
Host-based Web Anomaly Intrusion Detection System, an
Artificial Immune System Approach

Iman Khalkhali1, Reza Azmi2, Mozhgan Azimpour-Kivi1 and Mohammad Khansari3

 1 School of Engineering and Science, Sharif University of Technology-International Campus Kish
Island, Iran

2 Department of Computer Engineering, Alzahra University
Tehran, Iran

3Department of Network Science and Technology, Faculty of New Sciences and Technologies,
University of Tehran

Abstract
Recently, the shortcomings of current security solutions in
protecting web servers and web applications against web-based
attacks have encouraged many researchers to work on web
intrusion detection systems (WIDSs). In this paper, a host-based
web anomaly detection system is presented which analyzes the
POST and GET requests processed and logged in web servers’
access log files. A special kind of web access log file is
introduced which eliminates the shortcomings of common log
files for defining legitimate users’ sessions boundaries. Different
features are extracted from this access log file in order to model
the operations of the system. For the detection task, we propose
the use of a novel approach inspired by the natural immune
system. The capability of the proposed mechanism is evaluated
by comparing the results to some well-known neural networks.
The results indicate high ability of the immune inspired system in
detecting suspicious activities.
Keywords: Host-based Web Anomaly IDS, Enhanced Custom
Log File, Artificial Immune System, Negative Selection
Algorithm, Neural Network.

1. Introduction

Nowadays, the World Wide Web (WWW) plays an
important role in human life. Web applications are
becoming increasingly popular in all aspects of human
activities; ranging from science and business to
entertainments. Consequently, web servers and web
application are becoming the major targets of many attacks.
Due to the growing number of computer crimes, needs for
techniques that can secure and protect web servers and
web applications against malicious attacks have been
highlighted. Unfortunately, current security solutions,
operating at network and transport layers, have insufficient
capabilities in providing acceptable level of protection
against web-based attacks. These issues have given rise to
the ever evolving researches on web intrusion detection
systems (WIDSs).

A WIDS dynamically monitors the input requests to the
web server in order to decide whether a given set of
requests is indicative of an attack or represents a normal
web surfing activity. As the web servers record all the
requests processed by them in access log files, these files
could be considered as a major source of information that
can be analyzed by WIDS. In order to detect web-based
attacks, intrusion detection systems (IDSs) can be prepared
with number of patterns of well-known attacks. These
systems are called signature detection systems. Signature
based IDSs typically require a signature to be defined for
every possible attacks that can be performed by an attacker.
Moreover, the set of signatures should be updated
periodically in order to keep the system reliable. Although
these systems can effectively detect known intrusion
attempts, they are unable to detect novel attacks. Hence,
these systems are vulnerable to zero-days attacks.

To overcome the shortcomings of signature based IDSs,
anomaly detection systems are proposed for detecting
unknown attacks. The anomaly based WIDSs try to build a
profile of the normal states of the system and detect
deviation from this normal profile that may indicate a
suspicious activity. The main shortcoming of anomaly
based WIDSs is that the false positive rate (proportion of
events mistakenly detected as attacks) is usually higher
compared to signature detection systems. Furthermore, it
could be a difficult task to define what exactly a normal
behavior is in complex environments.

Generally, anomaly detection approaches consist of two
phases: training phase and testing phase. In the training
phase the profile of normal behaviors is built. Then, it is
applied to new data in order to detect abnormal behaviors
in the testing phase. Various techniques have been applied
to solve the general problem of intrusion detection. These
techniques include statistical based methods [1], data
mining methods [2-4], Markov models [5], [6], grammar
based methods [7], [8], Artificial Neural Networks (ANNs)
[9], [10], and Artificial Immune Systems (AISs) [11], [12].

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 14

As mentioned earlier, access log files of web servers are an
important source of information for WIDSs. There are
some shortcomings to common access log files generated
by common web servers such as Apache. The first problem
arises when defining web sessions. As the boundaries of
sessions are not clearly defined, extraction of web sessions
from these log files is not a straightforward process.
Although there are some heuristics, such as time out
scheme [13] that can lead us to identify web sessions, these
methods are not very accurate in practice. On the other
hand, common log files do not contain the POST requests
processed by the web server. Generally speaking, both
GET and POST methods have a key point in interaction of
users with web applications. In order to overcome these
issues, a log file generator is introduced that eliminates the
aforementioned drawbacks in order to generate a special
log file called the Enhanced Custom Log file (ECL). The
detailed information of ECL is discussed later.

In this paper, an anomaly detection system for detecting
web-based attacks is presented. In the training phase, the
anomaly detection system takes the ECL as the input and
builds a dataset to tries to learn how to distinguish normal
behaviors from attack by considering three parameters.
These parameters include: the number of values assigned
to variables of each request within a session; the number of
dual composition of characters, in windows of size two,
from the values assigned to variables of each request
within the session; and a window of size three from the
users’ navigational path within the sessions. Finally, we
apply an Artificial Immune System (AIS), introduced in
our previous work [27], in order to equip the detection
system to distinguish normal behaviors from the abnormal
ones. In order to evaluate the capability of the system, the
system is encountered with new patterns in the testing
phase. Also, to prove the ability of the proposed AIS
algorithm the results are compared to different well-know
ANNs.

The remainder of this paper is organized as follows. In
Section 2, a review on some available IDSs is presented.
Section 3 introduces the fundamental operations of the
proposed anomaly based WIDS including data gathering,
feature extraction and detection mechanism. In Section 4,
the experimental evaluation of the proposed system is
presented. Moreover, the detection ability of the system is
compared to some common ANN. Finally in Section 5, we
conclude our study.

2. Related Work

Generally speaking, an anomaly detector needs to have a
proper definition of what normal behaviors are. To answer
this question, there are two possible approaches. An
anomaly detector can be provided by a set of rules or
specifications of what is regarded as normal behavior
based on the human expertise. This approach could be
assumed as an extension of misuse detection systems. In
the second approach, the anomaly detector automatically
learns the behavior of the system under normal operations
and then generates an alarm when a deviation is detected
from the normal model [14].

Prior to introducing some related work, we should mention
that the extendibility of a WIDS is proved when the
training and test data are good samples of real world web
attacks. Also, the attacks presented in these data need to be
representative of variety of attacks that exist in current web.
The most important datasets that has been used for
evaluating IDSs are provided by DARPA/MIT Lincoln
Laboratory in 1998 and 1999 [15]. These data are used by
many researchers in intrusion detection researches because
massive datasets are rare and also they provide an
immediate comparison with the original Lincoln Lab’s test.
As there are some inherent problems with this datasets [16],
[17], some researchers improved their own attack database
to supplement the attacks in the Lincoln Lab’s data [18].

Various features are proposed to be extracted from the
audit data that is available in a particular system. Krugel et
al. [19], proposed a service-specific IDS. In this system,
the anomaly score of a request is calculated using three
properties: type of the request, length of the request and
payload distribution. In this approach, if the length of the
request is longer than the average length, it is likely to be
an attack. This approach is based on the observation that
attack codes, which may cause buffer overflow, often
contain a large number of NULL characters. In the case of
a model for character distribution, the ASCII characters are
grouped to 6 categories. Then a single uniform distribution
model of these 6 groups for all requests of one service over
all possible payloads’ length is computed. Finally, a chi-
square test is performed against this model to calculate the
anomaly score of test requests. In a similar attempt,
anomaly detection system proposed by Wang and Stolfo
[14] models the normal payloads of the network traffic by
profiling the byte frequency distribution of payloads of
particular length, flowing a particular host and port. Then,
the size of the model is reduced using a clustering method.
In the detection phase, the Mahalanobis distance is used to
calculate the similarity of new data to the normal profile.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 15

The system proposed by Kruegel and Vigna [20], is an IDS
that use similar features to our work. This system utilizes a
number of anomaly detection techniques to detect attacks
against web servers and web-based applications. The
system analyzes the HTTP GET requests that use
parameters to pass values to server-side programs. These
requests are recorded in access log file of web servers.
Multiple models are produced using a wide range of
features of the mentioned requests. These features include
the presence or absence of attributes (parameters),
attributes length, attribute characters distribution, the order
of attributes, access frequency, inter-request time delay, etc.

Different algorithms are proposed to generate the normal
model of the systems and distinguish the normal behaviors
from the abnormal ones. As discussed earlier, some
anomaly detection systems produce a statistical model for
a system and detect large deviation from this profile [14],
[19], [20]. The others use machine learning techniques or
Markov chains in order to make a profile of normal
operations of system [21]. The session anomaly detection
(SAD) system [22] analyzes web access logs in order to
detect anomalous web sessions. In this system, the
Bayesian parameter estimation is adopted to build profiles
of normal webpage request sequences. Then, the likelihood
of each event is estimated based on previous probability
distribution and an anomaly score is assigned to each event.
The anomaly detection system presented in [23], have
applied Markov chains in order to model the HTTP traffic.
In the training stage, the packet payloads of the training
data (normal data) are segmented into a number of
continuous blocks. Then, a dictionary of these blocks is
produced and a symbol is associated to each entry in the
dictionary. Each segmented payload is represented as a
sequence of corresponding symbols from the dictionary.
The arrays of symbols are then used to train a Markov
chain to capture the occurrence and the spatial appearance
of each sequence within the data. In the testing stage, the
obtained Markov model is used to evaluate the incoming
HTTP traffic. In some researches, ANNs have been
applied in anomaly detection, mainly due to their
adaptability to changes in environments. Furthermore,
ANN can model complex relationships between inputs and
outputs and also find patterns in data by using non-linear
statistical data modeling. Ingham et al. [18] also developed
their framework for comparing different anomaly detection
techniques based on their gathered data.

In recent years, a growing number of computer scientists
have applied immunological models to several domains of
computer and network security [24], [25]. These systems
are characterized by some interesting features such as
adaptability, self-organizing and distribution. Among the
AIS models, the Negative Selection (NS) algorithm has a

high potential use in intrusion detection. The basic idea of
this algorithm is to generate a set of detectors that are able
to distinguish self (normal) from the non-self (abnormal)
behaviors. Gonzales et al. [26], [25] proposed a real-
valued negative selection to generated non-self samples
using the self data. A conventional classifier is then
applied to detect abnormal patterns.

3. Proposed Method

In this section, different parts of the proposed Web Host-
based Intrusion Detection System (WHIDS) are described.
The general view of the proposed system is depicted in Fig.
1. As illustrated in this figure, the proposed WHIDS is
composed of five major stages. In the first stage, with the
assistance of the PHP log file generator, the HTTP streams
recorded with their sessions in ECL format are fed to the
system as input. In the second stage called the feature
extraction stage, multiple features are extracted from the
input data. In the training stage, a learning algorithm is
employed in order to learn the states of the system
regarding the features that are extracted in previous stage.
The fourth stage involves analyzing the incoming sessions
and comparing them to learned states models, built in
training stage, in order to detect malicious activities. The
last stage handles the output of the WHIDS. The output of
the proposed system is an alarm signal for the system
security officer when a suspicious activity is detected. The
following sections describe the detailed information of
each stage.

Fig. 1 The general view of the propose WHIDS.

3.1 Data Gathering

Generally, in order to fully examine an IDS a suitable
dataset is necessary. The key point is to accurately separate
the normal data from the abnormal (attack) data. To
achieve this goal, in the data gathering phase, the web
applications and web server should be provided by a fully
protected condition to ensure that we can gather the pure

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 16

normal user behaviors. On the other hand, in order to
prove the capability of the system in detecting various
attacks, the attack data should cover large range of today’s
web attacks.

As mentioned earlier, our anomaly detector analyzes a
special kind of access log in order to build a normal profile
of web sessions and also detect malicious activates. The
reasons that the common log files (Apache log files) are
not employed are as follows. First, the proposed WHIDS
analyses both GET and POST HTTP requests received by
the web server. Generally speaking, most PHP applications
work with GET or POST methods and both methods are
needed to be used alternatively for interacting with users.
As the POST requests are not recorded in common log file
of web servers, a new log generation mechanism is needed
to record these requests in log files. It should be noted that
there are other methods for interacting with web
application such as HEAD and PUT, which are ignored
because of their low importance. Second, the boundaries of
sessions are not clearly defined in common log files. As a
result, extracting web sessions from these log files is not a
straightforward process. Although there are some
heuristics, such as time out scheme that can lead us to
identify web sessions, these methods are not very accurate
in practice.

Considering the aforementioned problems, we develop a
module called PHP log generator, written in PHP language,
in order to generate a log file that satisfies the needs of our
anomaly detector. The output of the PHP log generator
would be a special kind of log file called Enhanced
Custom Log file (ECL). An ECL entry represents a request
to the web server which belongs to a specific session. The
fields of an ECL entry include: ID (sequence number),
session identification (ID), client IP address, time of the
request, date of the request, method of the request (POST
or GET), host name, requested URL, query string (the list
of variables and values which are passed to web
application), network address translation (NAT) IP address,
forward IP address, user agent, protocol, server port
number, and client port number.

 In order to clarify the functionality of the PHP log
generator, consider the process of generating common log
file in Apache web servers. This process consists of 5 steps
(see Fig. 2). In the first step, a user writes his/her request in
the URL and sends the request to the web server. In the
second step, PHP interpreter receives the request and
fetches the PHP file and interpret it to HTML. Then, it
sends HTML file for the user. Prior to this step, the request
is recorded in common log file in Apache web server.
In the case of the method employed in this research, PHP
log generator captures users’ requests before allowing the

PHP interpreter to fetch the PHP file (see Fig. 3).
Furthermore, a cookie is created which contains the session
ID of the visitor. This cookie is stored in the user’s
machine and helps the log file generator to recall the user
in future connections; since each time the user sends a
request, the session ID is enclosed in that request. It is
worth bearing in mind that, expiration date of the cookies
are settable by the log file generator when it aims to set
session ID of the cookie.

In the method used in this research, the session is
generated by PHP log generator and is then recorded in
ECL. Since the session is a unique identity which is
assigned to users, it allows us to track clients. Session
generation has some difficulties when the client closes the
browser and re-opens it again. The process of restarting
the session with closing and opening the browser can lead
to mistake in tracking users. In other words, when users
open and close the web browser in different times, more
than one session are created and logged for them wrongly.
To avoid this problem, the cookies have been used. By
employing cookies, not only sessions are generated, but
also they can be stored for a specific period of time.

3.2 Feature Extraction

In this section, the process of generating a dataset
containing different features that are extracted from the
ECL is explained. The dataset, which is generated by the
system, can be used by other researchers as a benchmark.
As mentioned earlier, three different features are extracted
by the feature extraction module in proposed WHIDS.
These features include: the number of values assigned to
variables of each request within a session (Histogram); the
number of dual composition of characters in windows of
size two from the values assigned to variables of each
request within the session (Double windows); and a
window of size 3 from the users’ navigational path within
the sessions (Markov windows). Consider that, in feature
extraction process, input data are actually web sessions
that can consist of multiple requests to the web server.

Histogram: Generally, a request to a web application may
contain some variables and values. The length of a value
assigned to a variable can be helpful in detecting
anomalous requests. Generally, values can be either fixed-
size tokens (such as session identifiers that are entitled in
the request to resume a session) or short strings
representing human inputs (e.g. fields in an HTML form).
As a result, the length of the values assigned to variables of
a particular web application does not very much. The

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 17

Fig. 2 The processes of common log file generation in an Apache web server.

Fig. 3 The process of ECL generation in Apache web server.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 18

situation can be different when a malicious activity is
occurred. As an example, in the buffer overflow attack, the
length of the input value which is passed to the web
application may vary from the normal range.

Based on the above discussion, for the first feature that is
proposed to be extracted from the ECL, called Histogram,
we extract the variables’ values and count their character.
These values are stored in a database whose columns are
defined as particular intervals with the length of four.
Intervals are assumed for the number of characters in each
variable. For each variable in the requests of a session, we
count the number of its characters. Then, the
corresponding field’s value in the table of the database is
incremented by one.

As an example, imagine a login request in a session which
contains a password variable assigned with the value of
‘XXX’. As the length of the value for this example is 3, the
value for the corresponding column, 1 ≤ x < 5, is increased
by one in the row that is correspond to the session of the
request. Consider that, after counting the length of each
variable in a session, the vector that is corresponded to that
session is normalized. That is why the range of output is
between 0 and 1. The normalized value for each field in a
vector of a session is calculated by dividing the value of
that field by the sum of values over all the fields in that
vector.

Double Windows: Generally, the parameters that are
passed to a web application have regular characteristic. As
an example, they mostly contain printable characters. In
the case of a malicious activity, the structure of the
characters which are passed to the web application could
be quite different. Moreover, many attacks would send a
series of a single character. As a result, modeling how
different characters can appear in a normal query can be
useful in detecting abnormal occurrence of them.

Based on the above discussion, the second feature that is
extracted from the ECL is the number of dual composition
of characters, in windows of size two, from the values
assigned to variables of each request within the session.
Generally, the characters that are allowed to be used as the
value of a variable include ‘~’, ‘!’, ‘@’, ‘#’, ‘$’, ‘%’, ‘^’,
‘&’, ‘*’, ‘(‘, ‘)’, ‘_’, ‘+’, ‘`’, ‘-‘, ‘=’, ‘[‘, ‘]’, ‘\’, ‘;’, ’'’, ‘,’,
‘.’, ‘/’, ‘{‘, ‘}’, ‘|’, ‘:’, ‘<’, ‘>’, ‘?’, ‘"’, and the letters ‘a’ to
‘z’. Here, we attempted to create all possible double
composition of the aforementioned characters. In this case,
3364 doubles can be created. As in the case of histogram,
we have one column for each double and increment the
counter of each column when the corresponding double is
found in the value assigned to a variable of a request in a
session.

The high dimensionality of the produced table leads us to
add columns to the table on demand. In other words, it is
not necessary to add all possible doubles as a column to
the table, but they are added only if they are seen at least in
a window of values assigned to variables of a request. For
example, if the word ‘admin’ is assigned to a value of a
variable, the doubles that are added to the system will be
‘ad’, ‘dm’,’mi’ and ‘in’. Fig. 4 (a) shows the table when all
doubles are put into the table, whereas Fig. 4 (b) shows the
table when doubles are added when they occur in the
variables’ values. The advantage of the second approach is
that many columns will be discarded and the produced
table would be less sparse. Furthermore, this reduction
decreases memory usage.

Fig. 4 The schematic view of the doubles window table. (a) When all

possible doubles are put into the table. (b) When doubles are added to the
table on demand.

Markov Windows: Markov models are well-known as a
method to capture the sequences of web navigation in
anomaly detection systems. This model can detect
unreasonable transition of user and mitigate authentication
bypass attack. In addition to the sequence of web
navigations, we consider the variables which are passed in
the request by defining a new concept named treat.

We consider various windows of the user’s navigational
path within the sessions. Here, for the sake of efficiency
the size of the windows are set to three. Assume that a
website is included these pages: a, b, c, d, e, f, and g (the
page a represent index.php or something similar).
Accordingly, a user can have different navigational
patterns for visiting pages (as an example a-b-c >> b-c-
d >> c-d-e >> d-e-f). As mentioned, we also consider the
variables which are passed through the query in
conjunction with the navigational path of the user and call
these a treat. By introducing the treat concept in previous
example, the page “index.php” will be changed to
“index.php? variable1=”. Advantage of using treats instead
of pages is that we can model the navigational path of a
user in conjunction with the variables which are passing
during this navigation. As an example, three queries:
“index.php?var1=”, “index.php?var2=”, and
“index.php?var1&var2=” are considered as different treat
although the visited web page is identical in them (see Fig.
5). In other words, it is possible to go from one page to
another by passing different kind of variables without
considering their values.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 19

Fig. 5 The concept of treat against the movement.

Fig. 6 The treat model.

Eventually, we make a table of treats which are observed
in sessions. Similar to previous features, all possible triples
are not added as a column to the table, but they are just
added when they have been seen in a users’ sessions.
Hence, the table contains triples that have been generated
at least one time by one user. It should be mentioned that,
repeated triples will not be taken into account. Fig. 6
represents two treats stored in the system. After specifying
all triples in users’ sessions, we try to count the number of
occurrence of each treats in each session. Hence, if we
observe a particular treat in a session, the corresponding
column, in the row related to that session, should be
increased by one. Finally, the model is provided by
normalizing these counts as explained previously.

3.3 Analysis and Detection

As it was mentioned before, the WHIDS system consists of
an analysis and detection module. This module receives the
dataset generated in previous stage as input and analyzes it
to learn the normal behaviors and abnormal behaviors. In
other word, we have divided the dataset to training and
testing data. The training data is used to train the system to
distinguish the normal behaviors from the abnormal ones.
Finally, the test data is fed to the trained algorithm in order
to evaluate the capability of the algorithm in detecting
malicious activities.

The analysis and detection module is completely
independent from other parts, so it allows us to be able to
alternate the learning algorithms. Previously, we proposed
a real-valued negative selection (RNS) algorithm for
binary classification [27]. We use this AIS algorithm as the

analysis and detection module in the proposed system.
Briefly, this algorithm tries to generate some real-valued
detectors. We inspired by the universal gravitational law to
spread the detectors in the problem space in order to cover
the non-self space properly. The detailed information of
this algorithm is presented in [27]. After generating the
detectors from the training samples, the testing samples are
presented to the detector set and are compared to them
based on the Euclidean distance. The samples which are
closed to detectors sufficiently are considered as a
potential suspicious activity.

In order to prove the capability of the immune inspired
algorithm, this algorithm is replaced by some well-known
ANNs. The results of the effectiveness of these algorithms
in detecting suspicious activities are compared to each
other in following sections.

3. Experimental Evaluation

In this section, we discuss our approach to evaluate the
effectiveness of the negative selection algorithm in
detecting malicious activities in web server log files.
Moreover, we examine the capability of the features that
are extracted from log files to capture the properties of
attributes that have been collected in ECL files.

Beside the proposed RNS algorithm, three different
algorithms including Multilayer Perceptron (MLP), Radial
Basis Function Network (RBFN), and Naïve Bayes (NB)
algorithm are chosen to learn the dataset which is
generated from the ECL log files. Both MLP and RBFN
have been employed in network based IDSs. The reason
that they are chosen is that, they proved to have high
ability in detecting intrusion in the network based systems.
Consider that, due to the independency of the detector
system’s modules from the analysis and detection module,
it is possible to change the algorithms employed in this
part or use the combination of that algorithms as a new one.

As described earlier, due to the special kind of the
attributes that we defined to model the behavior of the
system, we used ECL. Also, for producing ECL we
designed a social website and collect access log files in
ECL format. For evaluating the effectiveness of the
detection system, we need both normal and attack data.
Therefore in the first step, we provided the web server with
a fully protected condition to ensure that we can gather the
pure normal users’ behaviors. In the second step, we
produced the variety of attack such as SQL injection, path
traversal, command injection, XSS, etc. to a web server
which in not under any external traffic for collecting attack
data. After data gathering, we analyzed the log files to

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 20

extract features that are comprehensively described in
previous sections. Finally, a dataset is generated which can
be analyzed by different algorithms to learn and detect the
system behavior. Table 1 provides details information of
important properties of the generated dataset from the ECL
files. The table shows the time interval during which the
ECL files were recorded, the log file size and the total
number of HTTP requests in the log file.

Table 1: The details information of the dataset used for evaluation.

Dataset Time
Interval Size (MB) HTTP

Requests

Normal Data 7 days 5 30,000

Attack Data 7 days 21 156,700

As it was mentioned earlier, three different categories of
features are extracted from the ECL. The structure of the
final dataset is as follows. There are 10 columns for the
histogram. In addition, there are 1160 columns for doubles
which 506 columns are share between attack, and normal
and 654 columns are not share between attack, and normal.
Finally, in the case of extracted treats, 30 fields or columns
are shared as a normal and attack treat and 3474 fields are
not shared. Among these non-shared fields 2486 columns
are normal treat and 988 columns are attack.

4.1 Detection Effectiveness

An important key point in evaluating the system is
choosing evaluation measures. Suitable measures can show
real nature of the system and performance of algorithms. In
this section, we compare the algorithms used in analysis
and detection module from three different points of view
including: the time they spend for learning the normal
behaviors in training phase and detecting intrusions in
testing data; the error of predicted value compared to the
real value; and the measures revealing how much the
system can detect anomalous behaviors.

The testing technique, employed in all the tests performed
in this section, is 10 times 10-folds cross validation, which
can guarantee the generality of the results. In other words,
we run each algorithm 10 times with 10-folds cross
validation and the final values for evaluation measures is
the average of these 10 runs. Also, in the case of the
proposed RNS algorithm, the number of generated
detectors in the evaluations presented in this section is set
to 50.

Execution Time: One of the important factors in the field
of WHIDS is time the system spends to model the
monitored system. In WHIDS systems, the faster we are
able to detect the intrusion, the sooner we can find the

weakness points of the system and patch the holes. The
time measure in WHIDS is the time that it takes for the
algorithm to build a model for the training samples and
predicting the status of the test samples. However, it is
worth mentioning that, execution time alone, is not enough
to evaluate an algorithm and the time should always be
seen with the ability of the system in detecting intrusions.
For example, if an algorithm is fast and needs a very short
time to build a model but has a low ability in detecting
anomalous behaviors, it cannot be a useful algorithm. On
the other hand, an algorithm that takes an enormous
amount of time to properly build the normal model and
detect intrusions is unsuitable; since, by the time the
intrusions are detected, the system may have been already
damaged too much.

Table 2 shows the execution time of each four algorithms,
employed in analysis and detection module, over the
dataset. As we can see in Table 2, among the four
algorithms that were mentioned (proposed RNS, Naïve
Bayes, RBFN and MLP), Naïve Bayes has the shortest
execution time, followed by RBFN, NS, and finally MLP.
In other words, MLP takes the longest time while the NB
and RBFN spend a short time and proposed RNS is in the
middle. It should be noted that, due to the very long time
that MLP takes to respond, even if it performs very well on
other measures, it cannot be an efficient algorithm for
some environments.

Table 2: The detailed information of the dataset.

4BAlgorithm 5BTime taken to build model (sec)

Proposed RNS 297.95

NB 0.20
MLP 2973.40

RBFN 9.30

Error: In this part different kind of error metrics are
measured to evaluate the error in the prediction values
compared to the real value of the test set. The results are
compared for each algorithm in analysis and detection
module. Consider that, in the case of the proposed RNS
algorithm, the calculation of errors is not a common task.
For this reason we ignore the calculation of error measures
for proposed RNS algorithm.

Therefore, three different error metrics are measured for
each learning algorithm. The first metric is the Mean
Absolute Error (MAE). As the name suggests, the mean
absolute error is an average of the absolute errors and
shows how the predicted values differs from the true
values. The closer the prediction value to the true value,
the smaller mean absolute error would be.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 21

The second error metric employed in our evaluation is the
Root Mean Squared Error (RMSE). RMSE is a measure of
error that is used frequently for evaluating algorithms. It is
similar to MAE since like MAE, it measures the average
difference between prediction value and true value.
However, there is one important difference between MAE
and RMSE. RMSE is more sensitive to outliers than MAE.
The RMSE is calculated such that the effect of the large
differences between predicted value and true value are
amplified. In other words, larger differences between
predicted value and the true value have a greater power to
affect the obtained value of error. On the other hand in
MAE, errors of different sizes are all treated in the same
way. Both RMSE and MAE are useful measures of error.
However, in some situations using RMSE is more
meaningful while in other situations using MAE is more
appropriate.

The last measure for reflecting the error corresponds to
each algorithm in this evaluation is the Kappa Statistics.
This metric is a statistical measure which shows the
consistency between predicted and true value in a dataset.
Also, it corrects the consistencies that occur by chance.
High value of Kappa shows high consistency between
predicted and measured values and indicates better
performance of algorithm.

Table 3 shows the results for the aforementioned error
measures for each three learning algorithms. As suggested
by this table, the predicted values by MLP algorithm have
lower error in comparison with the other two algorithms.
Moreover, the RBFN is more successful than Naïve Bayes.
However, it should be mentioned again that the error
measurements, like all other measures, cannot be used
alone to evaluate an algorithm. As we discussed in
previous section, the MLP spends an enormous amount of
time to construct the normal model and gets the results.

 Table 3: The error measures for each three learning algorithms.

Algorithm MAE RMSE Kappa
Statistics

NB 0.27502 0.52325 0.34114

MLP 0.04959 0.18309 0.90605
RBFN 0.05329 0.20916 0.89822

Efficiency Measures: In this section different kind of
metrics are measured to evaluate the ability of the
algorithms to learn the properties of the features of
the data and also detecting the malicious activities.
The results are presented for each algorithm in
analysis and detection module.

Generally, four situations can be assumed corresponding
the relation between the result of an analysis for a sample
event and its actual nature in an IDS. These situations
include: false positive (FP), if the analyzed event is not an
attack, but it is classified as a malicious activity; true
positive (TP), if the analyzed event is correctly classified
as intrusion; false negative (FN), if the analyzed event is
malicious, but it is classified as a normal activity in the
system; and true negative (TN), if the analyzed event is
correctly classified as a normal activity.
Considering these situations, two measures are defined that
can represent the effectiveness of a detection tool. These
two measures are the TP rate (recall) and FP rate (false
alarm rate). The recall measure can be defined as the
fraction of correctly classified instances to the total number
of inputs that should have been classified as anomalous. In
other words, recall is the fraction of true positive rates to
the number of all cases that should have been classified as
positive. On the other hand, the false alarm rate can be
defined as the proportion of actually normal cases that
were incorrectly classified as anomalous.
There are some other measures that can reveal the
effectiveness of the detection system. As instance, we can
consider the Precision. The precision can be defined as the
number of correct predictions divided by all the results that
have been specified by the algorithm. A measure that can
show the combination of the precision and recall is F-
measure, which is provided by taking the harmonic mean
of these two values.

 Table 4 represents the discussed measures for each of four
algorithms when 10 times 10-fold cross validation test
method was performed over the dataset. As suggested by
this table, the MLP and RBFN are performing quite the
same and they can excel the NB algorithm in detecting
attacks correctly and not producing incorrect alarms.
However, we can see that the false alarm rate generated by
the MLP algorithm is slightly smaller compared to that of
RFBN. Moreover, the recall and the precision, and hence
the F-measure corresponding to MLP exceed that of RBFN.
In additions, the proposed RNS algorithm has the highest
values for recall and precision while producing the least
false alarm. As a result, we can claim that the proposed
RNS algorithm is performing more effectively in detecting
malicious activities compared to other three algorithms.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 22

Table 4: The results of the efficiency measures for each four learning
algorithms.

Algorith
m Recall Precision F-

measure

False
Alarm
Rate

Proposed
RNS 0.9679 0.9795 0.9834 0.0007

NB 0.7449 0.7607 0.6862 0.4217

MLP 0.9561 0.9571 0.9557 0.0610

RBFN 0.9524 0.9533 0.9523 0.0656

4.1 Discussion

In this section we summarize the obtained results from the
evaluation mechanism presented in previous sections. As
discussed earlier, the execution time of the MLP is too
higher than that of the NB algorithm and RBFN.
Furthermore, we can see that the NB is the fastest
algorithm in building the normal model and detecting
anomalies. Also, the proposed RNS algorithm has a
mediocre execution time.

The errors of the predicted values for the NB algorithms
are the highest among all three algorithms, indicating how
NB is performing poorly in predicting the values for
sample data. MLP is performing more accurately in
predicting the values corresponding to data samples.
Finally, the RBFN, with a slight difference from MLP, is
performing quite powerfully in predicting the values for
data samples. As discussed, the error measures are not
calculated for the proposed RNS algorithm.

On the other hand, from the efficiency point of view, the
proposed RNS algorithm is performing more powerfully in
detecting anomalous behaviors with generating fewer
mistaken alarms compared to other three learning
algorithms. As the results of Table 4 suggest, the ability of
the MLP and RBFN are quite the same. Furthermore, we
can conclude that the NB algorithm is performing poorly in
detecting attacks, although it is the fastest algorithm.

To sum up, we can claim that, from both the cost
(execution time) and the efficiency points of view, the
proposed RNS algorithm can be selected as the best choice
for the analysis and detection module of the proposed
WHID among the other three algorithms discussed in this
paper.

4. Conclusions and Future Work

The main goal of this research was designing a host-based
WIDS. We proposed to employ the enhanced custom log
file in order to eliminate the inherent problems of common
log files in defining web sessions boundaries. Moreover,
ECL provides us with the POST requests along with the
GET requests from the HTTP protocol. Different features
were extracted from the ECL file which can represent the
operations of the monitored web server. In this research, a
dataset of normal and attack data were produced which can
be used by other researchers in the field of WIDSs. Finally,
we proposed the use of a novel RNS algorithm, inspired by
the natural immune system, in order to produce a set of
detectors that can cover the space of non-self (attack)
properly and match to the non-self data and detect them.
The results presented in this paper, proved the high ability
of the proposed algorithm in detecting abnormal activities
compared to some well-know and classical learning
algorithms.

The most significant improvement that can lead to fruitful
this research in future is to prepare the system to perform
in an online state. As discussed earlier, the AISs have some
interesting characteristics, such as adaptability and self-
organizing, that make them attractive for working on data
streams, such as HTTP streams, instead of stored data in
an offline manner. This can also be a beginning for
designing host-based web intrusion prevention systems.

References
[1] D. Qu et al., “Statistical anomaly detection for link-state

routing protocols”, in Proceedings of the 6th International
Conference on Network Protocols, 1998, pp. 62-70.

[2] W. Lee, S. J. Stolfo, and K. W. Mok, “A data mining
framework for building intrusion detection models”, in
Proceedings of the 1999 IEEE Symposium on Security and
Privacy, 1999, pp. 120–132.

[3] A. Nalluri and D. C. Kar, “A web-based system for
Intrusion Detection”, Journal of Computing Sciences in
Colleges, vol. 20, no. 4, 2005, pp. 274–281.

[4] K. Sequeira and M. Zaki, “ADMIT: anomaly-based data
mining for intrusions,” in Proceedings of the 8th
International Conference on Knowledge Discovery and Data
Mining, ACM SIGKDD, 2002, pp. 386–395.

[5] Y. Song, A. D. Keromytis, and S. J. Stolfo, “Spectrogram:
A mixture-of-markov-chains model for anomaly detection in
web traffic,” in Proceedings of the 16th Annual Network
and Distributed System Security Symposium (NDSS), 2009.

[6] J. Hu, X. Yu, D. Qiu, and H. H. Chen, “A simple and
efficient hidden Markov model scheme for host-based
anomaly intrusion detection,” IEEE Network, vol. 23, no. 1,
2009, pp. 42–47.

[7] Z. Su and G. Wassermann, “The essence of command
injection attacks in web applications,” in Proceedings of

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 23

33rd Symposium on Principles of programming languages,
ACM SIGPLAN, 2006, vol. 41, pp. 372–382.

[8] V. Gorodetski and I. Kotenko, “Attacks against computer
network: Formal grammar-based framework and simulation
tool,” in Recent Advances in Intrusion Detection, 2002, pp.
219–238.

[9] G. Wang, J. Hao, J. Ma, and L. Huang, “A new approach to
intrusion detection using Artificial Neural Networks and
fuzzy clustering,” Expert Systems with Applications, vol. 37,
no. 9, 2010, pp. 6225–6232.

[10] E. Corchado and Á. Herrero, “Neural visualization of
network traffic data for intrusion detection,” Applied Soft
Computing, vol. 11, no. 2, 2011, pp. 2042–2056.

[11] U. Aickelin, J. Greensmith, and J. Twycross, “Immune
system approaches to intrusion detection–a review,”
Artificial Immune Systems, 2004, pp. 316–329.

[12] F. S. de Paula, L. N. de Castro, and P. L. de Geus, “An
intrusion detection system using ideas from the immune
system,” in Congress on Evolutionary Computation,
CEC2004, vol. 1, 2004, pp. 1059–1066.

[13] S. Sprenkle, E. Gibson, S. Sampath, and L. Pollock, “A case
study of automatically creating test suites from web
application field data,” in Proceedings of the 2006
workshop on Testing, Analysis, and Verification of Web
Services and Applications, 2006, pp. 1–9.

[14] K. Wang and S. J. Stolfo, “Anomalous payload-based
network intrusion detection,” in Recent Advances in
Intrusion Detection, 2004, pp. 203–222.

[15] “MIT Lincoln Laboratory: Information Systems
Technology.” [Online]. Available:
http://www.ll.mit.edu/mission/communications/ist/corpora/i
deval/data/index.html. [Accessed: 27-Aug-2011].

[16] J. McHugh, “The 1998 Lincoln Laboratory IDS evaluation,”
in Recent Advances in Intrusion Detection, 2000, pp. 145–
161.

[17] J. McHugh, “Testing intrusion detection systems: A critique
of the 1998 and 1999 DARPA intrusion detection system
evaluations as performed by Lincoln Laboratory,” ACM
Transactions on Information and System Security, vol. 3, no.
4, 2000, pp. 262–294.

[18] K. Ingham and H. Inoue, “Comparing anomaly detection
techniques for http,” in Recent Advances in Intrusion
Detection, 2007, pp. 42–62.

[19] C. Krügel, T. Toth, and E. Kirda, “Service specific anomaly
detection for network intrusion detection,” in Proceedings
of the 2002 ACM Symposium on Applied Computing, 2002,
pp. 201–208.

[20] C. Kruegel and G. Vigna, “Anomaly detection of web-based
attacks,” in Proceedings of the 10th ACM Conference on
Computer and Communications Security, 2003, pp. 251–
261.

[21] N. Ye, “A markov chain model of temporal behavior for
anomaly detection,” in Proceedings of the 2000 IEEE
Systems, Man, and Cybernetics Information Assurance and
Security Workshop, 2000, vol. 166, p. 169.

[22] S. Cho and S. Cha, “SAD: web session anomaly detection
based on parameter estimation,” Computers & Security, vol.
23, no. 4, 2004, pp. 312–319.

[23] J. M. Estévez-Tapiador, P. García-Teodoro, and J. E. Díaz-
Verdejo, “Measuring normality in HTTP traffic for

anomaly-based intrusion detection,” Computer Networks,
vol. 45, no. 2, 2004, pp. 175–193.

[24] S. A. Hofmeyr and S. Forrest, “Immunity by design: An
artificial immune system,” in Proceedings of the Genetic
and Evolutionary Computation Conference, 1999, vol. 2, pp.
1289–1296.

[25] F. González, D. Dasgupta, and R. Kozma, “Combining
negative selection and classification techniques for anomaly
detection,” Computational Intelligence, vol. 1, 2002.

[26] F. A. González and D. Dasgupta, “Anomaly detection using
real-valued negative selection,” Genetic Programming and
Evolvable Machines, vol. 4, no. 4, 2003, pp. 383–403.

[27] M. Azimpour-Kivi, R. Azmi, and S. Ghorbani-Faal,
“Artificial immune systems (AIS) for classification and its
application to anomaly detection,” in Proceedings of The
4th Iran Data Mining Conference, IDMC 10, Iran, 2010.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 24

