
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 11, May 2010 
ISSN (Online): 1694-0784 
ISSN (Print): 1694-0814 
 

 

28

Faster and Efficient Web Crawling with Parallel Migrating Web 
Crawler 

Akansha Singh1 , Krishna Kant Singh2 

1Deptt. Of Information Technology , AKGEC 

Ghaziabad, India 

 
2Deptt. Of Electronics & Communication 

AKGEC 

Ghaziabad, India 

 

Abstract 

A Web crawler is a module of a search engine that fetches data 
from various servers. Web crawlers are an essential component to 
search engines; running a web crawler is a challenging task. It is a 
time-taking process to gather data from various sources around the 
world. Such a single process faces limitations on the processing 
power of a single machine and one network connection. This 
module demands much processing power and network 
consumption. This paper aims at designing and implementing such 
a parallel migrating crawler in which the work of a crawler is 
divided amongst a number of independent and parallel crawlers 
which migrate to different machines to improve network efficiency 
and speed up the downloading. The migration and parallel working 
of the proposed design was experimented and the results were 
recorded. 

Keywords: web crawler, url ,Migrating    

1. Introduction 

The World Wide Web is a system of interlinked hypertext 
documents accessed via the Internet. English physicist Tim 
Berners-Lee, now the Director of the World Wide Web 
Consortium, wrote a proposal in March 1989 for what 
would eventually become the World Wide Web [1]. With 
the ever expanding Internet, it is difficult to keep track of 
information added by new sites and new pages being 
uploaded or changed everyday. While the Internet is nearing 
chaos, it is difficult for a user to find correct information in 
a timely manner. Today’s search engines are greatly used to 
get whereabouts of relevant information very quickly. They 
are like maps and signs which point the user in right 
direction. A search engine consists of following modules: 

 A crawling module which fetches pages from Web 
servers known as web crawler. 

 Indexing and analysis modules which extract 
information from the fetched pages and organize the 
information 

 A front-end user interface and a supporting 
querying engine which queries the database and presents the 
results of searches. 

2. Web Crawler 

 

 

Web crawlers are a part of the search engines that fetch 
pages from the Web and extract information [3]. A simple 
crawler algorithm is as follows: 

Crawler ( ) 

1. Do Forever 

2. Begin 

3. Read a URL from the set of seed URL’s 

4. Determine the IP-address for the Host name 

5. Download the Robot.txt file, which carries 
download information and also includes the files to be 
excluded by the crawler  

6. Determine the protocol of underlying Host like 
HTTP, FTP, GOPHER  

7. Based on this protocol, download the document 

8. Check whether the document has already been 
downloaded or not 

9. If the document is a fresh one, 

10. Then 

11. store it and extract the links and references to 
other sides from that document  

12. Else 

13. Abandon the document 

14. End 

The Web crawler is given a start-URL and the Crawler 
follows all links found in that HTML page. This usually 
leads to more links, which will be followed again, and so 
on. [2] 

3. Related Work 

The literature survey shows that a number of modifications 
in the basic crawler have been done to improve the crawling 



IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 11, May 2010 
www.IJCSI.org 
 

 

 

29

speed.PARALLEL CRAWLERS [6], A crawler can either 
be centrally managed or totally distributed. The authors 
mention that distributed crawlers are advantageous than 
multithreaded crawlers or standalone crawlers on the counts 
of scalability, efficiency and throughput. If network 
dispersion and network load reduction are done, parallel 
crawlers can yield good results. Their system utilizes 
memory of the machines and there is no disk access. 

PARCAHYD [2] In this, work it has been proposed that 
if the links contained within a document become available 
to the crawler before an instance of crawler starts 
downloading the documents itself, then downloading of its 
linked documents can be carried out in parallel by other 
instances of the crawler. Therefore, it is proposed  that 
meta-information in the form Table Of Links (TOL) 
consisting of the links contained in a document be provided 
and stored external to the document in the form of a file 
with the same name as document but with different 
extension . This one time extraction of TOL can be done at 
the time of creation of the document 

MIGRATING CRAWLER [4], an alternative approach 
to Web crawling is based on mobile crawlers. The authors 
propose that the crawlers are transferred to the source(s) 
where the data resides in order to filter out any unwanted 
data locally before transferring it back to the search engine. 
This reduces network load and speeds up the indexing phase 
inside the search engine. 

MERCATOR [7] is a scalable and extensible crawler, 
now rolled into the Altavista search engine. The authors of 
[7] discuss implementation issues to be acknowledged for 
developing a parallel crawler like traps and bottlenecks, 
which can deteriorate performance. They discuss pros and 
cons of different coordination modes and evaluation criteria.  
In brief, they concur that the communication overhead does 
not increase linearly as more crawlers are added, throughput 
of the system increases linearly as more nodes are added 
and the quality of the system, i.e. the ability to get 
“important” pages first, does not decrease with increase in 
the number of crawler processes. 

4. The Problem 

With the help of a study done on the various crawling 
methods several problems were identified, these are as 
follows 

 Due to the rapid growth of the Web the downloading 
creates a bottleneck at the downloader side. 

  Further the pages may be downloaded in duplicates that 
generates unnecessary network load. 

 In addition, Kahle [9] reports that the average online time 
of a page is only 75 days, which leads to an update rate of 
600GB per month that should be downloaded to keep 
collection up to date. So, the crawler should revisit the 
already downloaded pages to check the updation. 

  Thus, in order to keep the database of a search engine up 
to date, crawlers must constantly retrieve/update Web pages 
as fast as possible. 

5. Proposed Solution 

The proposed solution to the above problems is to 
decentralize and perform site-based distribution of work 
among the machines and simultaneously crawl as many 
domains as possible. This paper aims at designing a 
centrally managed migrating parallel crawler to crawl 
websites. The crawling function is logically migrated to 
different machines which send back the filtered and 
compressed data to the central machine which saves time 
and bandwidth. The architecture proposed in this paper is 
shown in figure 1. The major focus is on the design 
proposed for the crawler system, which implements the idea 
of parallel migrating crawler. The crawler system itself 
consists of several specialized components, in particular a 
central crawler, one or more crawl frontiers, and a local 
database of each crawl frontier. This data is transferred to 
the central crawler after compression and filtering which 
reduces the network bandwidth overhead. These crawl 
frontiers, are logically migrated on different machines to 
increase the system performance. The central crawler is 
responsible for receiving the URL input stream from the 
applications and forwarding it to the available crawl 
frontiers. The crawler system is composed of a central 
crawler and a number of crawl frontiers which perform the 
task of crawling. 

1. Central Crawler: The central crawler is the central 
component of the system, and the first component that is 
started up. Afterwards, other components are started and 
register with the central crawler to offer or request services. 
It is like the server in Client server. It is the only component 
visible to the other components, as the crawl frontiers work 
independently. In general, the goal of the central crawler is 
to download pages in approximately the order specified by 
the application, while reordering requests as needed to 
maintain high performance without putting too much load 
on any particular web server. The central crawler has a list 
of URLs to crawl. The URLs are sent in batches to the crawl 
frontiers, making sure that a certain interval between 
requests to the same server is observed. The central crawler 
has a seed URL list which is to be crawled unlike 
conventional crawling the central crawler has a set of 
available crawl frontiers which have registered themselves 
with the central crawler which are logically migrated to 
different locations. The central crawler assigns different 
URLs to all the crawl frontiers and in turn the crawl 
frontiers begin to crawl the received URL. As the crawl 
frontier completes its crawling, the central crawler receives 
the compressed downloaded content from the crawl 
frontiers. The central crawler is implemented using java 
RMI .The Algorithm is as follows: 

 Central Crawler ()     

1. Do Forever 



IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 11, May 2010 
www.IJCSI.org 
 

 

 

30

2.  Begin 

3. Register  crawl frontiers 

4. Read a URL from the set of seed URL’s 

5. Determine the IP-address for the Host n€ame 

6. Download the Robot.txt file, which carries 
download information and also includes the files to be 
excluded by the crawler. 

7. while seed URL list is not empty or crawl 
frontiers are available 

8. Dispatch URL to available crawl frontier. 

9. Wait for result from crawl frontiers. 

 

 
Figure 1: Proposed Architecture 

10. receive downloaded content from crawl 
frontiers. 

11. store the local data of each crawl frontier in the 
central database. 

12. End 

2. Crawl Frontiers (CF): The crawl frontier component, 
implemented in JAVA, performs the basic function of a 
breadth first crawler, i.e., it fetches files from the web by 
opening up connections to different servers. It is like the 
client in client /server architecture The files are written in 
the local document database available with each crawl 
frontier. The application then parses each downloaded page 

for hyperlinks, checks whether these URLs have already 
been encountered before, and if not, adds them to the queue 
containing the links to be visited. The crawl frontier also 
shows the time taken by it a crawl a particular url , i.e., the 
url and the hyperlinks found on visiting that url. In the 
implementation there are two queues one which contains the 
internal links of the website and the other contains the 
external links encountered. This is done to set a priority that 
first all the internal links are visited and then the external 
links are visited. The downloaded files are then compressed 
using java classes and transferred to the central database. 
The crawl frontiers is also implemented in java. The 
algorithm is as follows: 

 Crawl frontier ()     

1. Do Forever 

2. Begin 

3. Register with central server by sending the IP 
address of the machine. 

4. Wait for URL to crawl 

5. Receive URL from central crawler. 

6. Add this URL to the list of URLs to visit. 

7. while  URL list is not empty 

8. remove the first URL from the list 

9. visit the URL. 

10. save the page in the local database. 

11. parse the page and find the URL hyper links 
in the page 

12. if the links are not present in the to visit list 

13. add the URL to the to_visit list 

14.  Compress the downloaded content. 

15.  Send the compressed content to the central 
crawler crawler. 

16. End 

3.  Local Document Database (LDDB): When the crawl 
frontier runs it requires some memory space to save the 
downloaded content for this purpose each crawl frontier has 
its own local database which is known as the local 
document database. The crawl frontiers save the 
downloaded content in a directory in this database .It is the 
storage area of the machine on which the crawl frontier is 
running.    

4.  Central Database: As in conventional crawlers this 
database is the one that communicates with the database of 
the search engine. The central database stores the  list of 
URLs received from the application and it also stores the 
final downloaded documents which is composed of the 
various documents downloaded by the different crawl 
frontiers. 



IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 11, May 2010 
www.IJCSI.org 
 

 

 

31

5. Web Server (WS): The term web server means a 
computer program that is responsible for accepting HTTP 
requests from clients user agents such as web browsers, and 
serving them HTTP responses along with optional data 
contents, which usually are web pages such as HTML 
documents and linked objects (images, etc.).  

The mapper system is an existing system, which works 
between the search engine and the crawler to map the 
request and response between the search engine and the 
crawler. The Mapper system is discussed in detail in [3].The 
major components of this system are URL-IP Queue 
consisting of a queue of unique seed URL-IP pairs. 
Resolved URL queue that stores URLs which have been 
resolved for their IP addresses and acts as an input to the 
Crawl Manager. URL Dispatcher it sends a signal: 
Something to Map to the Mapping manager. Mapping 
Manager creates multiple worker threads called URL 
Mapper. It extracts URL-IP pairs from the URL-IP Queue 
and assembles a set of such pairs called URL-IP set. Each 
URL- Mapper is given a set for mapping.This component 
gets a URL-IP set as input from the Mapping Manager. It 
examines each URL-IP pair and if IP is blank then the URL 
is sent to the DNS Resolver. After the URL has been 
resolved for its IP, it is stored in the Resolved URL Queue. 
It sends a signal Something to crawl to the Crawl Manager.  

 

6. Implementation Details 

A number of modules were implemented in java which were 
integrated together to form the entire parallel migrating 
crawler. These modules were as follows: 

1. CServerInterface: This is the first module implemented , 
this is the remote interface that is used to implement java 
RMI. This interface declares the remote methods.As a 
member of a remote interface, the showclient , transfer and 
getDownloadURLS methods are remote method. 

2. CMainServer : The remote methods declared in the 
above interface are defined in this part. These are the 
methods that are used between the central crawler and the 
crawl frontier. 

3. CServer: This is the central crawler that is to be started 
first, it registers with itself the crawl frontiers and dispatches 
URLs to them. It is the RMI server. 

4. CBasicCrawler1: This is the crawl frontier code that is 
used to perform the basic crawling process. It is the RMI 
client. It receives URLs from the central crawler and run on 
different machines to collect pages. It also contains method 
to compress and filter the data.  

The experiment was carried out on 3 machines. That is  
there were three crawl frontiers and one central server in the 
experiment. The crawl limit was kept as 150 i.e., the crawl 
frontiers crawled up to 150 links with a high speed internet 
of around 236.8 Kbps. Data was collected with the above 
mentioned set up in terms of the downloaded content , time 

that each machine took in downloading a particular site 
.Also it was seen that after compression a large amount of 
bandwidth was saved since the volume of downloaded 
content was reduced greatly. 

 

7. Results 

The results obtained are summarized in Table 1. 

 

 

TABLE 1 

CF URL CL 

 

C D 

 

AC T 

1 U1 150 

 

2. 84  

 

  73 4  2137  

2 U2 150 

 

3.87 

 

959  2491 

3 

 

U3 150 

 

3.16 

 

923  2315 

Total 

 

9.87 

 

2616 2491 

 

Where 

CF: Crawl Frontier 

U1: http://www.coe-roorkee.com 

U2: http://www.freshersworld.com 

U3: http://www.akgec.org 

CL: Crawl limit 

CD: Content downloaded in MB 

AC: Content After compression in KB 

T: Time in seconds 

The total time will be the maximum of the three times as all 
the CFs were working in parallel. The same three urls were 
given to a traditional or centralized crawler with the same 
operating conditions and the results were quite interesting 
the same amount of content was downloaded in around 6950 
seconds which is slightly greater than the sum of the time 
taken by the three crawl frontiers individually whereas in 
our crawler will take a maximum of 2491 seconds to 
download the same amount of content. Also since our 
crawler has an inbuilt feature of compression the amount of 
data that has to be sent over the network is also greatly 
reduced saving the bandwidth. The above results show that 
a migrating parallel crawler in which the work of a crawler 
is divided amongst a number of independent parallel 



IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 11, May 2010 
www.IJCSI.org 
 

 

 

32

crawlers called crawl frontiers improve network efficiency 
and speed up the downloading.  

8.Conclusion 

Crawlers are being used more and more often to collect 
Web data for search engine, caches, and data mining. As the 
size of the Web grows, it becomes increasingly important to 
use parallel crawlers. Unfortunately, very little is known (at 
least in the open literature) about options for parallelizing 
and migrating crawlers and their performance. This paper 
addresses this shortcoming by presenting a parallel 
migrating architecture, and by studying its performance. The 
authors believe that this paper offers some useful guidelines 
for crawler designers, helping them select the right number 
of crawling processes, or select the proper inter-process 
coordination scheme. In summary, the main conclusions of 
my design, implementation and the results obtained were the 
following: 

 Decentralizing the crawling process is a good solution for 
catering the needs of the ever increasing size of web. 

 When a number of crawling processes migrate to different 
locations and run parallel they make the crawling process 
fast and they save enormous amount of time in crawling. 

 The documents collected at each site are filtered. So only 
the relevant pages are sent back to the central crawler and 
this saves network bandwidth. 

 The documents before being sent to the central crawler 
are compressed locally and then sent to the central crawler 
which saves a large amount network bandwidth.   

 

References 

[1] Douglas E. Comer, “The Internet Book”, Prentice Hall of India, 
New Delhi, 2001. 

[2] Monica Peshave, “How Search Engines Work And A Web 
Crawler Application”  

[3] A.K. Sharma, J.P. Gupta, D. P. Aggarwal, “PARCAHYDE: An 
Architecture of a Parallel Crawler based on Augmented Hypertext 
Documents.” 

[4] Joachim Hammer,Jan Fiedler “Using Mobile Crawlers to 
Search the Web Efficiently” 

[5] V. Shkapenyuk , T. Suel, “Design and implementation of a 
high performance distributed Web crawler”. In Proceedings of the 
18th International Conference on Data Engineering (ICDE'02), San 
Jose, CA Feb. 26--March 1, pages 357 -368, 2002, 

[6] J. Cho and H.Garcia-Molina, “Parallel crawlers”. In 
Proceedings of the Eleventh International World Wide Web 
Conference, 2002, pp. 124 - 135, 

 [7] A. Heydon and M. Najork, “Mercator: A scalable, extensible 
web crawle”r.World Wide Web, vol. 2, no. 4, pp. 219 -229, 1999. 

[8] P. Boldi, B. Codenotti, M. Santini, and S. Vigna, “Ubicrawler: 
A scalablefully distributed web crawler”. In Proceedings of 

AusWeb02 - The Eighth Australian World Wide Web Conference, 
Queensland, Australia, 2002, 

[9] B. Kahle. Achieving the Internet. Scientific American, 1996. 

 

 


