
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No. 4, May 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

12

Evaluation of JFlex Scanner Generator Using Form Fields Validity
Checking

Ezekiel Okike1 and Maduka Attamah2

 1 School of Computer Studies, Kampala International University,
Kampala, 256, Uganda

2 Department of Computer Science, University of Ibadan,
Ibadan, Oyo State 02 234, Nigeria

Abstract

Automatic lexical analyzer generators have been available
for decades now with implementations targeted for C/C++
languages. The advent of such a tool targeted to the Java
language opens up new horizons, not just for the language
users but for the Java platform and technology as a whole.
Work has also been done by the Java language developers
to incorporate much of the theory of lexical analysis into
the language. This paper focuses on the application of the
JFlex tool (a Java based lexical analyzer) towards the
generation of a standalone class that will work as one more
entity in a solution space. The study application is a lexer
that serves to check the validity of fields in a form.
Keywords: Lexical Analyzer, Complier Generators, Java
Language, Validity Checking

1. Introduction

A frequently encountered problem in real life
application is that of checking the validity of field
entries in a form. For example, a form field may
require a user to enter a strong password which
usually must contain at least one lower case letter, an
upper case letter and a digit. If the user fails to enter
password matching such specification, the program
should respond by alerting the user with appropriate
message such as “Your password is not strong”.

The job of checking the validity of fields in our
application thus properly falls to the lexical analyzer.
In this case, the Graphical User Interface (GUI) form
collects the user inputs, constructs an input string
from the input fields and user supplied values, and
channels the input string to the scanner. The scanner
matches each segment (field) of the input string
against a regular expression and reports its
observation. The report is thus generated and fed
back to the GUI for the user to see. The user is
allowed to correct any erroneous field as long as it
appears. The model for this application is shown in
figure 1 above.

Specifically, the application in question (see figure 2)
is a Web Directory Form. Web administrators could
use it to organize the different administrative
information they may have on the web sites they
administer. The web directory form thus forms but
one module in a potential software. This form could
check the validity of the fields before they are
forwarded to the database. The fields checked in this
case are as follows:

Web URL, IP Address, E-Mail Address, GSM Phone
Number (Global), Strong Password, Security
Question, Country, Time Zone.

Thus a regular expression for the above fields in a
single lexical specification file generates a single
scanner. Using Jflex (Java Flex), a scanner
implementation in Java following a given lexical
specification could be achieved.
 It is also possible to achieve the implementation in
other languages such as C or C++ with Lex, or Flex
which is a faster version of Lex [3][10].

Scanner Report

GUI

USER

Figure 1: Model of GUI Lexical Analysis
for a Web Directory Application

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No. 4, May 2010
www.IJCSI.org

13

Figure 2: Snapshot of the Web Directory Application

This paper is thus focused on the use of the JFlex tool
to generate a scanner for a language defined by the
extended regular expression and supported by the
JAVA programming language.

2. The Method

The development and evolution of Lex and Flex is
described in [7][10]. Originally these tools were
developed for the UNIX operating system to generate
scanners in the C programming language but
afterwards versions for other operating systems and
programming languages began to surface. Popular
Java versions of lex include JLex and JFlex. Flex can
be downloaded along with its documentation at [1]
whereas JFlex can be downloaded at [2].

JFlex was written in Java. One of the consequences
of this is that in order to use the tool you must have
your Java Runtime Environment (JRE) well setup.
Other setup procedures for the JFlex tool are also
required.

The setup of Jflex involves two major steps, namely:
Installation of the JRE [3][4] and installation of
JFlex [2][5]. Following appropriate installation and
configuration procedures, the screenshot showing
that Java is properly configured on the local machine
is shown in figure 3, while the screenshot which
shows that JFlex tool is well configured is shown in
figure 4.

Figure 3: Snapshot That Shows That Java
Is Well Configured On The Local Machine

Figure 4: Snapshot Which Shows That Java
JFlex Tool is Well Configured and Ready

2.1 The Lexical Specification for JFlex

A lexical specification file was created from a text
file (.txt) by changing the extension of the file from
“.txt” to “.flex”. This implies that a specification file
can be edited by simple text editors like notepad.exe
or wordpad.exe (both on Microsoft Windows
operating system).

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No. 4, May 2010
www.IJCSI.org

14

2.2 The structure of the lexical specification file

The lexical specification file for JFlex consists of
three parts divided by a single line starting with %%
[8][10]:

User code
%%
Options and declarations
%%
Lexical rules

2.2.1 User Code

The first part contains user code that is copied
literally into the beginning of the source file of the
generated scanner, just before the scanner class is
declared in the java code. This is the place to insert
package declarations and import statements.

2.2.2 Options and Declarations

The second part of the lexical specification contains
options to customize the generated scanner (JFlex
directives and Java code to include in different parts
of the scanner), declarations of lexical states and
macro definitions for use in the third section
(Lexical Rules). Each JFlex directive must be placed
at the beginning of a line starting with the %
character.

2.2.3 Lexical Rules

This section is introduced by another set of ‘%%’
characters on a new line after all the intended macro
definitions. It contains a set of regular expressions
and actions (Java code) that are executed when the
scanner matches the associated regular expression
[5].

The lexical rules are also called transition rules. An
example is shown below:

{EXPR} {

System.out.print(“%s”, “Valid > ” +
yytext());

}

The above example means that if you match an
expression, display the expression such that the string
Valid > expression is on the output screen. Thus the
transition or lexical rule is what happens when a
pattern, defined by a regular expression is matched.

2.3 Lexical Specification for the Web Directory
Scanner

The file containing the lexical specifications for this
study is WebDirectoryScanner.flex. The user code
section of this file is empty as there was no need for
the package statement and the import statement. The
classes were made standalone and simply copied to
an application directory. Thus the specification file
begins as follows:

%%
%public
%class WebDirectoryScanner
%standalone
%unicode

To make the generated class accessible by other
classes in separate applications, the %public option
was used. The %class option specifies
WebDirectoryScanner as the name of the generated
scanner class. The %standalone option was used
because the scanner would not be plugged into a
parser. The scanner is also required to throw out
token information on the console (at the background,
since the main view port for the user is the Graphical
User Interface) to be used as debugging information.

To ensure the character set constituting the terminals
of the scanner is sufficient to consider any special
character, the unicode was formally activated. This is
especially important if the .(dot) character class is
used in some of the regular expressions. The ‘dot’
character class refers to all characters.

Class variables were not declared, hence the %{ (and
the counterpart %}) was not necessary.

2.4 Macro Definitions

These are included in the second section, usually
after the options. A macro definition has the form

macroidentifier = regular expression

A macro definition is a macro identifier (letter
followed by a sequence of letters, digits or
underscores), that can later be used to reference the
macro. This is followed by optional white-space,
followed by an "=", followed by optional white-
space, followed by a regular expression. The regular
expression on the right hand side must be well
formed and must not contain the ^, / or $ operators
[5][8][9].

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No. 4, May 2010
www.IJCSI.org

15

2.4.1 The Macros of WebDirectoryScanner.flex
File

Macros were defined for the Web URL, IP Address,
E-Mail Address, GSM Number, Strong Password,
Security Question, Country and Time Zone.

3. Analysis of the Lexical Specification for
the Web Directory Scanner

The breakdown of the associated macros is as
follows:

3.1 Web URL

The URL (Universal Resource Locator) must point to
a web page or a definite resource to be valid. The
following is a listing of the web URL module from
the lex specification file.

To the left of the assignment (=) lies the name of the
macro (WEBURL), to the right lies the regular
expression defining this macro.

This regular expression defines all strings beginning
with an optional “http://www.”, “https://www.”,
“ftp://ftp.” or “tftp://tftp.”, then followed by any
string of one or more length, followed by another dot
and terminating with two to six characters. Some of
the strings in this language include:

www.yahoo.com
https://www.allmp3.net
ftp://ftp.glide.com/personal/readme.html
www.operators.org/review.html

The front slash (/) is a meta symbol (meaning that
JFlex converts it as one of its own operating
symbols). The only way to use this symbol as a
terminal in a regular expression is to escape it as
follows - \/ that is, a backslash (the escape character)
followed by a front slash. The same applies to the dot
“.”, a meta symbol which stands for the universal set
of all characters available to the particular flex
specification (this universal set is defined with the
%unicode, %ascii, etc, in the options section). To use
the dot character as a terminal, there is need to escape
it. All meta characters must receive the same
treatment if they are intended to be used as terminals
in the language in question.

The question mark is an optional closure which
indicates that its operand may be (once) or not be
there at all. The square brackets [] are used to define
character sets in shorthand. For example [a-z] which
implies one of a or b up to z. The {2, 6} is the range
specifier which indicates that its operand (in this case
the character set [a-z]) can occur for a minimum of
two times and a maximum of six times. The ‘+’ meta
symbol indicates iteration (or closure). This means
that there can be at least one or more iterations (the
empty string is not possible). The ‘*’ meta symbol
indicates the Kleene closure which means that the
iteration can occur zero or more times up to infinity
(the empty string is possible with the Kleene closure).

JFlex also uses the Java format for comments and as
such comments can be contained in between /* and
*/ (for multiline comments) or after // (for single
line comments).

3.2 IP Address

The listing is as shown below.

An IP address has four octets, each containing a
number between 0 and 255 inclusive. The OCTET
macro defines this range and explained as follows:
when the first digit is a zero or one, then the second
and third digits can range from 0 through 9. When the
first digit is two, then the second and third digits can
only range from zero through five. When there are
only two digits, then they can both range from zero to
nine. When there is only one digit, it can range from
zero to nine. The semantics of the IPADDRESS macro
follows intuitively. Examples of strings in this
language include:

127.0.0.0
192.168.5.6
255.255.78.10
10.0.1.11

3.3 E-Mail Address

The listing is as shown below:

EMAILADDRESS = [a-z0-9_]+ @[a-z0-9_]+

(\. [a-z] {2,6})+

/*****WebURL Module ****************/
WEBURL = ((http:\/\/)?www|(https:\/\/)
?www|(ftp:\/\/)?ftp|(tftp:\/\/)?tftp)
(\.)(.)+(\.)[a-z]{2,6}

/****IP Address Module ***************/
OCTET = ([0-1][0-9][0-9])|

(2[0-5][0-5])|([0-9][0-9])|[0-9]

IPADDRESS ={OCTET}\.{OCTET}\.{OCTET}\.{OCTET}

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No. 4, May 2010
www.IJCSI.org

16

An e-mail address is made up of a string consisting of
a possible mix of lower case letters, digits,
underscore, separated by the @ symbol and ending
with a dot and a string of lowercase letters of length
ranging from two to six. A closure (i.e. {2,6}) is
placed after the “\.[a-z]” to show that the extension
could repeat. Examples of strings in this language
include:

pfizer@yahoo.co.uk, james@gmail.com,
bluecollar@37.com, emeks_rex@tim.net

3.4 GSM Number

A regular expression that can match any GSM
(Global System for Mobile Communication) number
was implemented. GSM numbers usually comprise of
ten to eleven digits (or twelve to thirteen digits if
country code is included).

3.5 Strong Password

The definition of a strong password requires a string
which contains at least one lowercase letter, one
uppercase letter and one digit. A strong password
module is shown below for FLAGONE, FLAGTWO and
FLAGTHREE respectively. Possible strings in this
language would include:

234loRd, socK3vbn*, YmeL01d, shu^b5b1

3.6 Security Question

A string is considered to be a question when it ends
with a question mark. A regular expression for this is
as follows:

3.7 Country

The only requirement for a country name in the
regular expression is that it contains only characters

from A through Z whether uppercase or lowercase.
The listing is as follows.

Since the language is English, special characters
involving modifiers like dieresis would not be
accepted (at least in this version). The space character
is included in the character range.

3.8 Time Zone

/*..........Time Zone Module.............*/
TIMEZONE = ((g|G)(m|M)(t|T))[]
((\+|-)[]([1-9]|10|11|12):(00|30|45)|
(\+13:00))?[]*([a-zA-Z]| []|,|;)+

The time zone whose regular expression listing is
shown above expects a string beginning with “gmt”
(the case mixtures does not matter), followed by an
optional space or spaces, followed by an optional
plus or minus sign, space or spaces, and a number
ranging from one through twelve. Additional +13 is
added for completeness (the time zone dating is not
symmetrical). Finally the string ends with a country
or region name with possible commas or semi-colon
as defined by the following part of the regular
expression: ([a-zA-Z]|[]|,|;)+

The pair of square brackets with a space in between
[] is the syntax for adding the space character to our
regular expression.

3.9 Analysis of the Lexical Rules for the Web
Directory Scanner

The lexical or transition rules section forms the heart
of the real usefulness of this scanner. For any of the
patterns matched, the lexical rule updates a custom
class (Report.java) which keeps a record of whether
each field is valid or not. The report class has one
class variable (each is a boolean type) for each field
in the web directory form. The class variable
declarations in Report.java are shown below:

From all the fields in the form, a single string is
constructed and passed to the scanner for analysis.

/****** Global GSM Number ********/
GSMNUMBER = (\+[0-9]{3}|[0-9])[0-9]{10}

/***** Strong Password Module *****/
FLAGONE = [a-z]
FLAGTWO = [A-Z]
FLAGTHREE = [0-9]

STRONGPWD = (.)*{FLAGONE}+(.)*
{FLAGTWO}+(.)
{FLAGTHREE}+(.)|(.)*{FLAGONE}
+(.)*{FLAGTHREE}+(.)*{FLAGTWO}+
(.)*|(.)*{FLAGTWO}+(.)*{FLAGONE}
+(.)*{FLAGTHREE}+(.)*|(.)*{FLAGTWO}
+(.)*{FLAGTHREE}+(.)*{FLAGONE}+(.)
|(.){FLAGTHREE}+(.)*{FLAGTWO}+(.)
{FLAGONE}+(.)|(.)*{FLAGTHREE}+

SECURITYQUESTION = (.)+\?

/*..Country Module...........*/
COUNTRY = [a-zA-Z]+

 public static String report = "";
 public static boolean webUrlOk = false;
 public static boolean ipAddressOk = false;
 public static boolean emailAddressOk = false;
 public static boolean gsmPhoneNoOk = false;
 public static boolean strongPwdOk = false;
 public static boolean securityQuestionOk =

false;
 public static boolean countryOk = false;
 public static boolean timeZoneOk = false;
 public static String SATISFACTORY =
 "All Fields Are Satisfactory!";

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No. 4, May 2010
www.IJCSI.org

17

public static String getReport(){

 report = ""; // clearing the string first of
initial values

if(!webUrlOk)
 report = report + "Invalid Web URL field\n";

 if(!ipAddressOk)
 report = report + "Invalid IP Address field\n";

 if(!emailAddressOk)
 report = report + "Invalid E-Mail Address
field\n";

 if(!gsmPhoneNoOk)
 report = report + "Invalid GSM Number field\n";
 if(!strongPwdOk)
 report = report + "Your Password Is Not Strong.
Have At Least One Digit, One Uppercase

 And One Lowercase Letter\n";
 if(!securityQuestionOk)
 report = report + "Your Question Is Not Complete,
Check It\n";
 if(!countryOk)
 report = report + "Invalid Country Name field\n";
 if(!timeZoneOk)
 report = report + "Invalid Time Zone field\n";
 if(report == "")
 report = report + SATISFACTORY;

 // reset all fields before exiting

 webUrlOk = false;
 ipAddressOk = false;
 emailAddressOk = false;
 gsmPhoneNoOk = false;
 strongPwdOk = false;
 securityQuestionOk = false;
 countryOk = false;
 timeZoneOk = false;
 return report;

}

The string is constructed as follows:

Each value supplied by the user is concatenated to a
string which stands for the title (or identification) for
the field in which the entry was made. For example if
the user enters mathi@yahoo.com in the E-Mail
Address field, then the string “mathi@yahoo.com” is
concatenated to "Email Address:" and terminated by
a “\n”, to show the end of that segment or field. And
this yields "Email Address:mathi@yahoo.com\n" as
the resulting string. For the form shown below (figure
5), the string passed to the scanner would be

Figure 5: Snapshot of Web Directory Application under Testing

 “\n” is the escape character for new line. When the
scanner sees a new line it stops trying to recognize
the pattern and compares what it already has to see if
it is sufficient.

4. Discussion

Consider the transition rules below:

When the scanner ‘sees’ the constant string “Web
URL” followed by another string that matches the
pattern for WebURL {WEBURL}, and a newline
character, then there is a valid WebURL field. The
webURL field of the Report class (Report.webUrlOk)
will be set to true – indicating that that field is valid.
This happens to the rest of the string. At the end of
the string (zzAtEOF) (see also 4.1), all the fields of the
Report class are inspected, and if any of them is still
false (they are false by default), then the scanner
assumes that there is an error with the particular field.
An error message tied to the field or fields is
displayed.

The following code snippet compiles the report string
to be displayed on the Form Check Report pane.

If the value of webUrlOk is false, the report string
should be filled-in so as to reflect the situation. And
the process goes on as in the listing below.

"Web Url:http://www.google.com\n
IP Address:10.0.11.98\nEmail
Address:gmailadmin@gmail.com\n
GSMNumber:+8938097865342\nStrong
Password:goGetM1cors0ft\nSecurity
Question:How are you today?\n
Country:Moscow\nTimeZone:GMT +
3:00 St. Petersburg, Volgograd\n”

%%
"Web Url:"{WEBURL}"\n"
{Report.webUrlOk = true;}
"IP Address:"{IPADDRESS}"\n"
 {Report.ipAddressOk = true;}
"Email Address:"{EMAILADDRESS}
"\n" {Report.emailAddressOk = true;}
"GSM Number:"{GSMNUMBER}"\n"
{Report.gsmPhoneNoOk = true;}
"Strong Password:"{STRONGPWD}"\n"
 {Report.strongPwdOk = true;}
"Security Question:"{SECURITYQUESTION}
"\n" {Report.securityQuestionOk = true;}
"Country:"{COUNTRY}"\n"
{Report.countryOk = true;}
"TimeZone:"{TIMEZONE}"\n"
{Report.timeZoneOk = true;}

if(!webUrlOk)
 report = report +
"Invalid Web URL field\n";

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No. 4, May 2010
www.IJCSI.org

18

4.1 The Scanning Process

The following code, embedded as the action code for
clicking button “Submit” on the graphical user
interface, starts off, sustains and terminates the
process of scanning.

The string passed to the scanner is assigned to a
string object userInputs (a class variable of class
WebDirectory). For the scanner class
WebDirectoryScanner, its constructor takes an object
of InputReader class. Since StringReader is a
subclass of InputReader, it can substitute it for the
more general InputReader since input to the scanner
is just contained in a string. The object of
WebDirectoryScanner created is scanner.

Scanner.yylex() is the method for actual scanning.
When the end-of-file is reached, the state of the
scanner, scanner.zzAtEOF is set to true to denote
that the end of the string has been reached. At this
point it stops scanning and displays the content of the
Report class found on the lower part of the
application window. This is achieved by calling:

this.reportTextArea.setText(

Report.getReport());

4.2 Generating the Scanner
(WebDirectoryScanner.java)

To generate the scanner class, the JFLex tool is
executed by pointing to the file
WebDirectoryScanner.flex as in figure 6.

Clicking the “Generate” button will display the
following, at the same time as it drops the generated
file in the folder indicated in the output directory. If
errors were encountered, the source of the errors will
instead be indicated on the Messages pane, and the
user would go back and correct the ill-formed lexical
specification.

Figure 6: Snapshot of JFlex at Code
Generation Time

Figure 7: Snapshot Showing JFlex Messages after Generation of
Code

JFlex generates exactly one file containing one class
from the specification (except another class in the
first section of the lexical specification is declared).

WebDirectoryScanner scanner = new
WebDirectoryScanner(new StringReader
(this.userInputs));
 try {
 while (!scanner.zzAtEOF)
 scanner.yylex();
 } catch (IOException ex) {
 ex.printStackTrace();
 }
this.reportTextArea.
setText(Report.getReport());

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No. 4, May 2010
www.IJCSI.org

19

The generated class contains (among other things) the
DFA tables, an input buffer, the lexical states of the
specification, a constructor, and the scanning method
with the user supplied actions [5].

The message pane shows that the DFA has a total of
455 states before minimization and a total of 212
states after minimization. This is over 100%
efficiency! The class Yylex by default could be
customizable with the %class directive. The input
buffer of the scanner is connected with an input
stream via the java.io.Reader object which is
passed to the scanner in the generated constructor.

The main interface of the scanner to the outside
world is the generated scanning method (its default
name yylex(), and its default return type yytoken().
Most of the generated class attributes are
customizable (name, return type, declared exceptions
etc.). If yylex() is called, it will “consume” input
until one of the expressions in the specification is
matched or an error occurs. If an expression is
matched, the corresponding action is executed
immediately. It may return a value of the specified
return type (in which case the scanning method
returns with this value), or if it does not return a
value, the scanner resumes consuming input until the
next expression is matched. When the end of file is
reached, the scanner executes the EOF action, and
(also upon each further call to the scanning method)
returns the specified EOF value. Details of the
scanner methods and fields accessible in the actions
API can be found in [5].

4.3 Compiling the Generated Scanner

The generated scanner class is compiled using the
Java compiler.

Figure 8: Screenshot Showing the Command
for Compiling the Generated Code

Pressing the “Enter” key in the command line will
produce the file “WebDirectoryScanner.class”
which the Java Virtual Machine can then execute –
this assumes there were no errors in the codes
otherwise debugging would be done first.

Other class files needed for this case study were
Report.class and WebDirectory.class. The entry
point (Main class) to the entire application is in
WebDirectory.class. Hence, this class was passed
to the Java Virtual Machine at the command line
during start of execution

4.4 Evaluation of JFlex tool

4.4.1 Some Limitations of JFlex 1.4.2

Some of the observed limitations of Jflex from this
study are as follows.

There are currently no provisions for assertions.
Assertions form part of the theory of the extended
regular expression. Some assertions are:

Lookahead assertion (?=)
Negative lookahead (?!)
Lookbehind assertion (?<=)
Negative lookbehind (?!= or ?<!)
Once-only subexpression (?>)
Condition [if then] ?()
Condition [if then else] ?()|

With facilities like this, some regular expressions
would have been possible or easier to write.
An example is the regular expression for strong
password which could have been written as:

 (?=.*\[0-9])(?=.*[a-z])(?=.*[A-Z])

Using the lookahead assertion, it could have easily
tracked the occurrence of digits, lowercase and
uppercase letters and even special symbols. To add
another character flag to our own version of regular
expression using facilities provided by JFlex would
have been very tedious. Facilities for lookahead
assertions should be included in later versions of
JFlex.

As a sequel to the above, this study found that trying
to set the range for the length of the password field
using the range specifier {x,y}, the JFlex tool was
not terminating during code generation, and the
processes of constructing the DFAs was taking an
infinite time. Compared to the usual total generating
time of about 500ms, JFlex did not finish even after
25 minutes. This happened after several trials until it
was discovered that the range specifier {8, 20}

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No. 4, May 2010
www.IJCSI.org

20

(which says that the password should be at least 8
characters in length and at most 20 characters) was
the cause of the non termination. Hence, the range
specifier was not useful in this case. JFlex also lacks
the special range specifier {x,} which indicates at
least x, but no upper limit. JFlex should therefore be
optimized in subsequent versions so that the range
specifier can be used in a practical situation.

The way the ‘space’ character was implemented in
JFlex is truly not the best. The idea of defining a
space character using [] is very obscure especially
when it lies side-by-side other characters. For
example [a-zA-Z] (used in the COUNTRY macro).
The space character following the capital Z is not
very clear. The use of escape characters like \s or the
posix [:space:] for the space character might be a
better approach.

JFlex does not check the Java code included in the
user code section and in the lexical rules for
correctness. It is relatively straight forward to plug-
in the Java Compiler (javac) into the jflex tool so as
to do a static check on the java codes, routing the
error messages to JFlex display so that the user can
also correct the Java codes earlier on, instead of
waiting for a separate session, at run time to start the
debugging process. We recommend the integration of
a lightweight debugger into JFlex.

The only uses well foreseen and provided for by the
creators of the JFlex tools have been for either
standalone scenarios (where the scanner can be run as
a complete and separate application) or a scenario
where the scanner is used by an overlying parser (in
this case, the scanning method returns a token
periodically to the parser). In our present use, the
scanner has to be content with just being one of the
utility classes in the entire application. The best bet is
for it to standalone but then the field of the scanner
that indicates that it has reached end-of-file
(zzAtEOF) is a private member of the scanner class.
And JFlex does not generate accessor methods for
this field. Creating a non-standalone scanner even
makes matters worse because the scanner will be
expecting to scan, get a token, return the token and
then stop (waiting for a call by a parser). The class
acting as the parser will have to look out for a
predetermined integer in the returned tokens which
denote an end-of-file from the scanner. In our
application, we desired that the scanner scans through
the entire input stream before returning. And the
calling class is not a parser!

The generated scanner had to be modified for this
study application. An accessor method for the

zzAtEOF field was implemented so as to be able to
track the end of file (EOF) as shown in the following
code snippet.

The while statement will continue to execute the
scanning method yylex()while the end-of-file is not
reached (EOF is known when
scanner.getZzAtEOF() method returns true). We
recommend that JFlex should generate public
accessors for all the scanner fields so that
applications that are neither standalone nor parser
compatible can more easily utilize the scanner.

References
[1] http://www.gnu.org/software/flex/
[2] http://www.jflex.de/
[3] http://java.sun.com/javase/6/download.jsp
[4] http://java.sun.com/javase/6/webnotes/install/
[5] JFlex User’s Manual, Version 1.4.2, May 27,

2008 – JFlex Installation Pack Accompanying Manual
[6] The Regular Expression Cheat Sheet From
 www.ILoveJackDaniels.com
[7] Compilers: Principles, Techniques and Tools, Alfred

V. Aho et. al.; 2nd Ed., Pearson Education Inc., 2007.
[8] S. Chattopadhayay. “Compiler Design”. New Delhi:

Prentice- Hall, xvii +225pp; 2005
[9] K. D. Cooper and L. Torczon. “Engineering a
 Compiler”. New York: MK, xxx + 801pp, 2008
[10] J. Levine. “Flex and Bison – text processing tools”.
New York: O’Reilly Media, pp304, 2009.

Ezekiel U. Okike received the B.Sc. degree in Computer
Science from the University of Ibadan Nigeria in 1992, the
Master of Information Science (MInfSc) in 1995 and PhD in
Computer Science in 2007 all from the same University. He
has been a lecturer in the Department of Computer Science,
University of Ibadan since 1999 till date. Since September,
2008 to date, he has been on leave as a Senior Lecturer and
Dean of the School of Computer Studies, Kampala
International University, Uganda. His current research
interests are in the areas of Software Engineering, Software
Metrics, Compilers and Programming Languages. He is a
member of IEEE Computer and Communication societies.

Maduka Attamah is currently a Researcher and Associate
Lecturer in the Department of Computer Science, University
of Ibadan. He is also serving in the ICT Unit of University of
Ibadan as Systems Analyst and Software Engineer. He
holds a B.Eng. (2006) in Electronic Engineering from the
University of Nigeria, Nsukka and an M.Sc. (2009) in
Computer Science from the University of Ibadan, Nigeria.

WebDirectoryScanner scanner =
new WebDirectoryScanner(new
StringReader(this.userInputs));

 try {
 while (!scanner.getZzAtEOF())
 scanner.yylex();

 } catch (IOException ex)

