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Abstract 
Context is a rich concept and is an elusive concept to define. The 
concept of context has been studied by philosophers, linguists, 
psychologists, and recently by computer scientists. Within each 
research community the term context was interpreted in a certain 
way that is well-suited for their goals, however no attempt was 
made to define context. In many areas of research in computer 
science, notably on web-based services, human-computer 
interaction (HCI), ubiquitous computing applications, and 
context-aware systems there is a need to provide a formal 
operational definition of context. In this brief survey an account 
of the early work on context, as well as the recent work on many 
working definitions of context, context modeling, and a 
formalization of context are given. An attempt is made to unify 
the different context models within the formalization. A brief 
commentary on the usefulness of the formalization in the 
development of context-aware and dependable systems is 
included. 
 
Keywords: Context, Context Theory, Context-Awareness. 

1. Introduction 

According to the Oxford English Dictionary (OED), 
context denotes “the circumstances that form the setting 
for an event”. To emphasize a common social usage of the 
word context OED includes the quotation [12] “I wish 
honorable gentlemen would have the fairness of what I did 
say, and not pick out detached words”. Although the word 
context has been used for a long time in many scientific 
descriptions, literary essays, and in philosophical 
discourses, its meaning was always left to the reader’s 
understanding. In one of the earlier papers, Clark and 
Carlson [11] state that Context has become a favorite word 
in the vocabulary of cognitive psychologists and that it has 
appeared in the titles of a vast number of articles. They 
then complain that the denotation of the word has become 
murkier as its uses have been extended in many directions 
and deliver the now widespread opinion that context has 
become some sort of “conceptual garbage can”. That 
context has changed now. The importance of context in 
information retrieval, knowledge representation, reasoning 

in AI, and analysis of computer programs have been 
recognized and there is a serious effort to make a precise 
technical working definition of the notion of context. 
More recently, the importance of context was picked up by 
researchers in many areas of computer science, most 
importantly those working in Human-Computer 
Interaction (HCI), semantic web, and trustworthy systems. 
This intense interest has produced many operational 
definitions of context, but almost all of them are either 
informal or use ad hoc notation. We review in this paper 
the different types of notations and interpretations used for 
context. The review is classified into Context in Logic, 
Context in Languages, and Context in Systems. This 
classification and review are not exhaustive. It is used 
mainly to trace the historical progression of the systematic 
study of context in different, but related, areas. 

1.1 Structure and Interpretation 

The word “context” is derived from the Latin words con 
(meaning “together”) and texere (meaning “to weave”). 
The raw meaning of it is therefore “weaving together”. A 
circumstance is a weaving together of many types of 
entities. Thus, in describing a context we must define a 
finite set of entities, a finite set of properties for each 
entity, and the inter-weaving of the properties. As an 
example, the setting for a “seminar event” is the weaving 
together of the entities speaker, topic, audience, time, 
location and their properties such as name and affiliation 
for the speaker, title and abstract for the topic, size and 
status for audience, clocktime for time, and building-
address and room-number for locality. We need to 
associate with each property a value from its domain and 
bind each entity with the instantiated properties in order to 
describe the context of seminar. The choice of entities, the 
choice of properties, and the notation used for binding 
them are crucial for system development. This choice for 
context definition has the effect of narrowing down the 
possible interpretations of declared policies and 
constraints for system development. Context description 
also eliminates ambiguities. It should be possible to define 
contexts in programming languages independent of how it 



IJCSI International Journal of Computer Science Issues, Vol. 6, No. 2, 2009 

 

34

should be used. For example, if a context is defined by 
locality and time, then many events may happen in a 
specific context, and each event may produce a different 
experience in one context. Therefore, the structural 
definition of a context is only part of its specification, its 
other part being the semantics of the world associated with 
the context. The world may be defined by a set of states in 
programming or by a set of logical formulas in a formal 
specification. Motivated by a need to specify context as a 
first class citizen in languages and systems, a formal 
representation of it was developed in [45]. 

2. Context in Logic 

In this section we review the study of context in logic as a 
formal object and reasoning. We review intensional logic 
and some variations of propositional and predicate logic in 
which context has been embedded as first class citizens. 

2.1 Intensional Logic 

Intensional Logic [14, 42], a family of mathematical 
formal systems that permits expressions whose value 
depends on hidden context,  came into being from research 
in natural language understanding. According to Carnap 
[9], the real meaning of a natural language expression 
whose truth-value depends on the context in which it is 
uttered is its intension. The extension of that expression is 
its actual truth-value in the different possible contexts of 
utterance, where this expression can be evaluated. 
Basically, intensional logics add dimensions to logical 
expressions, and non-intensional logics can be viewed as 
constant in all possible dimensions, i.e. their valuation 
does not vary according to their context of utterance. 
Intensional operators are defined to navigate in the 
context space. In order to navigate, some dimension tags 
(or indexes) are required to provide placeholders along 
dimensions. These dimension tags, along with the 
dimension names they belong to, are used to define the 
context for evaluating intensional expressions. 
Example 1  E: Beijing is now the capital of China. 
This expression is intensional because the truth value of 
this expression depends on the context in which it is 
evaluated. The intensional natural language operator in 
this expression is now, which refers to the time dimension. 
Today it is certainly true, but there existed time points in 
the past when China had a different capital. For example, 
before 1949, the capital of China was NanJing. Those 
different values (i.e. True or False) along different time 
points are extensions of this expression. In other words, 
the evaluation of the above expression is time-dependent. 
A natural extension is to consider expressions that depend 
on more than one dimension, such as time, space, audience, 

and so on. 
Example 2 The meaning of the expression: 
E: the overseas indexes during this period close 10% 
below their highs can be interpreted when the possible 
worlds spanned by the dimensions overseas and period are 
defined. The Table below gives a possible extension of the 
expression E when the periods are months in a given year, 
and overseas stock markets are Amsterdam, Brussels, 
Frankfurt, and London. By varying the year we get 3-
dimensional extension. 

Table 1: Example 1 

 Ja Fe Mr Ap Ma Jn Jl Au Se Oc No De
Amsterda F F F F T T T T T F F F
Brussels F F F T T T T T T F F F 

Frankfurt F F T T T T T T T T F F 
London F T T T T T T T T T T T 

2.2 Formalizing Context in AI 

Contexts in AI were introduced by Weyhrauch (1980) [51] 
and subsequently developed by McCarthy and Buva c 
(1998) [28] and Giunchiglia (1993) [17]. Surveys of the 
formalizations and the usage of contexts can be found in 
Sharma (1995) [38], Akman and Surav (1996) [2], 
Bouquet et al. (1999) [5], Bonzon et al. (2000) [6] and 
Akman et al. (2001) [3]. Context serves an important 
purpose in AI and Intelligent Information Processing (IIP). 
The classic example of the earliest IIP that failed to meet 
safety criteria is MYCIN [39]. It was observed by 
McCarthy [2]. MYCIN system advises physicians on 
treating bacterial infections of the blood and meningitis. 
When MYCIN was first introduced context was not part of 
system’s query processing phase. When it was given the 
query “what is the treatment for Chlorae Vibrio” it 
recommended “two weeks of tetracycline” treatment. 
What it failed to inform the physician was that a massive 
dehydration during the course of the treatment would 
occur. While the administration of tetracycline would cure 
the bacteria, the patient would die long before that due to 
diarrhea. Here is an instance where the context of correct 
usage was not given to the physician, which ultimately 
made the system unsafe and hence not trustworthy. A 
contextual MYCIN will explicitly state the context for 
correct administration of medications. In AI context is 
formalized using propositional or predicate logic.  

Contexts are abstract objects (representation free) and 
are first-class citizens. Consequently, contexts are freely 
used in logical formulas, without explicitly defining 
contexts. In some sense, in the logical approach a context 
itself is defined by a set of formulas that are true by the 
truth assignments in that context. In [28] McCarthy, who 
introduced a logical framework in AI for studying context, 
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gave three reasons justifying his approach. 
 Axiomatization: The use of contexts simplifies 

axiomatizations. Axioms from one context can be 
lifted to more general contexts. 

 Vocabulary and Interpretation: Contexts allow the 
use of specific vocabulary and information. Terms 
that are used in one context have particular meaning, 
which they will not have in general. 

 Building AI Systems: A hierarchy of AI systems can 
be built be transcending from one context to another. 
 
According to Giunchiglia (1993) [17], the notion of 

context formalizes the idea of localization of knowledge 
and reasoning. Intuitively speaking, a context is a set of 
facts (expressed in a suitable language, usually different 
for each different set of facts) used locally to prove a 
given goal, plus the inference routines used to reason 
about them (which can be different for different sets of 
facts). A context encodes a perspective about the world. It 
is a partial perspective as the complete description of the 
world is given by the set of all the contexts. It is an 
approximate perspective, in the sense described in 
McCarthy (1979) [27], as we never describe the world in 
full detail. Finally, different contexts, in general, are not 
independent of one another as the different perspectives 
are about the same world, and, as a consequence, the facts 
in a context are related to the facts in other contexts. 

The work in Giunchiglia and Serafini (1994) provides 
a logic, called Multi Language Systems (ML Systems), 
formalizing the principles of reasoning with contexts 
informally described in Giunchiglia (1993). In ML 
systems, contexts are formalized using multiple distinct 
languages, each language being associated with its own 
theory (a set of formulas closed under a set of inference 
rules). Relations among different contexts are formalized 
using bridge rules, namely inference rules with premises 
and consequences in distinct languages. Recently, Ghidini 
and Giunchiglia (2001) proposed Local Models Semantics 
(LMS) as a model-theoretic framework for contextual 
reasoning, and use ML systems to axiomatize many 
important classes of LMS. From a conceptual point of 
view, Ghidini and Giunchiglia argued that contextual 
reasoning can be analyzed as the result of the interaction 
of two very general principles: the principle of locality 
(reasoning always happens in a context); and the principle 
of compatibility (there can be relationships between 
reasoning processes in different contexts). In other words, 
contextual reasoning is the result of the (constrained) 
interaction between distinct local structures. A good 
survey of context formalization in AI and a comparison 
between different formalizations can be found in [2]. 
According to this exposition, context is either treated 
within some logical framework or within situation theory. 
Both approaches deal with abstract contexts and focus 

only on contextual reasoning. 

3. Context in Languages 

We review the role of context in intensional programming 
languages (IPL) and in ¸λ  calculus. 

3.1 Formalizing Context in AI 

The intensional programming paradigm has its 
foundations on intensional logic. It retains two aspects 
from intensional logic: first, at the syntactic level, are 
contextswitching operators, called intensional operators; 
second, at the semantic level, is the use of possible world 
semantics. By making difference between intension and 
extension, IPL provides two different levels for 
programming. On the higher level, it allows to 
represent/express problems in a declarative manner; on the 
lower level, it solves problems without loss of accuracy. 

IPL deals with streams of entities which could be 
numbers, or strings of characters, or any computable 
structure. These streams are first class objects in 
intensional languages and functions can be applied to 
these streams. Because of the infinite nature of IPL, it is 
especially appropriate for describing the behavior of 
systems that change with time or physical phenomena that 
depend on more than one parameter (such as time, space, 
temperature, etc). It is also an appropriate language for use 
in business applications that generate data streams, or 
textual streams, or media streams. Examples include stock 
market transactions and credit card transactions which are 
mostly data streams of records where each record contains 
information on a transaction, call center transactions that 
generate textual streams of conversations, and multi-media 
streams that are generated by cable companies to distribute 
movies on demand. The streams are processed by 
accessing certain semantic units and interpreting it in 
different contexts. 

There is no notion of type in an IPL. The operators 
on the stream contents are assumed to be given when one 
writes the stream functions. The natural logical view of a 
stream is an infinite sequence, and in writing programs 
one does not worry about the physical representations of 
stream contents. This abstraction enables one to 
understand an IPL program from the statements in it, 
without any reference to its implementation. The 
computational model for IPLs is known as eduction. That 
is, an implementation starts computing the first element 
that satisfies a given context, then the second, and so on. 
A context for expression evaluation, as informally 
understood in Example 2, is described by a set of 
dimensions (attributes) and a finality (goal). The finality is 
domain-dependent and is chosen so that a finite set of 
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dimensions would suffice to realize that goal. For example 
in processing call center streams understanding a 
conversation may be the finality, and the attributes may be 
a set of key words chosen in advance to meet the goal. As 
another example, in processing streams of user 
interactions with web, the finality may be understanding 
user patterns and the attributes may be ActivityLocation, 
ActivityDuration, and VolumeofDataTransfer. Both 
finality and the attributes defining a context are implicitly 
used in evaluating the extensions from a stream. 

3.2 Lambda Calculus  

In programming languages, context is a meta concept: 
static context introduces constants, definitions, and 
constraints, and dynamic context processes the executable 
information for evaluating expressions. In [35] context is 
introduced in the lambda calculus and an argument is 
made for introducing context as first class objects in 
programming languages. Their motivation for introducing 
context in the theory of lambda calculus is to develop a 
programming language with first-class contexts that has 
advanced programming features for manipulating open 
terms. We are motivated along similar lines for 
introducing context in Lucid. However there are 
significant differences in the semantics of context between 
the two approaches.  

A context in the lambda calculus is defined as a term with 
a“hole” in it. The hole in a context can be filled with a term 
which may involve free variables. To avoid inconsistent hole 
filling within the scope of lambda binding the holes are labeled, 
hole abstraction, and context application are separated. 
Informally, a context C with a hole in it, written C[ • ], will 
become the term C[M] when the hole is filled with the term M. 
The formal way of writing this in calculus is M’ M , where 
the term M’ abstracts the hole in the context. The term M that 
abstracts the hole labeled X itself is written as X.M’. For 
example, the context C[• ] = ( x.[• ] +y)3 is represented by 
the term M’= ( X( x.X + y)3). The term obtained by filling 
the hole in M’ with x+ z is written ( X.( x.X+y)3)  
(x+z). 

In our theory context plays two roles: one role is as a 
reference to an item in a multi-dimensional stream, and the 
other role is as a descriptor of situations at which 
expressions are evaluated. A stream of contexts may be 
constructed and a context expression may be evaluated at 
a context. In Lucx expressions and contexts exist 
independently. A context may be defined without any 
regard to any specific expression and hence it may be used 
to evaluate different Lucx expressions. Similarly, an 
expression can be evaluated at different contexts. It is 
possible to define context dependent expressions in Lucx. 
Such expressions may be evaluated at a context distinct 

from any other context used in its definition. We can 
define nested contexts, and dependent contexts. These 
features offer a variety of flexible ways to programming 
different applications. 

 

3.3 Lucid and Lucx  

Lucid was originally invented as a Program Verification 
Language by Ashcroft and Wadge [1]. And later it 
evolved into a dataflow language [52]. The basic 
intensional operators are first, next, and fby. The four 
operators derived from the basic ones are wvr, asa, upon, 
and prev, where wvr stands for whenever, asa stands for 
as soon as, upon stands for advances upon, and prev 
stands for previous. Lucid is a stream (i.e. infinite entity) 
manipulation language. All the above operators are 
applied to streams to produce new streams. The definitions 
of these operators [30] are shown as follows 
Definition 1 If X = (x0 ,x1 ,…,  xi,… ) and Y = 
(y0 ,y1 ,…,yi,…), then 

(1) f i r s t  X = (x0 ,x0 ,…,x0 ,…)  

(2) next X    = (x1 ,x2 ,…,xi+1 ,…)  

(3) X fby Y = (x0 ,y0 ,y1 ,…,y i -  1 ,…)  

(4) X wvr Y = if f i r s t  Y then X 
Fby  (nextX wvr next Y) 

Else (next X wvr next Y) 
(5) X asa Y = f i r s t  (X wvr Y) 
(6) X upon Y = X fby (if f i r s t  Y 

then (next X upon next Y) 
else (X upon next Y)) 

(7) prev X = X@(#1) 2 
 
Example 3 illustrates the definitions on a stream A whose 
elements are integers, and a stream B whose elements are 
boolean. In a boolean stream the symbols 1 and 0 indicate 
true and false respectively. The symbol nil indicates an 
undefined value. 
 
 
Example 3 : 

A = 1 2 3 4 5
B = 0 0 1 0 1 

first A = 1 1 1 1 1 
next A = 2 3 4 5  
prev A = nil 1 2 3 4 5
AfbyB = 1 0 0 1 0 1
A wvr B = 3 5    
A asa B = 3 3 3   
A upon B     1 1 1 3 3 5
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With the operators defined above, Lucid only allows 
sequential access into streams. That is, the (i + 1)th 
element in a stream is only computed once the ith element 
has been computed. To enable subcomputations to take 
place in arbitrary dimensions and all indexical operators to 
be parameterized by one or several dimensions, two basic 
intensional operators are added. One is intensional 
navigation (@.d), which allows the values of a stream to 
vary along the dimension d. Another is intensional query 
(#.d), which refers to the current position (i.e. tag value) 
along the dimension d. This way, it is possible to access 
streams randomly. 
Example 4 illustrates the definitions of these two operators 
on two streams A and B along the time dimension. 
Example 4 
A = 1 2 4 8 16 32 64 128 … 
B = 1 2 3 0 6 7 4 5 … 
A @.time B = 2 4 8 1 64 128 16 32 … 
#.time = 0 1 2 3 4 5 6 7 … 
The major distinction between contexts in AI and in IPL is 
that in the former case they are rich objects that are not 
completely expressible and in the later case they are 
implicitly expressible. Hence it is possible to write an 
expression in Lucid whose evaluation is context-
dependent. However, a context in the current version of 
Lucid can not be explicitly manipulated. This restricts the 
ability of Lucid to be an effective programming language 
for programming diverse applications. So we have 
extended Lucid by adding the capability to explicitly 
manipulate contexts. This is achieved by introducing 
context as a first class object in the language. That is, 
contexts can be declared, assigned values, used in 
expressions, and passed as function parameters. The 
language thus extended, is called as Lucx [45] (Lucid 
extended with contexts)(the x is used as the x in TeX). 
Thus, the rationale for introducing context in Lucid is 
quite analogous to the introduction of context to enrich 
knowledge base in AI. However, our notion of context 
differs significantly from McCarthy’s. In our study context 
is both finite and concrete. It is finite in the sense that only 
a finite number of dimensions are allowed in defining a 
context. However it does not impose any limitation on 
handling infinite streams, because with every dimension 
an infinite tag set is introduced in the language. A full 
account of context-based evaluation of expressions in 
Lucx is given in [45]. 

4. Context in Systems 

Context-aware adaptation is regarded as the most 
important feature for pervasive and ubiquitous services 
[50, 20, 25]. Web services [26] and mobile computing 
applications [53, 24] immensely benefit with a formal 
context model. It is in this context that we review the role 

of context. Context modeling and context-dependent 
interpretive actions are important in HCI [13, 15, 49]. 
However in all these works context is not formalized. In 
this section, after we review context formalism, we 
explain how our formal definition provides a rigorous 
platform for developing context-aware systems. 

4.1 Formalizing Context  

We formalize context as a typed relation, a set of ordered 
pairs of (d, x) where d is a dimension, Td is the type of d 
and x : Td. 
Definition 2 Let DIM denote the set of all possible 
dimensions, and T = {Td |d  ∈DIM} be the set of types 
associated with the dimensions. A context c is a finite 
relation {f(d, x) | d ∈  DIM ∧  x : Td }. The degree of the 
context c is |dom c|. The empty relation corresponds to 
Null context. The degree of Null context is 0. 
A context having only one (dimension, tag) pair is called a 
micro context. Let G denote the set of contexts over {DIM, 
T}. The set of micro contexts is M = {c| c∈  G; | c|= 1}. 
The set of simple contexts is S = {c| c ∈  G, c is a partial 
function}. Clearly, a simple context c of degree 1 is a 
micro context. A context which is not simple is referred to 
a non-simple context. The basic functions dim and tag are 
to extract the set of dimensions and the values associated 
with the dimensions in a context. That is, if c = 
f<d1,x1>,…,<dk,, xk>}, then we may write c = {mi |mi = 
<di.,xi>}, dim(c) = {d1, d2,…dk,}, and tag(c) = {x1, x2,… 
xk }. For the tuple (d, x) in a micro context c we use the 
functions dimm and tagm to extract the tuple components: 
dimm(c) = d and tagm(c) = x.  

4.2 Context Operators 

In this section, context operators are discussed. A 
context being a relation we borrow the notation and 
meaning of those relational operators that are available in 
mathematics. Rest of them we define, using set theory 
notation. Using these context operators contexts can be 
managed dynamically and flexibly. The syntax of context 
expressions are also formally defined. In order to evaluate 
context expression correctly, precedence rules for context 
operators are provided as well. 
Context operators are : override ⊕  , difference , choice 
| , conjunction I  , disjunction U  , undirected range 

, directed range  , projection ↓  , hiding ↑  , 
substitution / ,  comparison =, ⊆ , ⊇  . The difference , 
conjunction I , disjunction U  , and comparison =, ⊆ , 
⊇  operators are set operators. The rest of the operators 
are explained and formally defined below.  
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Definition 3 Override ⊕ This operator takes two 
contexts c1∈  G, and c2∈  S and returns a context c 
∈G, which is the result of the conflict -free union of c1 
and c2, as defined below: 

_⊕ _ : G×  S→G, 
c= c1 ⊕ c2 ={m | ( m∈ c1 ∧ dimm(m) ∉ dim(c2)) 
∨m∈  c2} 
Definition 4 Choice | This operator accepts a finite 
number of c1ck of contexts and non-deterministically return 
one of the cis. The definition c= c1|c2|…,|ck implies 
that c is one of the ci, where 1≤ i≤ k: 

_|_ : G×G×…×G →G, 
Definition 5 Projection. This operator takes a context 
c∈G and a set of dimensions D⊂  DIM as arguments 
and filters only those micro contexts in c that have their 
dimensions in set D. 

_↓ _ : G ×D →G   
c ↓ D = {m| m ∈c ∧ dimm(m) ∈  D}.  

Example 5 : 
Let c1 = { ( d,1 ) , ( e,4 ) , ( f,3)}, D={d,e} 
then c1 ↓ D= { ( d,1 ) , ( e,4)} 

Definition 6 Hiding. This operator enables a set of 
dimensions D to be applied on a context c∈G to 
remove all the micro context s in c whose dimensions 
are in D: 

_↑ _ : G ×D →G ,  
c↑   D={m| m∈  c ∧ dimm(m) ∉D} 

Example 6 : 
Let c1 = { ( d,1 ) , ( e,4 ) , ( f,3)}, D={d,e} 
then c1 ↑ D = {(f,3)} 

Definition 7 Substitution. This operator takes a general 
context and a simple context as arguments and produces 
a context which is the result of replacing a sub-context 
of the general context with a sub-context of the simple 
context if their domains are equal. 

_/_ : G ×S →G ,  
c/s = ( c ↑ dim s) U  (s ↓ dim c)  

Example 7 : 
Let c1 ={(d, 1), (e, 4),(d, 3)},  
c2 ={(d, 4),(f, 3)}, then c1/c2 = {(e,4),(d,4)} 

Definition 8 Undirected range. This operator takes two 
contexts c1, c2∈  G as arguments and returns a set of 
simple contexts. The tag set U is assumed to be totally or-
dered. We give a constructive definition here.  

_ _ : G×  G→ Ρ S 
Steps for constructing the final result are shown as fol-

lows: 
1. Let S’ be the set of simple contexts, which is the result 

of ( c1  c2). 
2. For each pair of m1∈  c1, m2∈  c2, and dimm(m1) = 

dimm (m2 ), do the following: 

(a) Define a = min{tagm (m1), tagm (m2 )} and b = 
max{tagm(m1), tagm(m2)} 

(b) Define the subrange tba = a..b. 
(c) Construct the set Y1:  

Y1 ={ (dba ,x)| dba = dimm(m1) = dimm(m2), 
x∈  tba} 

3., Y={Y1,Y2,…Yp}, Where Yi(i = 1,…,p), are the sets 
of micro context s constructed in Step 2. Define for 
Yi ∈ Y, first(Yi) ={dimm(m) | m ∈ Yi}, and, 
second(Yi) ={tagm(m)| m∈Yi}. If there exists Yi, 
Yj∈  Y such that first(Yi) = first(Yj), for i≠  j, we 
replace the sets Yi and Yj by their union Yi U Yj, 
and repeat this process until the first(Yi)s for Yi Y 
are distinct 

4. For Yi ∈ Y, construct the set Z of contexts: 
Z={{(first(Y1),x1), (first(Y2), x2),…, (first(Yp), 
xp)}| (x1, x2, …, xp) ∈∏ p 

i=1second(Yi))}. 

5. Define: Xc1 = c1↑ U Yi ∈Y first(Yi). 

6. Define: Xc2 = c2↑ U Yi ∈Y first(Yi).. 
7. Construct S’: S’= {{z}U Xc1U Xc2 | z ∈Z}. 
Basically, the result consists of three parts: 
1. For each pair m1∈ c1, m2∈  c2 which shares the 

same dimension, constructs a set Yi, this is done in 
step 2 and step 3. The result of union the set Yi, 
done in step 4, consists of the first part : Z. 

2. All the other micro context s of c1 which have 
different dimensions consists of the second part : 
Xc1. 

3.  Similarly, all the other micro context s of c2 which 
have different dimensions consists of the third part : 
Xc2. 

Example 8 : 
Let c1 ={(e, 3), (d, 1)}, c2 ={(e, 1),(d, 3)}, 

c3 ={(e, 3)},   c4 ={(f, 4)},   
c5 ={(e, 1), (f, 4)} 
then c1  c2={{(e,1),(d,1)}, {(e,1),(d,2)},  
{ (e,1),(d,3)}, {(e,2),(d,1)},{(e,2),(d,2)}, { (e,2),(d,3)}, 
{(e,3),(d,1)}, {(e,3),(d,2)}, { (e,3),(d,3)} 
c3   c4 ={(e,3),(f,4)} 
c3  c5 ={{(e,1),(f,4)},{(e,2),(f,4)},  

{(e,3),(f,4)}} 
Definition 9 Directed Range. This operator takes two con-

texts c1∈  G and c2 ∈  S and returns a set of 
contexts: 
_ _ : G×  S→ ΡG 

We change only Step 2 of the method described for the 
undirected range(Page 7) to obtain the result: 
(a) Define a = tagm (m1), b = tagm (m2 ), if tagm (m1) < 
tagm(m2), else ignore the pair m1, m2. 
(b) Define the subrange tba = a..b. 
Example 9 : 
Let c1 = {(d,1)}, c2 = {(d,3), (f,4)}, 
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then c1  c2 = c1  c2 ={(d,1),(f,4)}, {(d,2 ) , (  
f,4)}, {(d,3 ) , (  f,4)}} , 

c2 c1 = {(f,4)} 
 
 

4.2 Context Expression 

Informally, a context expression is an expression involving 
context variables and context operators. Let c be a context 
variable, and D be a set of dimensions. A formal syntax for 
context expression C is shown in Figure 1(left column). A context 
expression that satisfies those syntactic rules is a well-formed 
context expression. 

In order to provide a precise meaning for a context expression, 
we define the precedence rules for all the operators. Figure 
1(right column) shows the operator precedence from the highest 
(top row) to the lowest (bottom row). Parentheses will be used to 
override this precedence when needed. Operators having the same 
precedence will be applied from left to right. 

 

Fig. 1  Formal Syntax of Context Expressions and Precedence Rules for 
Context Operators. 

Example 11 Given a well -formed context expression 
c3 ↑  D ⊕ c1| c2, where c1 ={(x,3),(y,4),(z,5)}, c2 = 
{(y,5)}, and c3 ={(x,5),(y,6),(w,5),  D={w}, the evaluation 
steps are shown as follows: 

[Step1]. c3 ↑ D={(x,5),(y,6)}[Definition 6, Page 6] 
[Step2]. c1|c2 = c1 or c2 [Page 6] [Step3]. 
Suppose in Step2, c1 is chosen, 
c3↑  D⊕ c1 ={(x,3),(y,4),(z,5)} [Definition 3, Page 6] 
else if c2 is chosen, 

c3↑  D⊕ c2 ={(x,5),(y,5)}[Definition 3, Page 6] 

4.3 Context Set Operators 

In Lucx we avoid higher-order sets of contexts, and allow only 
sets of simple contexts. Hereafter, by “set of contexts” we refer 
only to “set of simple contexts”. There are two kinds of such 
operators: lifting operators, and relational operators. 

4.3.1 Lifting Operators 

Definition 11 Projection. For s ∈ Ρ  S, and D 
⊆ DIM. The projection operator constructs a set of 
contexts s’ ∈ Ρ  S, where s’ is obtained by projecting 
each context from s on to the dimension set D. 

_↓ _ : Ρ  S   × ΡDIM → Ρ  S  
s’=s↓ D={c↓ D|c∈s} 

Definition 12 Hiding. For s ∈ Ρ  S, and D ⊆ DIM. 
The hiding operator constructs s’ ∈ S2, where s’ is 
obtained by hiding each context in s on the dimension 
set D. 

_↑ _ : Ρ  S   × ΡDIM → Ρ  S  
s’=s↑ D={c↑ D|c∈s} 
Definition 13 Substitution. This operator produces a set of 
contexts s, sP S, for a given set of contexts s, s P S, a 
dimension and a tag value belonging to that dimension: 

_/_ : Ρ  S   × (DIM ×U)→ Ρ  S 
s’= s /<d’,t’>={c/<d’,t’>|c∈  s} 

Definition 14 Choice. This operator accepts two sets 
of contexts s1, s2 and non-deterministically returns 
one of them. The definition s= s1|s2 implies that s is 
either s1 or s2. 
_|_ : Ρ  S   × Ρ S → Ρ  S 
 Definition 15 Override. For every pair of context 
sets s1, s2, s1, s2 ∈P S this operator returns a set of 
contexts s, s ∈ P S, where every context c∈ s is 
computed as c1 ⊕ c2, c1∈  s1, c2∈  s2. 

_⊕ _ : Ρ  S   × Ρ S → Ρ  S 
s=s1⊕ s2={c1⊕  c2| c1∈s1 ∧ c2∈s2} 

Definition 16 Difference. For every pair of context 
sets s1, s2, s1, s2∈  P S this operator returns a set of 
contexts s, s ∈ P S, where every context c∈  s is 
computed as c1 c2, c1∈  s1, c2∈  s2. 

_ _ : Ρ  S   × Ρ S → Ρ  S 
 s= s1  s2 ={c1  c2| c1∈  s1, c2∈  s2} 

Lifting the undirected range  and directed range 
to sets of contexts will produce higher-order sets. So, 

we do not define lifting for these two operators. 
However, since the results of applying these two 
operators are sets of contexts, the lifting operators can be 
applied to the results. 

4.3.2 Relational Operators 

We define the three relational operations  (join),  
(intersection), and  (union) for sets of contexts. In 
the following definitions, c denotes a context,  si∈P S 
and ∆ i=Uc’ ∈ si dim(c’). 
Definition 17 Join. 

_ _ : Ρ  S   × Ρ S→ Ρ  S  
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s=s1  s2={c1 ∪ c2|c1∈ s1 ∧  c2∈ s2 ∧ c1 ↓ ∆ 3= 
c2↓ ∆ 3}, where ∆ 3 = ∆ 1∩ ∆ 2. 
 
Definition 18  Intersection.  

_ _ : Ρ  S   × Ρ S→ Ρ  S  
s=s1 s2={c1∩ c2|c1∈c2∧  c2∈s2}.  
We can prove that s= s1 s2 =(s1  s2) ↓ ∆ 3, where 

∆ 3=∆ 1 ∩ ∆ 2. 
Definition 19 Union. 

_ _ : Ρ  S   × Ρ S→ Ρ  S 
s= s1  s2 is computed as follows: 

∆ 1 = U c∈s1 dim(c), ∆ 2 = U c∈s2 dim(c), and ∆ 3 =∆ 1 

∩ ∆ 2 
1. Compute X1:X1={ci ∪ cj ↑ ∆ 3 |ci ∈s1∧ cj∈  s2} 
2. Compute X2: X2 ={cj ∪ ci ↑ ∆ 3 |ci ∈s1∧ cj∈  s2} 
3. The result is : s= X1 U X2. 
Earlier we have shown that the results of ci  cj and 

ci  cj are sets of contexts. So the relational operators  
(join),  (intersection), and  (union) can also be applied 
to the expressions ci  cj and ci  cj, where ci and cj are 
contexts.  

4.4 Context Set Expressions 

Informally, a context set expression is an expression involving 
sets of contexts and context set operators. Let s ranges over a set 
of contexts, S over a context set expression and D over a 
dimension set. A formal syntax for context set expression S is 
shown in Figure 2(left column). 

 

 Fig. 2  Formal Syntax of Context Set Expressions and Precedence 
Rules for Context Set Operators. 

In order to precisely calculate a context set expression, we 
define the precedence rules for the context set operators. 
These are shown in Figure 2(right column) (from the highest 
precedence at the row to the lowest precedence in the bottom 
row). Parentheses will be used to override this precedence 
when needed. Operators having the same precedence will be 
applied from left to right. 

4.5 Box Notation 

In many applications it is of special interest to consider a 
set of contexts, all of which have the same dimension set 
and the tags corresponding to the dimensions in each 
context satisfy a given constraint. We use the notation Box 
to denote such a set when the dimension set is ∆  ={d1,…, 
dk} ⊂DIM and p is a logical expression. 
Note that in p, we are allowing the dimensions as variables, 
denoting the current tags. That is, if p(d1, d2) = d1 < d2, it 
means the current tag of d1 is less than the current tag of d2 

in the context that has dimensions d1 and d2. A formal 
definition follows: 
Definition 20  A Box set (or a Box for short) is a set of 
simple contexts with the same domain. Let φ ≠ {d1, …, dk} 
⊆  DIM be a set of dimensions and p be an expression in 
which the di (1 ≤  i ≤  k) may occur as variables. Then 
Box[d1, …, dk | p] = {c∈  S | dim(c) ={d1, …,  dk} and p is 
true when, for each I, di is assigned the value c(di)}. 
The dimension ∆  (b) of an nonempty box b is the 
dimension of any (all) its elements.  
The set of Box sets (or Boxes for short) are all sets of 
simple contexts all of which have the same domain. It is 
easy to show that anything defined by the Box notation is 
a Box. 

4.6 Using Context Formalism in System 
Development 

The two key terms in the study of context-aware systems 
are context and awareness. Awareness is of two kinds. One kind 
is the internal monitoring of the system, called self-
awareness or internal awareness. System contexts are 
dynamic and consequently self-awareness varies from context to 
context. The other kind is the external monitoring of the system, 
called external-awareness. External awareness, also known as 
perception, is normally achieved through sensors and other 
stimuli, say from users or other system elements. External 
contexts change as and when the system environment changes, 
and such changes cause changes to external awareness. The 
system must use the knowledge it gained from its perception, 
apply it to the changing internals, and react by either triggering 
an internal state change or providing an external service. Hence, 
we must use a context formalism in which both self-awareness 
and externalawareness can be represented and reasoned about. 
Using context calculus we can compute dynamically different 
contexts, combine external and internal context, and calculate an 
internal context corresponding to an observed external context. 
Without the formalism such calculations can only be done in 
an ad hoc manner. 

Context calculus has been implemented in C#. This context 
toolkit is portable and can be used as a plug-in for any context-
aware application development. The component-based 
architecture given in [43] illustrates our approach to using 
context formalism for developing context-aware systems. Such 
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an approach can be adapted to any context-aware application, 
including service-oriented systems [47], web services [48], and 
trustworthy systems [46]. 
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