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 Abstract 

This paper develops a quadratic multiobjective model 

with fuzzy returns of the portfolio selection problem 

(QMPS). The obtained fuzzy model cannot be efficiently 

solved using traditionally approaches. A possibility 

approach is introduced in which objectives are treated as 

fuzzy events. The approach transforms the fuzzy QMPS 

model into a possibility QMPS problem by using 

possibility measures of fuzzy events. A particle swarm 

optimization algorithm is used to solve the crisp 

quadratic problem obtained. A numerical example is 

provided to demonstrate the effectiveness of the solution 

approach and the model efficiency. 

Keywords: fuzzy portfolio selection, quadratic 

multiobjective problem, Possibility theory, Particle 

swarm optimization.  

1. Introduction 

Portfolio selection has a central role in finance 

theory and practical applications. It has been first 

developed on the basis of a mean-variance approach 

proposed by [1], who combines probability theory 

and optimization theory to model the behavior of 

the investor. The aim of the mean-variance model is 

to use the expected return of a portfolio as the 

investment return and the expected variance of the 

portfolio as the investment risk. In recent portfolio 

problem, other criteria have been considered to 

perform the decision maker choices and for this 

reason, multiple-criteria models have been proposed 

in [2], [3] and [4]. 
 

Traditionally, portfolio selection models are based 

on crisp variables and parameters. In other words, 

these models represent the situation of an investor 

who has all of the information that is necessary for 

decision making. However, the information 

available in financial markets is often incomplete, 

and thus, decisions are made under uncertainty. 

Additionally, markets are affected by vagueness and 

ambiguity caused by the use of linguistic terms such 

as ‘high risk’, ‘low profit’ and ‘low liquidity’ by the 

investors and the investment experts. Consequently, 

fuzzy set theory [5] represents an interesting 

alternative to deal with subjective preferences of 

investors and expert knowledge in portfolio 

selection problem. Numerous portfolio selection 

models with fuzzy parameters are proposed.  For 

example, [6], [7] and [8] proposed different 

possibilistic mean-variance models. Based on 

credibility measure, [9] developed fuzzy mean-

variance models and further fuzzy mean-semi 

variance models [10]. [11] proposed fuzzy mean-

variance-cross entropy models. [12] proposed fuzzy 

mean-variance-skewness models. A review of the 

fuzzy portfolio selection can be found in [13]. 

 

In this paper, we develop a quadratic multiobjective 

portfolio selection model which aims to maximize 

fuzzy long-term and short-term return and minimize 

the covariance. We use a possibility approach to 

treat fuzzy objectives in the proposed model. 

Following this approach, fuzzy quadratic 

multiobjective portfolio selection model (FQMPS) 

is transformed into possibility quadratic 

programming problem. For the case of fuzzy 

parameters with trapezoidal membership functions, 

possibility QMPS model becomes a crisp quadratic 

multiobjective problem, and can be solved by some 

evolutionary algorithms. 

 

The paper is organized as follows. The quadratic 

multiobjective portfolio selection model is 

introduced in Section 2. Section 3 presents the 

possibility approach to treat fuzzy parameters in the 

FQMPS model. In Section 4, the particle swarm 

optimization technique is described. Section 5 

discusses a numerical experiment in determining the 

optimal portfolio when trapezoidal fuzzy 

parameters are used. Finally, Section 6 concludes 

the paper, and discusses some future research 

directions. 

2. Mathematical modeling 

Several different mathematical optimization 

approaches have been described for the portfolio 
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optimization problem in [14]. In this study, In order 

to construct the mathematical model for the 

portfolio selection, we firstly introduce the 

following notations 

i  the fuzzy short-term return of the ith asset, 

i  the fuzzy long-term return of the ith asset, 

1r  the lower limit on the expected short-term return 

of the portfolio, 

2r  the lower limit on the expected long-term return 

of the portfolio, 

ij  the covariance between assets i and j ,
 

N  the available number of assets, 

h  the number of assets to invest ( h N ), 

in  the minimum inversion ratio allowed in the ith 

asset, 

im  the maximum inversion ratio allowed in the ith 

asset, 

ix  the proportion of the total funds invested in the 

ith asset, 

We define also the variable 

1 if the ith (i=1,...,N) asset is chosen

0 otherwise
iz


 


 

 
The quadratic multiobjective portfolio selection 

model with fuzzy returns (P1) (FQMPS) is 

formulated as 

 

 

   

 

1 1 1 2 2 1

2 1 1 2 2 2

3

1

max .....

max .....           1

min

n n

n n

n

i j ij

i

f x x x x r

f x x x x r

f x x x

  

  




    

    



 

Subject to                                                                                                             

 

 

 

1

1

1                                                 2

                                                 3

                                                  4

                 

n

i

i

i i i

i i i

n

i

i

x

x m z

x n z

z h















  

   

                                5

0,1                                                 6

0, 1,......,

i

i

z

x i n



   
Model (P1) takes the form of quadratic fuzzy 

multiobjective problem. It contains three objective 

functions. The first consists to maximize the short-

term return with respect to the condition of lower 

limit on the expected return of the portfolio. The 

second aims to maximize the long-term return with 

respect to the condition of lower limit on the 

expected return of portfolio. The third aims to 

minimize the covariance between returns of 

assets i and j .  

Eq. (2) ensures that the sum of the proportions is 1. 

Constraints (3) and (4) ensure that if any of asset i is 

held, its proportion 
ix  must lie between 

in  and 
im . 

Eq. (5) ensures that exactly h  assets are held. Eq. 

(6) is the integrality constraint. 

 In the next sections we present a new possibility 

approach to solving FPS models. This approach 

provides a way to deal with the uncertainty in fuzzy 

objectives through the use of possibility measures. 

 

3. Possibility approach 

Possibility theory was formulated in terms of fuzzy 

set theory by [15] and has been developed by many 

researchers. A good reference on possibility theory 

can be found in [16]. Zadeh suggested that fuzzy 

sets can be used as a basis for the theory of 

possibility similar to the way that measure theory 

provides the basis for the theory of probability. He 

introduced the “fuzzy variable”, which is associated 

with a possibility distribution in the same manner 

that a random variable is associated with a 

probability distribution. In the FQMPS model, each 

fuzzy coefficient can be viewed as a fuzzy variable 

and each constraint or objective can be considered 

as fuzzy event. Using possibility theory, 

possibilities of fuzzy events (i.e., fuzzy constraints 

or objectives) can be determined. 

3.1 Fuzzy event via possibility measure 

Let   , ,i i i   , for each 1,2,...,i n , be a 

possibility space with 
i being the nonempty set of 

interest,  i   the collection of all subsets of 
i , 

and i the possibility measure from  i   to 

 0,1 . 

Given a possibility space   , ,i i i   with 

-   0   ,   1i    and 

-   supi i i

i

A A 
 

 
 

 with each  i iA   , 

Zadeh defined a fuzzy variable, r , as a real-valued 

function defined over 
i with the membership 

function 

     

     

/

          / ,  sup
i i

r i i i

i i

s r s

r s s R


   

  


  

  
 

 

Let   , ,    be a product possibility space 

such that 
1 2 .... n    and from possibility 

theory , 
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      1 2
1,2,...,

/ .... ,min i n i i
i n

A A A A A A A 


      

Suppose a  and b are two fuzzy variables on the 

possibility spaces   1 1 1, ,    and 

  2 2 2, ,   , respectively. The relation a b  

is a fuzzy event defined on the product possibility 

space   1 2 , ,      , with 

         

         
1 2

1 2

1 2 1 2 1 1 2 2

,

1 2 1 2 1 1 2 2

,

, / , ,

               = min , / , ,

sup

sup

a b a b

a b

 

 

       

       

    

  

Furthermore, from the definition of fuzzy variables, 

we have

 

       
,

min , /sup a b

s t R

a b s t s t  


  

 Similarly, possibilities of the fuzzy events a b  

and a b  defined on the product possibility space  

  , ,    are given as 

       
,

min , /sup a b

s t R

a b s t s t  


    

 

when the right hand side b  becomes a crisp 

value b , then the possibilities of the corresponding 

fuzzy events are given as 

    /sup a

s R

a b s s b 


    

    /sup a

s R

a b s s b 


    

   aa b b    

Let 
1 2, ,..., na a a  be fuzzy variables and : n

jf R R  

be a real-valued function, for 1,....,j m . The 

possibility of the fuzzy event 

«  1 2, ,..., 0, 1,....,j nf a a a j m   » is given by 

  

     
1

1 2

1 2
1

,...,

, ,..., 0, 1,....,

min / , ,..., 0, 1,....,sup
i

n

j n

a i j n
i n

s s R

f a a a j m

s f s s s j m




 



 

  

 

3. 2  Possibilistic quadratic multiobjective problem 

The concept of chance-constrained programming 

(CCP), which was introduced by [17], is adopted in 

this paper as a way to solve the FQMPS model. 

CCP deals with uncertainty by specifying the 

desired levels of confidence with which the 

objectives hold. Using the concepts of CCP and 

possibility of fuzzy events, the FQMPS model 

becomes the following possibility problem (P2) 

 

 
1 1 1 2 2 1 1

2 1 1 2 2 2 2

3

1

max .....

max .....

min

n n

n n

n

i j ij

i

f x x x r a

f x x x r a

f x x

   

   




     

     



                                                     

 

Subject to 

 

1

1

1

0,1 , , 0, 1,......,

n

i

i

i i i

i i i

n

i i i

i

w

w m z

w n z

z z h w i n











   





 where  1 2 and 0,1a a   are the acceptable levels of 

possibility for the first and the second objective, 

respectively. 

 

Definition 1 (Normal fuzzy variables). Given a 

fuzzy variable a on a possibility space 

  , ,   the fuzzy variable a  is normal if 

 sup 1a
s R

s


  

Definition 2 ( -level set). The  -level set of a 

fuzzy variable a  is defined by the set of elements 

that belong to the fuzzy variable a  with 

membership of at least  , i.e., 

 

  / aa s R s      

 

Definition 3 (Convex fuzzy variables). A fuzzy 

variable is convex  a  if 

 

       

 

1 2 1 2

1 2

1 min ,

, , , 0,1

a a as s s s

s s R

    



  

 
 

Alternatively, the fuzzy variable a  is convex if all 

 -level sets are convex. 

Lemma 1. Let 
1 2, ,..., na a a  be fuzzy variables with 

normal and convex membership functions. 

Let  .
i

L


 and  .

i

U


 denote the lower and upper 

bounds of the  -level set of , 1,...,ia i n . Then, 

for any given possibility levels 
1 2 3, ,   with 

1 2 30 , , 1    , 

     

     

     

1 1

2 2

3

1 2 1 1

1 2 2 1

1 2 3 1 3

...  if and only if ,....., ,

...  if and only if ,....., ,

...  if and only if ,.....,  and

                    

L L

n n

U U

n n

L L

n n

a a a b a a b

a a a b a a b

a a a b a a b

 

 

 

 

 

 

     

     

     

   
3 3

1                                              ,.....,
U U

na a b
 



 

From Lemma 1 as well as Liu [17], for a trapezoidal 

fuzzy number         0 1 0 1
, , ,

L L U U

i i i ir r r r  and any 

       
,

min , /sup a b

s t R

a b s t s t  


  
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given possibility level , 0 1   , the following 

are true: 

 

 

           
 

           

1

1 1 10 0 1 1

1

1 10 0 1 1

.....

1 .... ....

.....

1 .... ....

n

L L L L

n

n

U U L U

n n

r r b if and only if

r r r r b

r r b if and only if

r r r r b

 

 

 

 

   

      

   

      

 

 

 Therefore, when inputs and outputs are trapezoidal 

fuzzy numbers, the possibilistic QMPS problem 

becomes the following crisp quadratic 

multiobjective model (P3) 
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  
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  

  




    

   

    

   
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Subject to                                                                                                                      
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x n z

z z h x i n
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     





        

        







   





  

4. Particle swarm optimization 

technique 

 
Particle Swarm Optimization (PSO) is a population 

optimization algorithm inspired by social behavior 

of bird flocking. It belongs to Swarm Intelligence, 

which originates from the study of natural creatures 

living in a group. Each individual possess little or 

no wisdom, but by interacting with each other or the 

surrounding environment, they can perform very 

complex tasks as a group. 

 

The PSO algorithm starts with the initialization of a 

population of random particles, each of which is 

associated with a position and a velocity. The 

velocities are adjusted according to the historical 

behavior of each particle and its neighbors while 

they fly through the search space. The positions are 

updated according the current position and the 

velocities at the next step. Therefore, the particles 

have a tendency to fly towards the better and better 

search area over the search process course. Each 

particle tries to modify its position using the current 

positions, the current velocities, the distance 

between the pbest and the current position and the 

distance between the gbest and the current position. 

4. 1 Fitness function 

[18] suggested a fitness value associated with each 

particle. Thus, a particle moves in solution space 

with respect to its previous position where it has 

met the best fitness value, and the neighbor’s 

previous position where the neighbor has met the 

best fitness value. In this study, the fitness function 

is defined as 

     1 1 2 2 3 3pf d f x d f x d f x    

where 
pf  is the fitness value of particle p and 

 1,2,3jd j    is a weight reflecting the relative 

importance of the jth objective. The sum of these 

weights is equal to one. 

4. 2  Moving a particle 

At each iteration t, the position 
t

ijx  of the ith particle 

is updated by a velocity 
1t

ijv 
 . The position is 

updated for the next iteration using the following 

formula 
1 1t t t

ij ij ijx x v    

where 
t

ijx  denotes the position of particle i in the 

dimension j search space at time step t. The position 

of the particle is changed by adding a velocity 
1t

ijv 
to the current position. The velocity update rule 

is calculated as 

   1

1 1 2 2

t t t t

ij ij ij ij gj ijv v c r p x c r p x       

In this formula,
t

ijv  is the velocity of particle i in 

dimension j = 1, . . . , n at time step t. The personal 

best position, 
ijp  associated with particle i in 

dimension j, is the best position the particle has 

visited since the first time step. The global best 

position 
gjp  at time step t is the best position 

discovered by all particles found since the first time 

step. The values 
1r  and 

2r  are random in the range 

[0, 1] and sampled from an uniform distribution. 

These random values introduce a stochastic element 

to the algorithm. The positive acceleration 

coefficients 
1c  and 

2c  are used to scale the 

contribution of the cognitive and social components, 

respectively.  

 

To improve PSO convergence, [19] proposed a 

strategy for incorporating inertial weight w as a 

mechanism for controlling swarm exploitation and 

exploration by weighting the contribution of the 

previous velocity. This weight control how much 
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the memory of the previous flight direction 

influences the new velocity. For 1w , velocity 

increase over time, accelerates to maximum velocity, 

and the swarm diverges. Particle fails to change 

direction to move back towards promising areas. 

For 1w , particles decelerate until their velocity is 

zero. The velocity update with inertia is given as 

   1

1 1 2 2

t t t t

ij ij ij ij gj ijv wv c r p x c r p x     
 

In this study we use the following parameters 

max min

max

max

w w
w w itr

itr


  

 

1max 1min

1 1max

max

c c
c c itr

itr


  

 

2max 2min

2 2max

max

c c
c c itr

itr


  

 

4. 3 Constraint satisfaction 

For handling the cardinality constraints, h  is the 

desired number of assets in the portfolio. Given a 

set Q  of h  assets, let h  represent the number of 

assets after updating positions in portfolio (the 

numbers of the proportion 
ix  greater than 0). If 

h h  , then some assets must be added to Q ; if 

h h  , then some assets must be removed from Q  

until h h  . 

 

Considering the removal of assets in the case where 

h h  , we delete the smallest assets. If h h  , 

assets remaining to be added must be identified. In 

this study, we randomly add an asset i Q and 

assign the minimum proportional value 
i to the 

new asset. 

The value of 
ix  must also satisfy 0 i i in x m    

for i Q . Let 
is  represent the proportion of the 

new position belonging to Q . If 
i is n , the 

minimum proportional value of in
 
replaces asset 

is . If 
i is n , the proportional share of the free 

portfolio is calculated as follows 

,

1 1
i

i i

n

i

i i

j Qij Q s n

s
x n

s  

 
   

 


  

 
This minimizes the proportional value of 

in  for the 

useless assets i Q so that particles converge faster 

in the search process.  

The following is a summary of the PSO algorithm 

steps. 

1) Initialize particles with random position and 

velocity vectors. 

2) For each particle’s position “P”, evaluate the 

fitness. 

3) Compare particle’s fitness (P) with fitness 

(pbest). If P is greater than pbest then p= pbest. 

4)    Set best of pbest as gbest. 

5) Update particle’s velocity and position. 

6) Stop giving gbest as the optimal solution. 

   

5. Numerical experiments 

 
We use in this study data concerning short-term 

return and long term for 8 assets listed in stock 

exchange of Tunis, Tunisia. These data are 

represented by fuzzy trapezoidal numbers (a;b;c;d), 

where b et c are the center values and a and d are 

the left endpoint and right endpoint, respectively. 

 
Table 1: imput data 

Assets Short-term return Long-term return 

A1 (-0.26. ; -0.13 : 0.63 ; 0.637) (-0.38 ; -0.19 : 0.26 ; 0.44) 

A2 (-0.63. ; -0.363 : 0.53 ; 0.63) (-0.86 ; -0.69 : 0.27 ; 0.54) 

A3 (-0.83 ; -0.67 : 0.28 ; 0.49) (-0.33. ; -0.26 : 0.63 ; 0.69) 

A4 (-0.88 ; -0.69 : 0.27 ; 0.44) (-0.51 ; -0.33 : 0.27 ; 0.48) 

A5 (-0.81 ; -0.72: 0.29 ; 0.48) (-0.72 ; -0.49 : 0.22 ; 0.39) 

A6 (-0.89 ; -0.61: 0.31 ; 0.44) (-0.88 ; -0.69 : 0.27 ; 0.44) 

A7 (-0.66 ; -0.59 : 0.29 ; 0.48) (-0.89 ; -0.72 : 0.37 ; 0.43) 

A8 (-0.87 ; -0.66 : 0.37 ; 0.45) (-0.81 ; -0.29 : 0.47 ; 0.54) 

 

We solve five portfolio selection problems for 

different possibility levels (0, 0.25, 0.50, 0.75, 1) 

with PSO and GA algorithms.  As termination 

condition, we use 100 steps in the PSO solution and 

100 generations in the GA solution. The primary 

attributes of the problems solved by these 

algorithms are summarized in Table 2. 
 

Table 2: primary attributes of the problems 

 PSO GA 

1r  
0.12 0.12 

2r  
0.15 0.15 

h  
5 5 

TC 100 steps 100 generations 

 
The values of the objective functions of the 

portfolio selection model that correspond to the best 

fitness found by the PSO and GA are presented in 

Table 3.  The results obtained by the PSO algorithm 

are different from those obtained by the GA at all 

possibility levels. We remark that the values of 

short and long terms are higher with the PSO. 

However, for the third objective, the values given 

by the GA are lower and so that they are the better 

since that the goal is to minimize the risk 

represented by the covariance. This difference is 

due to the investor’s attitude. If the decision maker 

is risk-loving, the sum of weights affected in the 
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fitness function to the return objectives is greater 

than the weight assigned to the risk objective. Then 

we can say that PSO outperform the GA if the 

investor is risk-loving and the GA is the better in 

the case of a risk-averse investor. 

 

In addition, as shown in tables 3 and 4, the value of 

the objective return is an increasing function of the 

possibility level and that can be explain by the fact 

that the goal is to maximize the returns subject to a 

set of linear constraints. 
 

Table 3: values of the various objective functions for PSO at 

different possibility levels 

h Short term 

return 

long term 

return 

covariance 

0 0.6724 0.7987 0.3356 

0.25 0.6726 0.7794 0.3328 

0.5 0.6731 0.8724 0.2723 

0.75 0.6750 0.8524 0.2717 

1 0.6752 0.8724 0.1724 

 
Table 4: values of the various objective functions for GA at 

different possibility levels 

h Short term 

return 

long term 

return 

covariance 

0 0.6324 0.7283 0.2356 

0.25 0.6425 0.7794 0.2328 

0.5 0.6432 0.8725 0.1724 

0.75 0.6650 0.8734 0.1715 

1 0.6752 0.8744 0.1704 

 
Tables 5 and 6 demonstrate that the optimal 

portfolio obtained with the PSO algorithm at the 

possibility level 0.5 is the combination of the   five 

assets A1, A2, A4, A5 and A7. At the same 

possibility level, these assets are A1, A4, A5, A7 

and A8 when the GA is used. At the possibility 

level 0.75, the structure of the optimal portfolio 

changes for the two algorithms. Here, there’s not a 

clear relation between the possibility level and the 

structure of the optimal portfolio.  

 

In addition, we cannot decide about the 

effectiveness of the two algorithms and in this case, 

the key criterion of decision is the investor’s 

satisfaction level. It is also interesting to note that 

the solution at each possibility level serves as a 

scenario for the decision maker.    
Table 5: The asset allocation at the possibility level 0.5 

Assets PSO GA 

A1 0.125 0.211 

A2 0.118 0 

A3 0 0 

A4 0.342 0.2990 

A5 0.08 0.2000 

A6 0 0 

A7 0.3259 0.24009 

A8 0 0.051 

Table 6: The asset allocation at the possibility level 0.75 

Assets PSO GA 

A1 0.125151 0.211 

A2 0 0.299 

A3 0.31880 0 

A4 0.34 0.1990 

A5 0.0900 0.1500 

A6 0 0 

A7 0.1249 0.1400 

A8 0 0 

 

 

6. Conclusion 

 
In this paper, a possibility approach for solving 

fuzzy quadratic multiobjective portfolio selection 

model has been developed. In this approach, fuzzy 

objectives are defined by possibility measures. For 

the case of fuzzy returns with trapezoidal 

membership functions, the possibility QMPS model 

turns out to be a crisp quadratic multiobjective 

problem. A numerical study concerning 8 assets 

listed in stock exchange of Tunis was used to 

demonstrate the implementation and interpretation 

of the results from the possibility approach.  

 

 Results obtained by the PSO algorithm are given to 

compare with those obtained by the GA. As 

mentioned in the last section, at a possibility 

level, , the structure of the optimal portfolio is not 

the same for the two algorithms and the efficiency  

of an algorithm relative to each other depends to the 

investor preferences. Also, the value of an objective 

is an increasing function of the possibility level 

when the goal is to maximize the return and a 

decreasing in the case of minimizing the risk. In 

addition, the fraction of the capital budget invested 

in each asset depends on the possibility level and 

this provides the flexibility to decision makers to set 

their own acceptable (possibility) levels in selecting 

their appropriate optimal portfolio. 

The possibility approach should enhance the 

capability of decision makers to improve their 

operations in a competitive, vague and uncertain 

environment.  Another interesting topic for future 

work is the solution of possibility portfolio selection 

models with general membership functions. 
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