
Host-based Web Anomaly Intrusion Detection System, an 
Artificial Immune System Approach 

Iman Khalkhali1, Reza Azmi2, Mozhgan Azimpour-Kivi1 and Mohammad Khansari3 

 1 School of Engineering and Science, Sharif University of Technology-International Campus Kish 
Island, Iran 

2 Department of Computer Engineering, Alzahra University
Tehran, Iran 

3Department of Network Science and Technology, Faculty of New Sciences and Technologies, 
University of Tehran 

Abstract 
Recently, the shortcomings of current security solutions in 
protecting web servers and web applications against web-based 
attacks have encouraged many researchers to work on web 
intrusion detection systems (WIDSs). In this paper, a host-based 
web anomaly detection system is presented which analyzes the 
POST and GET requests processed and logged in web servers’ 
access log files. A special kind of web access log file is 
introduced which eliminates the shortcomings of common log 
files for defining legitimate users’ sessions boundaries. Different 
features are extracted from this access log file in order to model 
the operations of the system. For the detection task, we propose 
the use of a novel approach inspired by the natural immune 
system. The capability of the proposed mechanism is evaluated 
by comparing the results to some well-known neural networks. 
The results indicate high ability of the immune inspired system in 
detecting suspicious activities. 
Keywords: Host-based Web Anomaly IDS, Enhanced Custom 
Log File, Artificial Immune System, Negative Selection 
Algorithm, Neural Network. 

1. Introduction

Nowadays, the World Wide Web (WWW) plays an 
important role in human life. Web applications are 
becoming increasingly popular in all aspects of human 
activities; ranging from science and business to 
entertainments. Consequently, web servers and web 
application are becoming the major targets of many attacks. 
Due to the growing number of computer crimes, needs for 
techniques that can secure and protect web servers and 
web applications against malicious attacks have been 
highlighted. Unfortunately, current security solutions, 
operating at network and transport layers, have insufficient 
capabilities in providing acceptable level of protection 
against web-based attacks. These issues have given rise to 
the ever evolving researches on web intrusion detection 
systems (WIDSs).  

A WIDS dynamically monitors the input requests to the 
web server in order to decide whether a given set of 
requests is indicative of an attack or represents a normal 
web surfing activity. As the web servers record all the 
requests processed by them in access log files, these files 
could be considered as a major source of information that 
can be analyzed by WIDS. In order to detect web-based 
attacks, intrusion detection systems (IDSs) can be prepared 
with number of patterns of well-known attacks. These 
systems are called signature detection systems. Signature 
based IDSs typically require a signature to be defined for 
every possible attacks that can be performed by an attacker. 
Moreover, the set of signatures should be updated 
periodically in order to keep the system reliable. Although 
these systems can effectively detect known intrusion 
attempts, they are unable to detect novel attacks. Hence, 
these systems are vulnerable to zero-days attacks. 

To overcome the shortcomings of signature based IDSs, 
anomaly detection systems are proposed for detecting 
unknown attacks. The anomaly based WIDSs try to build a 
profile of the normal states of the system and detect 
deviation from this normal profile that may indicate a 
suspicious activity. The main shortcoming of anomaly 
based WIDSs is that the false positive rate (proportion of 
events mistakenly detected as attacks) is usually higher 
compared to signature detection systems. Furthermore, it 
could be a difficult task to define what exactly a normal 
behavior is in complex environments.  

Generally, anomaly detection approaches consist of two 
phases: training phase and testing phase. In the training 
phase the profile of normal behaviors is built. Then, it is 
applied to new data in order to detect abnormal behaviors 
in the testing phase. Various techniques have been applied 
to solve the general problem of intrusion detection. These 
techniques include statistical based methods [1], data 
mining methods [2-4], Markov models [5], [6], grammar 
based methods [7], [8], Artificial Neural Networks (ANNs) 
[9], [10], and Artificial Immune Systems (AISs) [11], [12].   
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As mentioned earlier, access log files of web servers are an 
important source of information for WIDSs. There are 
some shortcomings to common access log files generated 
by common web servers such as Apache. The first problem 
arises when defining web sessions. As the boundaries of 
sessions are not clearly defined, extraction of web sessions 
from these log files is not a straightforward process. 
Although there are some heuristics, such as time out 
scheme [13] that can lead us to identify web sessions, these 
methods are not very accurate in practice. On the other 
hand, common log files do not contain the POST requests 
processed by the web server. Generally speaking, both 
GET and POST methods have a key point in interaction of 
users with web applications. In order to overcome these 
issues, a log file generator is introduced that eliminates the 
aforementioned drawbacks in order to generate a special 
log file called the Enhanced Custom Log file (ECL). The 
detailed information of ECL is discussed later. 
 
In this paper, an anomaly detection system for detecting 
web-based attacks is presented. In the training phase, the 
anomaly detection system takes the ECL as the input and 
builds a dataset to tries to learn how to distinguish normal 
behaviors from attack by considering three parameters. 
These parameters include: the number of values assigned 
to variables of each request within a session; the number of 
dual composition of characters, in windows of size two, 
from the values assigned to variables of each request 
within the session; and a window of size three from the 
users’ navigational path within the sessions. Finally, we 
apply an Artificial Immune System (AIS), introduced in 
our previous work [27], in order to equip the detection 
system to distinguish normal behaviors from the abnormal 
ones. In order to evaluate the capability of the system, the 
system is encountered with new patterns in the testing 
phase. Also, to prove the ability of the proposed AIS 
algorithm the results are compared to different well-know 
ANNs.  
 
The remainder of this paper is organized as follows. In 
Section 2, a review on some available IDSs is presented. 
Section 3 introduces the fundamental operations of the 
proposed anomaly based WIDS including data gathering, 
feature extraction and detection mechanism. In Section 4, 
the experimental evaluation of the proposed system is 
presented. Moreover, the detection ability of the system is 
compared to some common ANN. Finally in Section 5, we 
conclude our study. 

2. Related Work 

Generally speaking, an anomaly detector needs to have a 
proper definition of what normal behaviors are. To answer 
this question, there are two possible approaches. An 
anomaly detector can be provided by a set of rules or 
specifications of what is regarded as normal behavior 
based on the human expertise. This approach could be 
assumed as an extension of misuse detection systems. In 
the second approach, the anomaly detector automatically 
learns the behavior of the system under normal operations 
and then generates an alarm when a deviation is detected 
from the normal model [14]. 
 
Prior to introducing some related work, we should mention 
that the extendibility of a WIDS is proved when the 
training and test data are good samples of real world web 
attacks. Also, the attacks presented in these data need to be 
representative of variety of attacks that exist in current web. 
The most important datasets that has been used for 
evaluating IDSs are provided by DARPA/MIT Lincoln 
Laboratory in 1998 and 1999 [15]. These data are used by 
many researchers in intrusion detection researches because 
massive datasets are rare and also they provide an 
immediate comparison with the original Lincoln Lab’s test. 
As there are some inherent problems with this datasets [16], 
[17], some researchers improved their own attack database 
to supplement the attacks in the Lincoln Lab’s data [18]. 
 
Various features are proposed to be extracted from the 
audit data that is available in a particular system. Krugel et 
al. [19], proposed a service-specific IDS. In this system, 
the anomaly score of a request is calculated using three 
properties: type of the request, length of the request and 
payload distribution. In this approach, if the length of the 
request is longer than the average length, it is likely to be 
an attack. This approach is based on the observation that 
attack codes, which may cause buffer overflow, often 
contain a large number of NULL characters. In the case of 
a model for character distribution, the ASCII characters are 
grouped to 6 categories. Then a single uniform distribution 
model of these 6 groups for all requests of one service over 
all possible payloads’ length is computed. Finally, a chi-
square test is performed against this model to calculate the 
anomaly score of test requests. In a similar attempt, 
anomaly detection system proposed by Wang and Stolfo 
[14] models the normal payloads of the network traffic by 
profiling the byte frequency distribution of payloads of 
particular length, flowing a particular host and port. Then, 
the size of the model is reduced using a clustering method. 
In the detection phase, the Mahalanobis distance is used to 
calculate the similarity of new data to the normal profile.  
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The system proposed by Kruegel and Vigna [20], is an IDS 
that use similar features to our work. This system utilizes a 
number of anomaly detection techniques to detect attacks 
against web servers and web-based applications. The 
system analyzes the HTTP GET requests that use 
parameters to pass values to server-side programs. These 
requests are recorded in access log file of web servers. 
Multiple models are produced using a wide range of 
features of the mentioned requests. These features include 
the presence or absence of attributes (parameters), 
attributes length, attribute characters distribution, the order 
of attributes, access frequency, inter-request time delay, etc.  
 
Different algorithms are proposed to generate the normal 
model of the systems and distinguish the normal behaviors 
from the abnormal ones. As discussed earlier, some 
anomaly detection systems produce a statistical model for 
a system and detect large deviation from this profile [14], 
[19], [20]. The others use machine learning techniques or 
Markov chains in order to make a profile of normal 
operations of system [21]. The session anomaly detection 
(SAD) system [22] analyzes web access logs in order to 
detect anomalous web sessions. In this system, the 
Bayesian parameter estimation is adopted to build profiles 
of normal webpage request sequences. Then, the likelihood 
of each event is estimated based on previous probability 
distribution and an anomaly score is assigned to each event. 
The anomaly detection system presented in [23], have 
applied Markov chains in order to model the HTTP traffic. 
In the training stage, the packet payloads of the training 
data (normal data) are segmented into a number of 
continuous blocks. Then, a dictionary of these blocks is 
produced and a symbol is associated to each entry in the 
dictionary. Each segmented payload is represented as a 
sequence of corresponding symbols from the dictionary. 
The arrays of symbols are then used to train a Markov 
chain to capture the occurrence and the spatial appearance 
of each sequence within the data. In the testing stage, the 
obtained Markov model is used to evaluate the incoming 
HTTP traffic. In some researches, ANNs have been 
applied in anomaly detection, mainly due to their 
adaptability to changes in environments. Furthermore, 
ANN can model complex relationships between inputs and 
outputs and also find patterns in data by using non-linear 
statistical data modeling. Ingham et al. [18] also developed 
their framework for comparing different anomaly detection 
techniques based on their gathered data.  
 
In recent years, a growing number of computer scientists 
have applied immunological models to several domains of 
computer and network security [24], [25]. These systems 
are characterized by some interesting features such as 
adaptability, self-organizing and distribution. Among the 
AIS models, the Negative Selection (NS) algorithm has a 

high potential use in intrusion detection. The basic idea of 
this algorithm is to generate a set of detectors that are able 
to distinguish self (normal) from the non-self (abnormal) 
behaviors. Gonzales et al. [26], [25] proposed a real-
valued negative selection to generated non-self samples 
using the self data. A conventional classifier is then 
applied to detect abnormal patterns. 

3. Proposed Method 

In this section, different parts of the proposed Web Host-
based Intrusion Detection System (WHIDS) are described. 
The general view of the proposed system is depicted in Fig. 
1. As illustrated in this figure, the proposed WHIDS is 
composed of five major stages. In the first stage, with the 
assistance of the PHP log file generator, the HTTP streams 
recorded with their sessions in ECL format are fed to the 
system as input. In the second stage called the feature 
extraction stage, multiple features are extracted from the 
input data. In the training stage, a learning algorithm is 
employed in order to learn the states of the system 
regarding the features that are extracted in previous stage. 
The fourth stage involves analyzing the incoming sessions 
and comparing them to learned states models, built in 
training stage, in order to detect malicious activities. The 
last stage handles the output of the WHIDS. The output of 
the proposed system is an alarm signal for the system 
security officer when a suspicious activity is detected. The 
following sections describe the detailed information of 
each stage. 
 

 

Fig. 1  The general view of the propose WHIDS. 

3.1 Data Gathering 

Generally, in order to fully examine an IDS a suitable 
dataset is necessary. The key point is to accurately separate 
the normal data from the abnormal (attack) data. To 
achieve this goal, in the data gathering phase, the web 
applications and web server should be provided by a fully 
protected condition to ensure that we can gather the pure 

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org 16



 

 

normal user behaviors. On the other hand, in order to 
prove the capability of the system in detecting various 
attacks, the attack data should cover large range of today’s 
web attacks. 
 
As mentioned earlier, our anomaly detector analyzes a 
special kind of access log in order to build a normal profile 
of web sessions and also detect malicious activates. The 
reasons that the common log files (Apache log files) are 
not employed are as follows. First, the proposed WHIDS 
analyses both GET and POST HTTP requests received by 
the web server. Generally speaking, most PHP applications 
work with GET or POST methods and both methods are 
needed to be used alternatively for interacting with users. 
As the POST requests are not recorded in common log file 
of web servers, a new log generation mechanism is needed 
to record these requests in log files. It should be noted that 
there are other methods for interacting with web 
application such as HEAD and PUT, which are ignored 
because of their low importance. Second, the boundaries of 
sessions are not clearly defined in common log files. As a 
result, extracting web sessions from these log files is not a 
straightforward process. Although there are some 
heuristics, such as time out scheme that can lead us to 
identify web sessions, these methods are not very accurate 
in practice. 
 
Considering the aforementioned problems, we develop a 
module called PHP log generator, written in PHP language, 
in order to generate a log file that satisfies the needs of our 
anomaly detector. The output of the PHP log generator 
would be a special kind of log file called Enhanced 
Custom Log file (ECL). An ECL entry represents a request 
to the web server which belongs to a specific session. The 
fields of an ECL entry include: ID (sequence number), 
session identification (ID), client IP address, time of the 
request, date of the request, method of the request (POST 
or GET), host name, requested URL, query string (the list 
of variables and values which are passed to web 
application), network address translation (NAT) IP address, 
forward IP address, user agent, protocol, server port 
number, and client port number. 
 
     In order to clarify the functionality of the PHP log 
generator, consider the process of generating common log 
file in Apache web servers. This process consists of 5 steps 
(see Fig. 2). In the first step, a user writes his/her request in 
the URL and sends the request to the web server. In the 
second step, PHP interpreter receives the request and 
fetches the PHP file and interpret it to HTML. Then, it 
sends HTML file for the user. Prior to this step, the request 
is recorded in common log file in Apache web server. 
In the case of the method employed in this research, PHP 
log generator captures users’ requests before allowing the 

PHP interpreter to fetch the PHP file (see Fig. 3). 
Furthermore, a cookie is created which contains the session 
ID of the visitor. This cookie is stored in the user’s 
machine and helps the log file generator to recall the user 
in future connections; since each time the user sends a 
request, the session ID is enclosed in that request. It is 
worth bearing in mind that, expiration date of the cookies 
are settable by the log file generator when it aims to set 
session ID  of the cookie. 

 
In the method used in this research, the session is 
generated by PHP log generator and is then recorded in 
ECL. Since the session is a unique identity which is 
assigned to users, it allows us to track clients. Session 
generation has some difficulties when the client closes the 
browser and re-opens it again.  The process of restarting 
the session with closing and opening the browser can lead 
to mistake in tracking users. In other words, when users 
open and close the web browser in different times, more 
than one session are created and logged for them wrongly. 
To avoid this problem, the cookies have been used. By 
employing cookies, not only sessions are generated, but 
also they can be stored for a specific period of time.  

3.2 Feature Extraction 

In this section, the process of generating a dataset 
containing different features that are extracted from the 
ECL is explained. The dataset, which is generated by the 
system, can be used by other researchers as a benchmark. 
As mentioned earlier, three different features are extracted 
by the feature extraction module in proposed WHIDS. 
These features include: the number of values assigned to 
variables of each request within a session (Histogram); the 
number of dual composition of characters in windows of 
size two from the values assigned to variables of each 
request within the session (Double windows); and a 
window of size 3 from the users’ navigational path within 
the sessions (Markov windows). Consider that, in feature 
extraction process, input data are actually web sessions 
that can consist of multiple requests to the web server.  
 
Histogram:  Generally, a request to a web application may 
contain some variables and values. The length of a value 
assigned to a variable can be helpful in detecting 
anomalous requests. Generally, values can be either fixed-
size tokens (such as session identifiers that are entitled in 
the request to resume a session) or short strings 
representing human inputs (e.g. fields in an HTML form). 
As a result, the length of the values assigned to variables of 
a particular web application does not very much. The  
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Fig. 2  The processes of common log file generation in an Apache web server. 

 

 

Fig. 3  The process of ECL generation in Apache web server. 
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situation can be different when a malicious activity is 
occurred. As an example, in the buffer overflow attack, the 
length of the input value which is passed to the web 
application may vary from the normal range.  
 
Based on the above discussion, for the first feature that is 
proposed to be extracted from the ECL, called Histogram, 
we extract the variables’ values and count their character. 
These values are stored in a database whose columns are 
defined as particular intervals with the length of four. 
Intervals are assumed for the number of characters in each 
variable. For each variable in the requests of a session, we 
count the number of its characters. Then, the 
corresponding field’s value in the table of the database is 
incremented by one.  
 
As an example, imagine a login request in a session which 
contains a password variable assigned with the value of 
‘XXX’. As the length of the value for this example is 3, the 
value for the corresponding column, 1 ≤ x < 5, is increased 
by one in the row that is correspond to the session of the 
request. Consider that, after counting the length of each 
variable in a session, the vector that is corresponded to that 
session is normalized. That is why the range of output is 
between 0 and 1. The normalized value for each field in a 
vector of a session is calculated by dividing the value of 
that field by the sum of values over all the fields in that 
vector. 
 
Double Windows: Generally, the parameters that are 
passed to a web application have regular characteristic. As 
an example, they mostly contain printable characters. In 
the case of a malicious activity, the structure of the 
characters which are passed to the web application could 
be quite different. Moreover, many attacks would send a 
series of a single character. As a result, modeling how 
different characters can appear in a normal query can be 
useful in detecting abnormal occurrence of them.  
  
Based on the above discussion, the second feature that is 
extracted from the ECL is the number of dual composition 
of characters, in windows of size two, from the values 
assigned to variables of each request within the session. 
Generally, the characters that are allowed to be used as the 
value of a variable include ‘~’, ‘!’, ‘@’, ‘#’, ‘$’, ‘%’, ‘^’, 
‘&’, ‘*’, ‘(‘, ‘)’, ‘_’, ‘+’, ‘`’, ‘-‘, ‘=’, ‘[‘, ‘]’, ‘\’, ‘;’, ’'’, ‘,’, 
‘.’, ‘/’, ‘{‘, ‘}’, ‘|’, ‘:’, ‘<’, ‘>’, ‘?’, ‘"’, and the letters ‘a’ to 
‘z’. Here, we attempted to create all possible double 
composition of the aforementioned characters. In this case, 
3364 doubles can be created. As in the case of histogram, 
we have one column for each double and increment the 
counter of each column when the corresponding double is 
found in the value assigned to a variable of a request in a 
session. 

The high dimensionality of the produced table leads us to 
add columns to the table on demand. In other words, it is 
not necessary to add all possible doubles as a column to 
the table, but they are added only if they are seen at least in 
a window of values assigned to variables of a request. For 
example, if the word ‘admin’ is assigned to a value of a 
variable, the doubles that are added to the system will be 
‘ad’, ‘dm’,’mi’ and ‘in’. Fig. 4 (a) shows the table when all 
doubles are put into the table, whereas Fig. 4 (b) shows the 
table when doubles are added when they occur in the 
variables’ values. The advantage of the second approach is 
that many columns will be discarded and the produced 
table would be less sparse. Furthermore, this reduction 
decreases memory usage. 
 

 
Fig. 4  The schematic view of the doubles window table. (a) When all 

possible doubles are put into the table. (b) When doubles are added to the 
table on demand. 

Markov Windows:   Markov models are well-known as a 
method to capture the sequences of web navigation in 
anomaly detection systems. This model can detect 
unreasonable transition of user and mitigate authentication 
bypass attack. In addition to the sequence of web 
navigations, we consider the variables which are passed in 
the request by defining a new concept named treat.    
 
We consider various windows of the user’s navigational 
path within the sessions. Here, for the sake of efficiency 
the size of the windows are set to three. Assume that a 
website is included these pages: a, b, c, d, e, f, and g (the 
page a represent index.php or something similar). 
Accordingly, a user can have different navigational 
patterns for visiting pages (as an example a-b-c >> b-c-
d >> c-d-e >> d-e-f). As mentioned, we also consider the 
variables which are passed through the query in 
conjunction with the navigational path of the user and call 
these a treat. By introducing the treat concept in previous 
example, the page “index.php” will be changed to 
“index.php? variable1=”. Advantage of using treats instead 
of pages is that we can model the navigational path of a 
user in conjunction with the variables which are passing 
during this navigation. As an example, three queries: 
“index.php?var1=”, “index.php?var2=”, and 
“index.php?var1&var2=” are considered as different treat 
although the visited web page is identical in them (see Fig. 
5). In other words, it is possible to go from one page to 
another by passing different kind of variables without 
considering their values. 

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org 19



 

 

 
Fig. 5  The concept of treat against the movement. 

 
Fig. 6  The treat model. 

Eventually, we make a table of treats which are observed 
in sessions. Similar to previous features, all possible triples 
are not added as a column to the table, but they are just 
added when they have been seen in a users’ sessions. 
Hence, the table contains triples that have been generated 
at least one time by one user. It should be mentioned that, 
repeated triples will not be taken into account. Fig. 6 
represents two treats stored in the system. After specifying 
all triples in users’ sessions, we try to count the number of 
occurrence of each treats in each session. Hence, if we 
observe a particular treat in a session, the corresponding 
column, in the row related to that session, should be 
increased by one. Finally, the model is provided by 
normalizing these counts as explained previously. 

3.3 Analysis and Detection 

As it was mentioned before, the WHIDS system consists of 
an analysis and detection module. This module receives the 
dataset generated in previous stage as input and analyzes it 
to learn the normal behaviors and abnormal behaviors. In 
other word, we have divided the dataset to training and 
testing data. The training data is used to train the system to 
distinguish the normal behaviors from the abnormal ones. 
Finally, the test data is fed to the trained algorithm in order 
to evaluate the capability of the algorithm in detecting 
malicious activities. 
 
The analysis and detection module is completely 
independent from other parts, so it allows us to be able to 
alternate the learning algorithms. Previously, we proposed 
a real-valued negative selection (RNS) algorithm for 
binary classification [27]. We use this AIS algorithm as the 

analysis and detection module in the proposed system. 
Briefly, this algorithm tries to generate some real-valued 
detectors. We inspired by the universal gravitational law to 
spread the detectors in the problem space in order to cover 
the non-self space properly. The detailed information of 
this algorithm is presented in [27]. After generating the 
detectors from the training samples, the testing samples are 
presented to the detector set and are compared to them 
based on the Euclidean distance. The samples which are 
closed to detectors sufficiently are considered as a 
potential suspicious activity.  
 
In order to prove the capability of the immune inspired 
algorithm, this algorithm is replaced by some well-known 
ANNs. The results of the effectiveness of these algorithms 
in detecting suspicious activities are compared to each 
other in following sections. 

3. Experimental Evaluation 

In this section, we discuss our approach to evaluate the 
effectiveness of the negative selection algorithm in 
detecting malicious activities in web server log files. 
Moreover, we examine the capability of the features that 
are extracted from log files to capture the properties of 
attributes that have been collected in ECL files.  
 
Beside the proposed RNS algorithm, three different 
algorithms including Multilayer Perceptron (MLP), Radial 
Basis Function Network (RBFN), and Naïve Bayes (NB) 
algorithm are chosen to learn the dataset which is 
generated from the ECL log files. Both MLP and RBFN 
have been employed in network based IDSs. The reason 
that they are chosen is that, they proved to have high 
ability in detecting intrusion in the network based systems. 
Consider that, due to the independency of the detector 
system’s modules from the analysis and detection module, 
it is possible to change the algorithms employed in this 
part or use the combination of that algorithms as a new one.  
 
As described earlier, due to the special kind of the 
attributes that we defined to model the behavior of the 
system, we used ECL. Also, for producing ECL we 
designed a social website and collect access log files in 
ECL format. For evaluating the effectiveness of the 
detection system, we need both normal and attack data. 
Therefore in the first step, we provided the web server with 
a fully protected condition to ensure that we can gather the 
pure normal users’ behaviors. In the second step, we 
produced the variety of attack such as SQL injection, path 
traversal, command injection, XSS, etc. to a web server 
which in not under any external traffic for collecting attack 
data. After data gathering, we analyzed the log files to 

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org 20



 

 

extract features that are comprehensively described in 
previous sections. Finally, a dataset is generated which can 
be analyzed by different algorithms to learn and detect the 
system behavior. Table 1 provides details information of 
important properties of the generated dataset from the ECL 
files. The table shows the time interval during which the 
ECL files were recorded, the log file size and the total 
number of HTTP requests in the log file.  

Table 1:  The details information of the dataset used for evaluation. 

Dataset Time 
Interval Size (MB) HTTP 

Requests 

Normal Data 7 days 5 30,000 

Attack Data 7 days 21 156,700 
 

As it was mentioned earlier, three different categories of 
features are extracted from the ECL. The structure of the 
final dataset is as follows. There are 10 columns for the 
histogram. In addition, there are 1160 columns for doubles 
which 506 columns are share between attack, and normal 
and 654 columns are not share between attack, and normal. 
Finally, in the case of extracted treats, 30 fields or columns 
are shared as a normal and attack treat and 3474 fields are 
not shared. Among these non-shared fields 2486 columns 
are normal treat and 988 columns are attack. 

4.1 Detection Effectiveness 

An important key point in evaluating the system is 
choosing evaluation measures. Suitable measures can show 
real nature of the system and performance of algorithms. In 
this section, we compare the algorithms used in analysis 
and detection module from three different points of view 
including: the time they spend for learning the normal 
behaviors in training phase and detecting intrusions in 
testing data; the error of predicted value compared to the 
real value; and the measures revealing how much the 
system can detect anomalous behaviors.  
 
The testing technique, employed in all the tests performed 
in this section, is 10 times 10-folds cross validation, which 
can guarantee the generality of the results. In other words, 
we run each algorithm 10 times with 10-folds cross 
validation and the final values for evaluation measures is 
the average of these 10 runs. Also, in the case of the 
proposed RNS algorithm, the number of generated 
detectors in the evaluations presented in this section is set 
to 50. 
 
Execution Time:  One of the important factors in the field 
of WHIDS is time the system spends to model the 
monitored system. In WHIDS systems, the faster we are 
able to detect the intrusion, the sooner we can find the 

weakness points of the system and patch the holes. The 
time measure in WHIDS is the time that it takes for the 
algorithm to build a model for the training samples and 
predicting the status of the test samples. However, it is 
worth mentioning that, execution time alone, is not enough 
to evaluate an algorithm and the time should always be 
seen with the ability of the system in detecting intrusions. 
For example, if an algorithm is fast and needs a very short 
time to build a model but has a low ability in detecting 
anomalous behaviors, it cannot be a useful algorithm. On 
the other hand, an algorithm that takes an enormous 
amount of time to properly build the normal model and 
detect intrusions is unsuitable; since, by the time the 
intrusions are detected, the system may have been already 
damaged too much.  
 
Table 2 shows the execution time of each four algorithms, 
employed in analysis and detection module, over the 
dataset. As we can see in Table 2, among the four 
algorithms that were mentioned (proposed RNS, Naïve 
Bayes, RBFN and MLP), Naïve Bayes has the shortest 
execution time, followed by RBFN, NS, and finally MLP. 
In other words, MLP takes the longest time while the NB 
and RBFN spend a short time and proposed RNS is in the 
middle. It should be noted that, due to the very long time 
that MLP takes to respond, even if it performs very well on 
other measures, it cannot be an efficient algorithm for 
some environments.  

Table 2:  The detailed information of the dataset. 

4BAlgorithm 5BTime taken to build model (sec) 

Proposed RNS 297.95 

NB 0.20 
MLP 2973.40 

RBFN 9.30 

Error:  In this part different kind of error metrics are 
measured to evaluate the error in the prediction values 
compared to the real value of the test set. The results are 
compared for each algorithm in analysis and detection 
module. Consider that, in the case of the proposed RNS 
algorithm, the calculation of errors is not a common task. 
For this reason we ignore the calculation of error measures 
for proposed RNS algorithm. 

Therefore, three different error metrics are measured for 
each learning algorithm. The first metric is the Mean 
Absolute Error (MAE). As the name suggests, the mean 
absolute error is an average of the absolute errors and 
shows how the predicted values differs from the true 
values. The closer the prediction value to the true value, 
the smaller mean absolute error would be.  
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The second error metric employed in our evaluation is the 
Root Mean Squared Error (RMSE). RMSE is a measure of 
error that is used frequently for evaluating algorithms. It is 
similar to MAE since like MAE, it measures the average 
difference between prediction value and true value. 
However, there is one important difference between MAE 
and RMSE. RMSE is more sensitive to outliers than MAE. 
The RMSE is calculated such that the effect of the large 
differences between predicted value and true value are 
amplified. In other words, larger differences between 
predicted value and the true value have a greater power to 
affect the obtained value of error. On the other hand in 
MAE, errors of different sizes are all treated in the same 
way. Both RMSE and MAE are useful measures of error. 
However, in some situations using RMSE is more 
meaningful while in other situations using MAE is more 
appropriate.  
 
The last measure for reflecting the error corresponds to 
each algorithm in this evaluation is the Kappa Statistics. 
This metric is a statistical measure which shows the 
consistency between predicted and true value in a dataset. 
Also, it corrects the consistencies that occur by chance. 
High value of Kappa shows high consistency between 
predicted and measured values and indicates better 
performance of algorithm.  
 
Table 3 shows the results for the aforementioned error 
measures for each three learning algorithms. As suggested 
by this table, the predicted values by MLP algorithm have 
lower error in comparison with the other two algorithms. 
Moreover, the RBFN is more successful than Naïve Bayes. 
However, it should be mentioned again that the error 
measurements, like all other measures, cannot be used 
alone to evaluate an algorithm. As we discussed in 
previous section, the MLP spends an enormous amount of 
time to construct the normal model and gets the results. 

 Table 3:  The error measures for each three learning algorithms. 

Algorithm MAE RMSE Kappa 
Statistics 

NB 0.27502 0.52325 0.34114 

MLP 0.04959 0.18309 0.90605 
RBFN 0.05329 0.20916 0.89822 

Efficiency Measures:  In this section different kind of 
metrics are measured to evaluate the ability of the 
algorithms to learn the properties of the features of 
the data and also detecting the malicious activities. 
The results are presented for each algorithm in 
analysis and detection module.  

Generally, four situations can be assumed corresponding 
the relation between the result of an analysis for a sample 
event and its actual nature in an IDS. These situations 
include: false positive (FP), if the analyzed event is not an 
attack, but it is classified as a malicious activity; true 
positive (TP), if the analyzed event is correctly classified 
as intrusion; false negative (FN), if the analyzed event is 
malicious, but it is classified as a normal activity in the 
system; and true negative (TN), if the analyzed event is 
correctly classified as a normal activity.  
Considering these situations, two measures are defined that 
can represent the effectiveness of a detection tool. These 
two measures are the TP rate (recall) and FP rate (false 
alarm rate). The recall measure can be defined as the 
fraction of correctly classified instances to the total number 
of inputs that should have been classified as anomalous. In 
other words, recall is the fraction of true positive rates to 
the number of all cases that should have been classified as 
positive. On the other hand, the false alarm rate can be 
defined as the proportion of actually normal cases that 
were incorrectly classified as anomalous.    
There are some other measures that can reveal the 
effectiveness of the detection system. As instance, we can 
consider the Precision. The precision can be defined as the 
number of correct predictions divided by all the results that 
have been specified by the algorithm. A measure that can 
show the combination of the precision and recall is F-
measure, which is provided by taking the harmonic mean 
of these two values. 
 
 Table 4 represents the discussed measures for each of four 
algorithms when 10 times 10-fold cross validation test 
method was performed over the dataset. As suggested by 
this table, the MLP and RBFN are performing quite the 
same and they can excel the NB algorithm in detecting 
attacks correctly and not producing incorrect alarms. 
However, we can see that the false alarm rate generated by 
the MLP algorithm is slightly smaller compared to that of 
RFBN. Moreover, the recall and the precision, and hence 
the F-measure corresponding to MLP exceed that of RBFN. 
In additions, the proposed RNS algorithm has the highest 
values for recall and precision while producing the least 
false alarm. As a result, we can claim that the proposed 
RNS algorithm is performing more effectively in detecting 
malicious activities compared to other three algorithms.     
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Table 4:  The results of the efficiency measures for each four learning 
algorithms. 

Algorith
m Recall Precision F-

measure 

False 
Alarm 
Rate 

Proposed 
RNS 0.9679 0.9795 0.9834 0.0007 

NB 0.7449 0.7607 0.6862 0.4217 

MLP 0.9561 0.9571 0.9557 0.0610 

RBFN 0.9524 0.9533 0.9523 0.0656 

4.1 Discussion 

In this section we summarize the obtained results from the 
evaluation mechanism presented in previous sections. As 
discussed earlier, the execution time of the MLP is too 
higher than that of the NB algorithm and RBFN. 
Furthermore, we can see that the NB is the fastest 
algorithm in building the normal model and detecting 
anomalies. Also, the proposed RNS algorithm has a 
mediocre execution time. 
 
The errors of the predicted values for the NB algorithms 
are the highest among all three algorithms, indicating how 
NB is performing poorly in predicting the values for 
sample data. MLP is performing more accurately in 
predicting the values corresponding to data samples. 
Finally, the RBFN, with a slight difference from MLP, is 
performing quite powerfully in predicting the values for 
data samples. As discussed, the error measures are not 
calculated for the proposed RNS algorithm. 
 
On the other hand, from the efficiency point of view, the 
proposed RNS algorithm is performing more powerfully in 
detecting anomalous behaviors with generating fewer 
mistaken alarms compared to other three learning 
algorithms. As the results of Table 4 suggest, the ability of 
the MLP and RBFN are quite the same. Furthermore, we 
can conclude that the NB algorithm is performing poorly in 
detecting attacks, although it is the fastest algorithm.   
 
To sum up, we can claim that, from both the cost 
(execution time) and the efficiency points of view, the 
proposed RNS algorithm can be selected as the best choice 
for the analysis and detection module of the proposed 
WHID among the other three algorithms discussed in this 
paper. 

4. Conclusions and Future Work 

The main goal of this research was designing a host-based 
WIDS. We proposed to employ the enhanced custom log 
file in order to eliminate the inherent problems of common 
log files in defining web sessions boundaries. Moreover, 
ECL provides us with the POST requests along with the 
GET requests from the HTTP protocol. Different features 
were extracted from the ECL file which can represent the 
operations of the monitored web server. In this research, a 
dataset of normal and attack data were produced which can 
be used by other researchers in the field of WIDSs. Finally, 
we proposed the use of a novel RNS algorithm, inspired by 
the natural immune system, in order to produce a set of 
detectors that can cover the space of non-self (attack) 
properly and match to the non-self data and detect them. 
The results presented in this paper, proved the high ability 
of the proposed algorithm in detecting abnormal activities 
compared to some well-know and classical learning 
algorithms.   
 
The most significant improvement that can lead to fruitful 
this research in future is to prepare the system to perform 
in an online state. As discussed earlier, the AISs have some 
interesting characteristics, such as adaptability and self-
organizing, that make them attractive for working on data 
streams, such as HTTP streams, instead of stored data in 
an offline manner. This can also be a beginning for 
designing host-based web intrusion prevention systems. 
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