive Computing Systems.
Proceedings of the 1 st International Conference on
Pervasive Computing, Zurich, Switzerland, Aug 2002.

[24] J. Kjeldskov, and M. B. Skov. Exploring contextawareness for
ubiquitous computing in the health care domain. Pers Ubiquit
Comput, Vol. 11, 2007, pp.549-562.

[25] Z. Mammar, D. Benslimane, and N.C. Narendra. What can
CONTEXT do for Web Services? CACM, Vo. 49, No. 12, pp.
98-103, 2006.

[26] J. McCarthy Formalizing Common Sense. Papers by John

IJCSI International Journal of Computer Science Issues, Vol. 6, No. 2, 2009

42

McCarthy, V. Lifschitz, ed., Norwood, NJ: Ablex Publishers,
1990.

[27] J. McCarthy, and S. Buva~c. Formalizing context (Expanded
notes) Computing Natural Language, pp. 13-50

[28] C. Mundie, P. de Vries, P. Haynes, and M. Corwine.

Trustworthy Computing - Microsoft White Paper. Microsoft
Corporation, October 2002.

[29] Joey Paquet. Intensional Scientific Programming Ph.D.
Thesis, D´epartement d’Informatique, Universite Laval, Quebec,
Canada, 1999

[30] A. Ranganathan, R. H. Campbell, A. Ravi, and A. Mahajan.
ConChat: A Context-Aware Chat Program. IEEE Pervasive
Computing (vol. 1, no. 3), pp. 51-57, 2002.

[31] A. Ranganathan, J. Al-Muhtadi, RH. Campbell. Reasoning
about Uncertain Contexts in Pervasive Computing Environments.
IEEE Pervasive Computing, Vol. 3, No. 2, pp. 62-70, 2004.

[32] G. Rey and J. Coutaz. Contextor: capture and dynamic
distribution of contextual information. In Proceedings of the 1
st French-speaking conference on Mobility and ubiquity
computing, pages 131-138, New York, NY, USA, 2004. ACM
Press.

[33] G.-C. Roman, C. Julien, and Q. Huang. Network abstractions
for context-aware mobile computing. In ICSE02: Proceedings
of the 24th International Conference on Software
Engineering, pages 363-373, New York, NY, USA, 2002. ACM
Press.

[34] M. Sato, T. Sakurai, and Y. Kameyama. A simply typed context
calculus with first class environments.
Journal of Functional and Logic Programming, No. 4,
pp. 359-374, 2002.

[35] A. Schmidt, K. A. Aidoo, A. Takaluoma, U. Tuomela, K. Van
Laerhoven, and W. Van de Velde. Advanced Interaction in
Context. Proceedings of the 1 st International Symposium
on Handheld and Ubiquitous Computing (HUC), Karlsruhe,
Germany, Sep 1999.

[36] N. A. B. N. Schilit and R. Want. Context-aware computing
applications. In 5th IEEE Workshop on Mobile Computing
Systems and Applications, 2003.

[37] Sharma, N., 1995, On formalising and reasoning with contexts,
Technical Report Technical Report 352, Department of
Computer Science, The University of Queensland, Australia.

[38] E. Shortcliffe. MYCIN: Computer-based Medical
Consultations. Newyork: Elsivier

[39] T. Strang, C. Linnhoff-Popien, and K. Frank. CoOL: A Context
Ontology Language to enable Contextual Inter - operability. in
Proceedings of 4th IFIP WG 6.1 International Conference
on Distributed Applications and Interoperable Systems
(DAIS2003), volume 2893 of Lecture Notes in Computer
Science (LNCS), pages 236-247, Paris/France, November 2003.
Springer Verlag.

[40] T. Strang and C. Linnhoff-Popien. A context modeling
survey. In First International Workshop on Advanced
Context Modelling, Reasoning And Management, Nottingham,
England, Sept. 2004.

[41] R.Thomason, editor. Formal Philosophy, Selected Papers of
R.Montague. Yale University Press, 1974.

[42] K. Wan, V.S. Alagar, J. Paquet. An Architecture for Developing
Context-aware Systems. In the Proceedings of 2nd
International Workshop on Modeling and Retrieval of
Context (MRC2005), LNCS Springer-Verlag, Vol. 3946,
pp. 48-62, 2005.

[43] K. Wan, and V. Alagar. An Intensional Programming Approach
to Multi-agent Coordination in a Distributed Network of Agents.
In Proceedings of the 3rd International Workshop on
Declarative Agent Languages and Technologies (DALT).
Utrecht, The Netherlands, LNCS Vol. 3904, p. 205-222, 2005.

[44] K. Wan. Lucx: Lucid Enriched with Context. Ph.d Thesis,
Department of Computer Science and Software Engineering,
Concordia University, Montreal, Canada, January 2006.

[45] K. Wan, K. and V. Alagar. An Intensional Functional Model of
Trust. Trust Management II. Editors: Y. Karabulut, J. Mitchel,
P. Hermann, C.D. Jensen, IFIP Springer Series, p. 69-85, 2008.

[46] K. Wan, V. Alagar. A Context-aware Trust Model for Service-
oriented Multi-agent Systems. Proceedings of 1 st
International Workshop on Quality-of-Service Concerns in
Service Oriented Architectures (QoSCSOA 2008), LNCS
Vol.5472: Eds: G. Feuerlicht and W. Lamersdorf, pp. 221-236,
2009.

[47] K. Wan, M. Mohammad, and V. Alagar. A Formal Model of
Business Application Integration from Web Services (Position
Paper). Current Trends in Theory and Practice of Computer
Science (SOFSEM09),LNCS Vol.5404, pp. 656-667, 2009.

[48] T. Winograd. Architecture for Context. Human-Computer
Interaction, Vol. 16, pp. 401-419, 2001.

First A. Author KaiYu Wan received her ph. degree of
Computer Science from Concordia University in 2006,
master degree in 1999 and bachelor degree in 1996 from
NanJing University of Science and Technology. Currently
she is a Lecturer at Department of Computer Science, East
China Normal University. She has published 20 referred
papers. Her research interests are in development of
systems such as Trustworthy Systems, Component-Based
Software Systems, Context-Aware System and Multi-
Agent Systems, and in Programming Languages and
Compilers. She enjoys reading and traveling.

