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Abstract 
 

We model the objective function, that the jobs 

entering the scheduler have a Poisson’s distribution 

and the jobs that are sent out from the multilevel 

feedback scheduler are also distributed as a 

Poisson’s distribution. We also assume that the 

number of CPU’s in a processing element is not 

restricted to one, but rather many CPUs integrated 

into one PE. Therefore, we assume the M/M/c  queue 

model for our calculations. In Kendall's notation, we 

describes a system where arrivals form a single 

queue and are governed by a Poisson process, where 

there are c servers and job service times are 

exponentially distributed. Gridlets provided by the 

users are assigned to processing elements (PEs), and 

gridlets whose remaining service time is shifted 

between queues of the MLFQ scheduler to be 

completed. In MLFQ, the total architecture is 

divided into multiple prioritized queues. This 

approach provides gridlets which starve in the lower 

priority queue for long time to get resources. As a 

result, the response time of the starved gridlets 

decreases and overall turnaround time of the 

scheduling process decreases. This scheduling 

policy is simulated using Alea GridSim toolkit to test 

the performance. The proposed MLFQ scheduling 

algorithm works better in most of the scenarios when 

compared to FCFS and PBS_PRO algorithms. 

Keywords: Grid Computing, Job Scheduling, 

Multilevel Feedback Queue, GridSim. 
 

1   Introduction 
 

Grid computing is a distributed computing which has 

emerged for solving a large scale intensive data 

through sharing of resources over the network [1]. In 

grid computing systems, there are often large 

amounts of resources available to be used for 

computing jobs. Scheduling in a grid computing 

system is not as simple as scheduling on a 

multi-processor machine because of several factors.  

 

 

These factors include the fact that grid resources are 

sometimes used by paying customers who have 

interest in how their jobs are being scheduled [2]. 

However, grid computing systems usually operate in 

remote locations so scheduling tasks for the clusters 

may be occurring over a network [3]. Job scheduling 

algorithms are commonly applied to grid resources 

to optimally post jobs to grid resources [4, 5]. 

Usually, grid users submit their jobs to the grid 

manager to utilize and fulfill the facilities provided 

by grid. The grid manager distributes the submitted 

jobs among the grid resources to minimize the total 

response time.  

In a Grid environment, there are moderately large 

number of job scheduling algorithms proposed to 

minimize the total completion time of the jobs [6, 7]. 

These algorithms works on minimizing the overall 

completion time of the jobs by analyzing the suitable 

resources to be assigned to the jobs. In contrast with 

minimizing the overall completion time of the jobs 

does not necessarily result in the minimization of 

execution time of each individual task. In this paper, 

we propose a new scheduling policy for grid 

computing which uses multilevel feedback queue 

technique concept to avoid the starvation of low 

priority jobs for a longer duration to get resources to 

complete their requested services. In this technique, 

jobs are scheduled according to their remaining 

service time and they are shifted down from queue to 

queue as they have some remaining service time. 

Every queue has unique time quanta that gradually 

increase from top level to bottom level queues so that 

longer jobs gradually moves from top to bottom 

level queues for getting completed. All low priority 

jobs will process on intermediate queues and gets 

completed with minimal duration, so that all jobs 

will get an equal opportunity to utilize grid resources 

efficiently. The rest of the paper is organized as 

follows. Section 2 presents the related works. In 

Section 3, a grid  system model for scheduling is 

presented. In section 4, the MLFQ scheduling 

technique is proposed.  
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The simulation of the MLFQ scheduling algorithm 

using Alea GridSim is presented in section 5. 

Finally, section 6 concludes the paper. 

2 Related Work 

There has been significant research continuing to 

attempt to devise scheduling algorithms for grid 

environments’ problem of efficient job assignment. 

Some of the jobs scheduling algorithms in a grid 

environment are given below. 

X. He et al. [9] have proposed an algorithm based on 

the conventional min-min algorithm known as QoS 

guided min-min which schedules the jobs requiring 

high bandwidth before others. L. Mohammad Khanli 

et al. [10, 11] have proposed a QoS based scheduling 

algorithm for an architecture called Grid-JQA. In 

this method the solution involves applying an 

aggregation formula which includes a combination 

of different parameters together with weighting 

factors to perform operations on QoS. F. Dong et al. 

[12] have proposed an algorithm called QoS priority 

grouping scheduling which considers completion 

time, accept rate of the jobs and the makespan of the 

entire system as key factors for job scheduling. E. 

Ullah Munir et al. [13] have proposed a new job 

scheduling algorithm which makes use of grid 

computing environments known as QoS Sufferage. 

K. Etminani et al. [14] have proposed an algorithm 

which provides a solution on basis of max-min and 

min-min algorithms. The algorithm discovers the 

situations where to adopt one of these two 

algorithms, based on the standard deviation of the 

estimated completion times of the jobs on every 

computing resources. In [15] a game-theoretic-based 

solution is proposed to the grid load-balancing 

problem. The developed algorithm combines the 

inherent efficiency of the centralized approach and 

the fault-tolerant nature of the decentralized 

approach. The scheme can be considered semistatic, 

as it responds to changes in system states during 

runtime. However, it does not use as much 

information as traditional dynamic schemes; as such, 

it has relatively low overhead.  

 

3 Grid System Model 

We consider the computational grid system consists 

of a set of gridresources, G, connected via 

communication systems. In general, each grid 

resource may contain multiple machines having one 

or more processing elements.  

 

 

The processing elements in the machines are 

heterogeneous, meaning that they may have different 

processing capacity. 
    

 
 

The grid resources G1, ... ,Gn in G are fully 

interconnected, meaning that there exists a 

communication path between any two grids (Gi, Gj) 

in G. Inter grid  communication is done via message 

passing, and the underlying network protocol 

guarantees that messages are received by the 

intended recipient. Considering the grid computing 

scenario, the link is viewed as Internet links and 

modeled. Our communication model represents 

network performance between a grid Gi to a grid Gj 

using two parameters-a transmission delay tj 

representing the setup cost and contention delays at 

links on the path from Gi to Gj and a data 

transmission rate dj representing the bandwidth 

available on the path from Gi to Gj. For a message of 

size s to be transmitted from site Gi to Gj, the 

transmission time is then given by  
 

                     Cj = tj +                     (1) 

tj and dj can be calculated from analytical models or 

pre-existing  information or dynamically forecasted 

by facilities such as the Network Weather Service 

(NWS) [16]. 

 Each grid Gi in the grid system can represent one or 

a combination of the following: 

Gridlet: This generates tasks to be executed by the 

processing elements. Each gridlet is assigned to the 

to the scheduler to be scheduled for processing.  

Scheduler: This receives gridlets and assigns them 

to the processing elements in the grid system. Every 

time a gridlet is assigned to the scheduler which is 

implemented as a multilevel feedback queue, it 

selects the gridlets based on certain assumed time 

quanta. Ideally, a large number of gridlets exists. 

Therefore, the tasks scheduled by the scheduler are a 

collective from many gridlets.  

Processing Elements: Each processing element 

(PE) executes and processes tasks sent to it. Each PE 

has a queue that holds tasks to be executed; each task 

is then processed on a first-come, first-serve (FCFS) 

basis.  
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Figure1 shows the relationship between gridlets, 

scheduler, and processing elements. A site that 

generate gridlets, can also work as a scheduler, and 

also process gridlets parallelly. Thus, the tasks that 

are executed locally at a site  which was generated by 

the site itself will have minimal communication 

delay Cij. 

 

3.1 Application Model  
 

The system consists of n gridlets, one multilevel 

feedback queue scheduler, and m processing 

elements. Each gridlet k is assumed to generate tasks 

with average rate φk (tasks per second)  according to 

a Poisson process and independent of the other 

generated gridlets. Gridlets are then sent to the 

scheduler that dispatches them to the processing 

elements (Figure 1). Depending on the 

computational power of the processing elements, 

each processing element k executes tasks at an 

average rate µj (tasks per second). 

 In our model, we assume a Poisson distribution for 

task execution time and the task execution time of 

the applications running on the system is assumed to 

be a Poisson distribution as well. Each grid service 

provider can be modeled as a M/M/c queuing system.  

We also assume that the task distribution of the 

applications, once chosen, is consistent throughout 

the system. For stability, we have the 

condition/constraint that gridlets must not arrive 

faster than the system can process them (otherwise, 

the queues will build up to infinity): 
 

                   <                    (2) 

 
where λi is the average arrival rate of tasks (in tasks 

per second) at the scheduler and µj is the average 

processing rate of tasks at the processing element j. 

The multilevel feedback queue scheduler then sends 

a fraction rj of it’s  gridlets to each processing 

element j, in which 

                rj > 0                      (3) 
 

                                                 (4)      
 
For stability, the rate of gridlets sent to a 

processing element j must not exceed the rate at 

which jobs can be executed by the processor j 

(otherwise, the queue at processor j will build up 

to infinity): 
 

                  (5) 
 

 

3.2 Objective Function 
 

The task completion time includes communication 

delays, the waiting time at the queue, and the task 

processing time itself. In order to proceed further in 

deriving the objective function, we assume that the 

jobs entering the scheduler have a Poisson’s 

distribution and the jobs that are sent out from the 

multilevel feedback scheduler is also distributed as a 

Poisson’s distribution. We also assume that the 

number of CPU’s in a processing element is not 

restricted to one, but rather many CPUs integrated 

into one PE. Therefore, we assume the M/M/c  queue 

model for our calculations. 

 In queuing theory, the M/M/c queue is a 

multi-server queuing model.  In Kendall's notation it 

describes a system where arrivals form a single 

queue and are governed by a Poisson process, there 

are c servers and job service times are exponentially 

distributed.  It is a generalization of the M/M/1 

queue which considers only a single server. 

An M/M/c queue is a stochastic process whose state 

space is the set {0,1,2,3,...} where the value 

corresponds to the number of jobs in the system, 

including any currently in service. 

Arrivals occur at rate λ according to a Poisson 

process and move the process from state i to i + 1. 

Service times have an exponential distribution with 

parameter μ in the M/M/c queue, as mentioned 

above. 

The buffer is of infinite size, so there is no limit on 

the number of customers it can contain. 

The model can be described as a continuous time 

Markov chain with generator matrix 

 

 

  (6) 
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on the state space {0,1,2,3,...}. The model is a type 

of birth–death process. 
 

The queuing model M/G/1 is employed in [15] it 

assumes general distributions for its output queue of 

the schedulers. Therefore we model a M/M/c 

queuing system, the jobs arrivals are exponential and 

the output from the scheduler is also considered 

exponential distribution .  In M/M/c queuing system, 

the average processing time of a task including the 

waiting time at the queue at a processing element j is 

given by 
 

        (7) 

 

where    is the mean of the job execution 

distribution, µj is the average service rate of tasks  (in 

tasks per second) at processing element j, s denotes 

the number of processing elements, λ is the arrival 

rate of gridlets, and finally , for the Poisson queue 

system, 

 

                          (8) 

 

Further, the multilevel feedback scheduler is 

connected to a processing element j via a link with 

capacity c in bits/s. Each task is assumed to require 

an average of b bits of data to be transferred. Using 

equation (1), the expected transfer time of a task 

from the scheduler to processing element j is 

therefore given by  
 

                      Cj = tj +                                (9) 

This value represents the average communication 

delay if a task is to be sent from the scheduler to a 

processing element j. 
 

The completion of a task involves the execution time 

of the task, the waiting time at the queue, and the 

communication delays and transfer time of the task 

to the processing element. Our objective, as always, 

is to minimize the average completion time of tasks. 

Using equation (7) and (9), the average completion 

time of tasks for the scheduler is given by 
 

 

                            (10) 

 
 

We introduce a new variable µj shown in (10). µj 

defines the computational power of a processing 

element j that is available to the tasks coming out 

from the scheduler. µj can be estimated for each 

processing element j in equation (10). Where k is the 

gridlet count,  is the arrival rate of gridlets and µ is 

the ideal computational power of the scheduler. 
 

                                        (11) 

Using (11), (10) becomes 

         (12) 

 

Equation (12) is the objective function that the 

multilevel feedback queue scheduler is based upon  

subject to the constraints of (3), (4), and (5). Note 

that Di is a function of rj. It can be proved that the 

expected response time function (see (12)) is 

continuous, convex, and increasing.  

According to our model, the scheduler is considered 

to be a multilevel feedback queue. The fundamental 

problem MLFQ tries to address is to optimize 

turnaround time. As a common characteristic of a 

MLFQ, we implement the following rules: 
 

• Rule 1: If Priority(Job A) > Priority(Job B), A runs 

(B doesn’t). 

• Rule 2: If Priority(Job A) = Priority(Job B),  either 

A or B runs first. 

• Rule 3: When a job enters the system, it is placed at 

the lowest priority (the topmost queue). 

• Rule 4: Once a job uses up its time allotment at a 

given level, its priority is increased and  shifted 

down to the next queue. 

• Rule 5: Much of the length has been reduced by 

preceding queues therefore the final queue contains a 

list of high priority jobs. The final queue works in a 

FCFS manner.   

In this work, we prove that our implementation of 

the multilevel feedback queue scheduler works in an 

efficient manner compared to a FCFS scheduler.  

 

The proposed model works under the following 

assumptions: 

1. Gridlets arriving into the system are independent 

of one another. 
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2. When gridlets are mapped to the machines, based on 

their requirement, it checks for the (resource) 

availability list. 

3. No information is available on the workload of 

incoming gridlets.  

4. The initial processing speed of each PE is provided     

and processing capacity of Grid resources is updated 

from time to time based on last gridlet executed and 

time taken for task completion. 
 

3.3 Multilevel feedback queue (MLFQ) 
 

Multilevel feedback queue plays a significant role in 

multilevel queue scheduling. In MLFQ, jobs are 

scheduled according to their remaining CPU burst 

and they are shifted down from queue to queue as 

they have some remaining CPU burst. Every queue 

has unique time slice that gradually increases from 

upper level queue to lower level queue. So the CPU 

intensive jobs go down from upper queues to lower 

queues gradually for getting completed. Thus, lower 

priority queues are filled with CPU intensive jobs 

and as a result these processes start to starve for 

getting CPU attention. The MLFQ scheduling 

organizes the queues to minimize the queuing delay 

and optimize the queuing environment efficiency 

[8]. 

3.4 State diagram  

The system is modeled in a state transition diagram 

as shown in Figure 2. As gridlets arrives to the input 

queue, each gridlet is selected and it acquires the 

requested resources from grid resource list. Once it 

acquires the requested resources, it finds the 

suitability of the resources and checks for the 

required PEs, MIPS, bandwidth and storage. If the 

suitability is fulfilled, the scheduler assigns gridlets 

to the resources selected from the resource list. 

 
 

Gridlets are scheduled according to their remaining 

service time and they are shifted down from queue to 

queue as they have some remaining service time.  

 

 

Every queue has unique time slice that gradually 

increases from upper level queue to lower level 

queue. So the PEs intensive gridlets go down from 

upper queues to lower level queues gradually for 

getting executed. If the gridlet fails to execute at this 

stage then it is placed back into input queue during 

the course of execution for later resumption. 

4 Proposed Solution  

In this section, we briefly explain the proposed 

solution for scheduling the jobs using MLFQ 

technique in Grid environment. The user submits 

gridlets along with the requirements to the Alea 

GridSim scheduling system. The submission of 

gridlets to the resources involves checking the 

suitability of the available PEs. If the requirement is 

satisfied, the gridlets are assigned to the respective 

resources. This technique uses a dynamic priority 

mechanism to schedule the gridlets to the system 

efficiently and maximize the resource utilization. 

The MLFQ scheduling model is depicted in the 

Figure 3. The gridlet waiting for the service is placed 

in the waiting queue. The gridlets that are scheduled 

in the queue  are executed. If the gridlets in  

submitted for execution do not complete in the given 

time quanta of  then those gridlets are pushed onto 

the next level queue . Then the gridlets pushed on 

to  are executed along with the gridlets present in 

queue . Similarly, if the gridlets in  submitted 

for execution do not complete in the fixed time 

quanta of  then those gridlets are pushed onto the 

next level queue . However, the gridlets present in 

are executed based on FCFS scheduling policy. 

The shorter gridlets completes its execution quickly, 

without migrating to lower level queues. All gridlets 

gets an opportunity to execute and thus reduces 

starvation of gridlets by promoting the gridlets in 

lower queues to a higher priority.   
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4.1 Algorithm 
  

In this section, we present the pseudo code of the 

MLFQ scheduling Algorithm 

1. Add_new_job() 

2. Repeat for i=1 to inputqueue_size 

3.       Insert jobs into input queue 

4. end for 

5. SelectJob()  

6. Move gridlets from input queue to ready  

queue 

7. Repeat for i=1 to readyqueue_size 

8.        Get gridlet gi from readyqueue 

9. Repeat for i=1 to resourcelist_size 

10.      Get resource ri from resourcelist r 

11.      Check for suitability of gridlet ri with  

          resource ri 

12. If suitable 

13. Assign the gridlet gi to the resource  ri 

14. Break; 

15. End for 

16. Submit gridlet gi to Q1 of the scheduler 

17. Update the status of gi  as InExec 

18. If gridlet gi execution does not  

              complete in   Q1 quanta 

19. Then push gridlet gi into Q2 

20. Else 

21. Terminate the gridlet in gi 

22. Endif 

23. If gridlet gi execution does not  

complete in Q2 quanta 

24. Then push gridlet gi into Q3 

25. Else 

26. Terminate the gridlet  gi 

27. Endif 

28. Process each gridlet in Q3 according 

  to FCFS basis 

29. Increment the scheduled gridlet 

30. Decrement the remaining gridlet 

31. End for 

 

5  Simulation 

 

In this section we show the performance of MLFQ 

scheduling technique through several experiments 

using Alea simulator, an extension of GridSim 

simulation toolkit. The experiment involved 5000 

jobs that were executed on 14 clusters having 806 

CPUs. We run the simulation by providing input data 

set and it completes all the jobs submitted to the grid 

over a span of time. These graphs shows the 

differences among the algorithms. Concerning the 

machine usage,as expected, FCFS generates very 

poor results[17]. 

FCFS is not able to utilize available resources when 

the first job in the queue requires some specific and 

currently unavailable machine(s). At this point, other 

more flexible  jobs in the queue can be executed 

increasing the machine utilization. This is the main 

goal of the MLFQ algorithm. As we observe, MLFQ 

is able to increase the machine usage by shifting the 

jobs among the queues. Still, MLFQ will not allow to 

delay the execution  of the first job in the queue, 

which restricts it from making more fair decisions 

that would increase the machine utilization. In case 

of the second criteria, similar reasons as in the 

previous example caused that PBS_PRO is not able 

to schedule jobs fluently, because higher priority 

jobs keep occupies resources generating huge peak 

of low priority waiting jobs during the time[17]. The 

resulting makespan of MLFQ is slightly much higher 

(by 50 days)  than FCFS and PBS_PRO the average 

machine usage per day as depicted in Figure 4. 

MLFQ demonstrates the number of waiting and 

running jobs on an average against each day is 

depicted in Figure 5. MLFQ is capable of a higher 

resource utilization and reduction of the number of 

waiting jobs. The requested and available CPU 

usage per day is shown in Figure 6. Figure 7 presents 

the average machine usage per cluster. Simulation 

results show that there is a minimization of overall 

response time and waiting time for the gridlets. 
 

 

 
 

Figure 4 describes a comparison between FCFS, 

PBS_PRO and MLFQ scheduling algorithms.  

According to the graph, we observe that the MLFQ 

scheduling algorithm combines the best features of 

both the FCFS and PBS_PRO. As a case study, let’s 

consider the 18
th
 day.  
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Though PBS_PRO works better than FCFS in almost 

all instances, on the 18
th
 day, when the load is pretty 

high, the PBS_PRO algorithm fails miserably 

whereas the FCFS algorithm performs in a much 

better way. As a second case study, consider the 15
th
 

day. Here, we observe that the PBS_PRO works in a 

much efficient way compared to FCFS. On the 15
th
 

day, though there was a large gridlet count, the time 

required by each gridlet was significantly low, 

hence, PBS_PRO proves itself to be more efficient 

than FCFS in this particular instance.  

Our MLFQ algorithm combines the best properties 

of FCFS and PBS_PRO. From figure 4, we can 

observe that on the 18
th
 day, MLFQ works with the 

same efficiency as FCFS. On the 15
th
 day, though 

MLFQ doesn’t drop to such an extent as that of 

FCFS, the efficiency is better than that of FCFS. 

Thus, it is proven from the test results that the MLFQ 

scheduling algorithm provides an optimum 

efficiency combining the feature of FCFS and 

PBS_PRO. 

Figure 5, figure 6, and figure 7 provide us with a 

better understanding of the MLFQ scheduler.   
 

 

 
6 Conclusions 

 

The paper describes a new approach to schedule tasks 

efficiently in a grid environment.  

We proposed a Multilevel Feedback Queue 

Scheduling (MLFQ) for Alea, a GridSim based 

simulator. The approach is based on processing 

capability of individual grid resources. Our policy 

provides a solution by implementing MLFQ 

scheduler where lower priority gridlets will complete 

quickly, without migrating to the lower levels of the 

hierarchy,  due to which  we are able to achieve high 

throughput and good response time by considering 

waiting and service times.Concerning the machine 

usage, as expected, FCFS generates very poor 

results. FCFS is not able to utilize available 

resources when the first job in the queue requires 

some specific and currently unavailable machine(s). 

At this point, other more flexible  jobs in the queue 

can be executed increasing the machine utilization. 

This is the main goal of the MLFQ algorithm. As we 

observe, MLFQ is able to increase the machine 

usage by shifting the jobs among the queues. MLFQ 

will not allow to delay the execution  of the first job 

in the queue, which restricts it from making more 

fair decisions that would increase the machine 

utilization. In case of the second criteria, similar 

reasons as in the previous example caused that 

PBS_PRO is not able to schedule jobs fluently, 

because higher priority jobs keep occupies resources 

generating huge peak of low priority waiting jobs 

during the time. The resulting  

makespan of MLFQ yields better results. The 

transportation cost and overall  communication delay 

and prices charged by the resource owners are 

obtained based on a pricing model  is considered for 

future work . 

 

7  References 
 

[1]. I Foster, C Kesselman (2004) The Grid 2: Blueprint 

for a New Computing Infrastructure II Ed. Elsevier 

and Morgan Kaufmann Press. 

[2]. W Hoschek et al (2000) Data Management in an 

International Data Grid Project. Proc. 1
st
 

International Workshop on Grid Computing (GRID 

Bangalore. 

[3]. Buyya R, Steve Chapin S, DiNucci D (2000) 

Architectural Models for Resource Management in 

the Grid. IEEE/ACM International Workshop on 

Grid Computing. 

[4]. L Mohammad Khanli, M Analoui (2008) Resource 

Scheduling in Desktop Grid by Grid-JQA The IEEE 

3
rd

 International Conference on Grid and Pervasive 

Computing.  

[5]. L Mohammad Khanli, M Analoui (2007) 

Grid_JQA: A QoS Guided Scheduling Algorithm 

for Grid Computing The 6
th
 IEEE International 

Symp on Parallel and Distributed Computing.  

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 1, March 2013 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 363

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.



 

 

[6]. F. Dong et al (2006) A Grid Task Scheduling 

Algorithm Based on QoS Priority Grouping Proc. of 

the 5
th
 IEEE International Conf on Grid and 

Cooperative Computing.  

[7]. K. Etminani, M Naghibzadeh (2007) A Min-min 

Max-min Selective Algorithm for Grid Task 

Scheduling The 3
rd

 IEEE/IFIP International Conf on 

Internet, Uzbekistan.  

[8]. Hoganson, Kenneth (2009) Reducing MLFQ 

Scheduling Starvation with Feedback and 

Exponential Averaging Consortium for Computing 

Sciences in Colleges, Southeastern Conference, 

Georgia. 

[9]. X. He, X-He Sun, G V Laszewski (2003) QoS 

Guided Min-min Heuristic for Grid Task Scheduling 

J Computer Science and Technology 18:442-451. 

[10]. L Mohammad Khanli, and M Analoui (2008) 

Resource Scheduling in Desktop Grid by Grid-JQA 

The 3
rd

 IEEE International Conf on Grid and 

Pervasive Computing.  

[11]. L Mohammad Khanli, M Analoui (2007) 

Grid_JQA: A QoS Guided Scheduling Algorithm for 

Grid Computing The 6
th
 IEEE International Symp on 

Parallel and Distributed Computing.  

[12]. F Dong, J Luo, et al (2006) A Grid Task 

Scheduling Algorithm Based on QoS Priority 

Grouping Proc of 5
th
 IEEE International Conf on 

Grid and Cooperative Computing.  

[13]. E Ullah Munir, J Li, Sh Shi (2007) QoS Sufferage 

Heuristic for Independent Task Scheduling in Grid J 

Information Technology  6 (8):1166-1170.  

[14]. K Etminani, and M Naghibzadeh(2007) A 

Min-min Max-min Selective Algorithm for Grid 

Task Scheduling 3
rd

 IEEE/IFIP International Conf 

on Internet, Uzbekistan.  

[15]. Riky Subrata,  Albert Y. Zomaya,  and Bjorn 

Landfeldt, “Game-Theoretic Approach for Load 

Balancing in Computational Grids” IEEE 

Transactions on parallel and Distributed Systems 

Vol.19.no.1  2008. 

[16]. R. Wolski, N.T. Spring, and J. Hayes, “The 

Network Weather Service: A Distributed Resource 

Performance Forecasting Service for 

Metacomputing, ” J. Future Generation Computer 

Systems, vol. 15,pp. 757-768, 1998. 

[17]. Dalibor Klusáˇcek, Hana Rudová “Alea 2 – Job 

Scheduling Simulator ” SIMUTools 2010 March 

15–19, Torremolinos, Malaga, Spain. 

 

 

 

 

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 1, March 2013 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 364

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.




