
Cryptographic Hash Functions: A Review
Rajeev Sobti1, G.Geetha2

1School of Computer Science, Lovely Professional University

Phagwara, Punjab 144806, India

2School of Computer Applications, Lovely Professional University
Phagwara, Punjab 144806, India

Abstract
Cryptographic Hash functions are used to achieve a number
of security objectives. In this paper, we bring out the
importance of hash functions, its various structures, design
techniques, attacks and the progressive recent development
in this field.
Keywords: Cryptography, Hash function, compression
function

1.Introduction

Cryptographic techniques mainly encryption &
decryptions have been used for centuries to protect
military and political secrets and D.Kahn in [1] has
given comprehensive study of this history. Throughout
this history of cryptology, confidentiality has taken the
primary seat and it was believed that if the secrecy is
maintained (using symmetric encryption and secret
key) then the authentication will automatically be
achieved. The logic was if decryption of an encrypted
text results in a meaningful message it must have been
constructed by someone who knows the secret key.
During all this period the field of cryptology was
kingdom of selected few i.e. it was studied and
practiced by few. The trend changerswereDiffie and
Hellman, who are credited for advent of public key
cryptography in mid 70s. Their seminal paper “New
Directions in Cryptography” [2] introduced a number
of relevant concepts like Digital Signatures and
differentiated Confidentiality from Authentication and
to quite an extent initiated the development of
cryptographic schemes for the protection of
authenticity. These schemes use a very important
cryptographic primitive named ‘Cryptographic Hash
Functions’. However cryptographic hash functions
have received much less attention from the cryptologic
community than encryption schemes in the past. Bert
Rompay in his thesis [3] quoted the example of
NESSIE (New European Scheme for Signature
Integrity and Encryption) project to illustrate how
cryptographic hash functions have been ignored in the
past. In NESSIE project,seventeen block ciphers and
six stream cipherswere submitted as candidates (both
are categories of encryption schemes), but only one un-
keyed hash function and two keyed hash functions
(also known as MAC – Message Authentication Code)

were submitted,. Rompay [3] also gave example of
opencompetition used by the National Institute of
Standards and Technology (NIST)in the United States
to decide on the block cipher to be used as Advanced
Encryption Standard. This competition had fifteen
candidates out of which theRijndael [7] block cipher
finally chosen. On the other hand, for its hash function
standard [6] NIST simply chose the SHA hash
functions, designed bythe NSA without disclosure of
their design strategy or any supporting cryptanalytic
results. However the trend has changed in recent years
because of the wide range of applications areas of
cryptographic hash functions. Cryptographic Hash
Functions are used to achieve a number of Security
Goals like Message Authentication, Message Integrity,
and are also used to implement Digital Signatures
(Non-repudiation), Entity Authentication and Digital
Steganography. Considerable research has been
undergoing in the field of Cryptographic Hash
Functions. Hash Functions are being generated from
existing primitives like Block ciphers (e.g. Whirlpool
[84], Skein [66]) as well as being explicitly and
specially constructed from scratch like MDx family [9,
10] and SHA family [4,5,6,8] of hash functions.

Organization of the paper: This paper will present
the detailed study of Cryptographic Hash Functions.
Organisation of the paper is as follows. In Section 2
and 3 the basic concepts like definitions, properties and
applications of Hash functions are detailed.Section 4
discusses the basic as well as currently used iterative
structures of Hash functions. In Section 5 and 6
security properties and possible attacks are detailed. In
Section 7 various design techniques of underlying
compression functions have been explained. Section 8
throws light on the current scenario in Hash functions.

2. Cryptographic Hash Functions

The term hash function has been used in computer
science from quite some time and it refers to a function
that compresses a string of arbitrary input to a string of
fixed length. However if it satisfies some additional
requirements (as detailed further), then it can be used
for cryptographic applications and then known as
Cryptographic Hash functions.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 461

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Cryptographic Hash functions are one of the most
important tool in the field of cryptography and are used
to achieve a number of security goals like authenticity,
digital signatures, pseudo number generation, digital
steganography, digital time stamping etc. Gauravram
[16] in his thesis has suggested that the usage of
cryptographic hash functions in several information
processing applications to achieve various security
goals is much more widespread than application of
block ciphers and stream ciphers.

Rompay [3] has given the following formal definition
of hash functions

Definition: A hash function is a function h: D R,

where the domain D = {0,1}* and R = {0,1}n for some

n >= 1 (1)

Cryptographic Hash Functions are broadly of two
types i.e. Keyed Hash functions; the one which uses a
secret key, and Un-keyed Hash Functions; the other
one which does not uses a secret key. The keyed Hash
functions are referred to as Message Authentication
code. Generallythe term hash functions refer to un-
keyed hash functions and in this paper we will
concentrate on Un-keyed Hash functions only. Un-
keyed or simply Hash functions(some time also known
as MDC – Manipulation Detection Code)can further
classified into OWHF (One Way Hash Functions),
CRHF (Collision Resistant Hash Functions) and
UOWHF (Universal One way Hash Functions)
depending on the additional properties it satisfies.

2.1 One Way Hash Functions (OWHF)

OWHF as defined by Merkle [11] is a hash function H
that satisfies the following requirements:

I. H can be applied to block of data of any
length. (In practice, ‘any length’ may be
actually be bounded by some huge constant,
larger than any message we ever would want
to hash.)

II. H produces a fixed-length output.
III. Given H and x (any given input), it is easy to

computer message digest H(x).
IV. Given H and H(x), it is computationally

infeasible to find x.
V. Given H and H(x), it is computationally

infeasible to find x and x’ such that H(x) =
H(x’)

The first three requirements are must for practical
applications of a hash function to message
authentication and digital signatures. The fourth
requirement also known as pre-image resistance or
one way property, states that it is easy to generate a
message code given a message but hard (virtually
impossible) to generate a message given a code. The

fifth requirement also known as Second pre-image
resistanceproperty guarantees that an alternative
message hashing to the same code as a given message
cannot be found.

2.2 Collision Resistant Hash Functions (CRHF)

One of the early definitions of Collision Resistant Hash
functions was given by Merkle [12]. Based on the
same, CRHF may be defined as a Hash function H, that
satisfies all the requirements of OWHF (I to V as listed
in 2.1) and in addition satisfy the following collision
resistance property:

Given H, it is computationally infeasible to find a pair
(x, y) such that H(x) = H(y)

2.3Universal One Way Hash Functions
(UOWHF)

Mani Naorand Moti Yung [13] presented the idea of
Universal One Way Hash functions and using the
same, presented a digital signature scheme that was not
based on trapdoor functions. Rather Mani Naorand
Moti Yung [13], used 1-1 One way functions to
construct UOWHF and in turn implement Digital
Signature scheme.The Security property of UOHWF as
described in [13] is reframed as follows:

Let U contains a finite number of hash functions with
each having the same probability of being used. Let a
probabilistic polynomial time algorithm A (A is
collision adversary) operates in two phases.
Initially, A receives input k and outputs a value x
known as initial value, then a hash function H is
chosen from the family U. A then receives H and must
output y such that H(x) = H(y). In other words, after
getting a hash function it tries to find a collision with
the initial value. Now U will be called as a family of
Universal One Way Hash Functions if for all
polynomial-time A the probability that A succeeds is
negligible.

“How to construct UOWHF of higher orders
efficiently?” is still as unsolved problem in
cryptography.

3. Security Services of Cryptographic Hash
Functions

3.1 Achieving Integrity & Authentication

Verifying the integrity and authenticity of information
is a prime necessity in computer systems and networks.
In particular, two parties communicating over an
insecure channel require a method by which
information sent by one party can be validated as
authentic (or unmodified) by the other. [17]

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 462

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Message Integrity & Authentication may be
implemented in multiple ways. Symmetric Encryption
based mechanisms may be used but they have their
own drawbacks. Drawbacks like speed, cost factor,
optimization for data sizes etc. have been highlighted
by Tsudik [18]. Such methods combine the
Confidentiality and Authentication functions. However
there are scenarios where encrypting full message
(confidentiality) is not required. For such applications
keeping message secret is not the concern but
authenticating it is important. For example in SNMP
(Simple Network Management Protocol), it is usually
important for a managed system to authenticate
incoming SNMP commands (like changing the
parameters at the managed system), but concealing the
SNMP traffic is not required.

In order to implement message authentication and
integrity, the alternative techniques (other than the
methods mentioned in last paragraph) are MAC or hash
functions. MACs may be constructed out of block
ciphers like DES. More recently, however, there has
been a surge of interest in the idea of constructing
MACs from cryptographic Hash Functions [17]. In
addition to using Hash Functions for implementing
MAC, Hash functions can be used to achieve message
authentication and integrity goals without the use of
symmetric encryption. Tsudiac [18] has detailed a
protocol based on the same idea.Rompay [3] has also
detailed the ways of ensuring authentication using hash
functions alone as well as using hash functions with
encryption. The usage of Hash Functions for Message
Authentications and ensuring message integrity has
surged because majority of hash functions are faster
than block ciphers in software implementation and
these software implementations are readily and freely
available [17].

3.2 Implementing Efficient Digital Signatures

Digital signature is a security goal of a cryptosystem
which intends to achieve the goal of authenticity and a
security service or property of non-repudiation [16].
MAC and Hash Functions alone do not implement the
Security goal of Digital Signatures. It was Diffie and
Hellman [2] who first realised the need for a message
dependent electronic signature (fingerprint) to avoid
disputes between sender and receiver. RSA [19] was
the first public key crypto systems with digital
signature capabilities. However there has been an
interesting part of this invention. James Ellis, Clifford
Cocks and Malcolm Willaimson from GCHQ
(Government Communication Head Quarters),
Cheltenham, Britain perhaps invented the idea of
Public key in 1972. The three Britons had to sit back
and watch as their discoveries were rediscovered by
Diffie, Hellman, Merkle, Rivest, Shamir and Adleman
over the next three years because of the polices of
GCHQ that all work is top secret and cannot be shared
with anyone [20].

Hash functions are used to optimize the digital
signature schemes. Without the use of Hash, the
signature will be of same size as message. The
fundamental concept here is instead of generating the
signature for the whole message which is to be
authenticated; the sender of the message only signs the
digest of the message using a signature generation
algorithm. The sender then transmits the message and
the signature to the intended receiver. The receiver
verifies the signature of the sender by computing the
digest of the message using the same hash function as
the sender and comparing it with the output of the
signature verification algorithm. It is obvious that this
approach saves a lot of computational overhead
involved in signing and verifying the messages in the
absence of hash functions [16].

3.3 Authenticate Users of Computer Systems

Hash functions may be used to authenticate the users at
the time of login. The passwords are stored in the form
of message digest to avoid access of the same even to
Database Administrators (because of Pre-Image
resistance ofHash digest). Whenever user tries to login
and enter the password, the message digest of the
entered password is computed and compared with the
digest stored in the database. If it matches, then login is
successful, otherwise user is not authenticated.

3.4 Digital Time Stamping

Majority of text, audio and video documents are
available in digital format and a number of simple
techniques and tools are available to change digital
documents. So some sort of mechanism is required to
certify when such a document was created or last
modified. Digital timestamp solve the purpose and
provide a temporal authentication Rompay [3] in his
thesis work has suggested the multiple ways like
simple scheme based on trusted third party, scheme
that links timestamps into temporal chain and the
otherone that make use of Merkle Tree. Rompay [3]
highlighted that Digital time stamp helps in protecting
intellectual property rights, ensuring strong auditing
procedures and implementing true non-repudiation
services. Before [3], Haber and Stornetta [21] has also
detailed how One way hash functions and digital
signatures can be used to implement the digital time
stamping.

3.5 Hash functions as PRNG

Hash functions as one way functions can be used to
implement PRNG (Pseudo random number generator).
A very simple technique can be to start from an initial
value (s) known as seed and computer H(s) and then
H(s+1), H(s+2) and so on. [22, 23] has given some
other ways of constructing Pseudo random strings from
Hash functions.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 463

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

3.6 Session Key Derivations

Hash functions as one way functions can be used to
generate sequence of session keys that are used for the
protection of successive communication sessions.
Starting from a master key K0, the first session key can
be K1 = H(K0) and second session key can be K2 =
H(K1) and so on. Matyaset.al.[24] described the key
management scheme based on control vectors which
makes use of hash functions and Encryption functions
for generating session keys.

3.7 Constructions of Block Ciphers

Block ciphers can be used to construct a cryptographic
hash function however the inverse is also true and
there has been block ciphers designed using Hash
functions. In [25] Handschuh and Naccache proposed
to use the compression function of cryptographic hash
function SHA-1 [5] in encryption mode. The name of
the cipher was SHACAL. SHACAL-1 (originally
named SHACAL) and SHACAL-2 are block ciphers
based on SHA-1 [5] and SHA-256 [6] respectively.
SHACAL-1 (originally named SHACAL) is 160-bit
clock cipher and SHACAL-2 is 256 bit block cipher.
Both were selected for the second phase of NESSIE
project. In 2003 SHACAL-1 was not recommended for
NESSIE portfolio because of concerns about its key
schedule, while SHACAL-2 was finally selected as one
of the 17 NESSIE finalists.SHACAL-1 used the
compression function of SHA-1 and turned it into a
block cipher by using the state input as the data block
and using the data input as the key input. In other
words SHACAL-1contemplated the SHA-1
compression function as an 80-round, 160-bit block
cipher with a 512-bit key. Keys shorter than 512 bits
are supported by padding them with zero up to 512.
SHACAL-1 was not intended to be used with keys
shorter than 128-bit.

3.8 Other Applications

Hash Functions can also be used to index data in hash
tables, for fingerprinting, to detect duplicate data or
uniquely identify files, and as checksums to detect
accidental data corruption and for generating random
numbers also.

Looking at this wide range of applications, it is not
correct to say thatHash Functions belong to one
particular cryptographic sub branch. These
cryptographictools deserve a separate status for
themselves. They are used in almost all placesin
cryptology where efficient information processing is
required.

4. Iterative Structure of Hash Functions

4.1 MerkleDamgard Iterated Hash Design

At Crypto ’89, Ivan Damgard [26] and Ralph Merkle
[12] independently proposed the iterative structure to
construct a collision resistant hash function using fixed
length input collision resistant compression function.
Both independently provided proofs in their papers [12
and 26] that if there exists a fixed length collision
resistant compression function: f: {0,1}a X {0,1}b
{0,1}c then one can design a variable length input
collision resistant hash function H: {0,1}* {0,1}n ,
by iterating that compression function. Originally
named “Merkle’s Meta Method”, this scheme is now
mostly calledthe Merkle-Damgard construction.Lai
and Massey [27] named such a structure as Iterated
Hash Structure.

Rompay [3] has given the following formal definition
of Compression function, Output transformation and
Iterated Hash functions.

Definition: A compression function is a function f : D
 R where D = {0,1}a X {0,1}b and R = {0,1}c for
some a,b,c>=1 ¸ and a + b >= c. (2)

Definition: An output transformation is a function g :
D R whereD = {0,1}a and R = {0,1}n for some a, n
>=1 and a>=n . (3)

Definition:Suppose that a compression function f :
{0,1}c X {0,1}b{0,1}c and an output transformation
{0,1}c{0,1}n are given. Then an iterated hash
function is the hash function h : ({0,1}b)* {0,1}n
defined by h(X0, X1, .. Xt-1) = g (Ht) where Hi+1 = f (Hi
, X i) for 0<=i<t. The input block Xi (0<=i<t) =
{0,1}b and Initial chaining value H0 = IV ∈ {0,1}c (4)

As per the definition the block length is b bits and
chaining variable length is c bits long. In case the input
string is not an exact multiple of b bits then some sort
of padding is used. The padding technique has varied
from one algorithm to another. However the general
convention is to pad the input strings with bit 0
followed by sequence of bit 1 and at the end append
the length of message such that after all the padding
(bit 0, sequence of 1s and the message length), the total
length of the padded message is exact multiple of b bits
(block length). The length of message is padded to
avoid a particular type of attack named as fixed point
attack. The output transformation is required when the
message digest size required is less than the size of
chaining variable i.e. n < c. In case n = c, then output
transformation can be ignored. Wherever output
transformation is required, it can be implemented by
just selecting c bits out of n or using some folding
techniques.

Merkle [12] and Damgard [26] suggested that if IV is
not fixed then finding second pre-image or collision is
trivial and also if length is not padded then attacks
based on fixed points can be used to break iterated
hash structure. Both independently provided proof that

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 464

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

if IV is fixed as well as length padding is used then
hash function will be collision resistant if compression
function is collision resistant. The process of fixing IV
and adding length padding is known as MD-
strengthening.

Majority of Hash Functions launched in recent years
and being used these days follow the iterated hash
function. MD4 [9], MD5 [10], SHA-1, SHA-224,
SHA-256, SHA-384, and SHA-512 [4, 5, 6,8] all are
influenced by the Merkle and Damgard’s iterated hash
design as explained above.

MerkleDamgard construction as explained above has
some drawbacks like it suffer from some generic
attacks (to be discussed in Section 5 and 6)
JouxMulticollision [37], Herding attacks [38], Length
Extension attacks [39] etc. Because of these structural
weaknesses, some other constructions have been
suggested in literature. Few of these are:

4.2 Wide Pipe Iterated Hash Design

Mainly because of length extensions
&JouxMulticollisions[37], Stefan Lucks [36] proposed
an improvement over MerkleDamgard(MD) structure
named ‘Wide Pipe Iterated Hash Design’.Wide pipe
design is quite similar to MD design, but it has larger
internal state size. Lucks [36] suggested that Joux [37]
and length extension are mainly based on Internal
collisions and internal collisions can be avoided if we
widen the internal pipe from n bits to w >= n bits. If a
hash of n bits is desired, then two compression
functions f1andf2 will be required:
-- f1: {0,1}w X {0,1}m {0,1}w
-- f2: {0,1}w {0,1}n

Then wide pipe iterated hash is constructed like follow:
-- for i = 1, …., L : Computer Hi = f1 (Hi-1 , Mi)
-- Finally Set H(M) = f2 (HL)
Compression function f1takes w bits (generally w = 2n)
of chaining value and m bits of message (M) and
compressed this to an output of w bits and in the last
another compression function f2 compresses the last
internal hash value (w bits) to the final hash value (n
bits). SHA-224 and SHA-384 are based on the same
design and are derived from SHA -256 and SHA-512
respectively. In addition to wide pipe, Lucks [36] has
also proposed double-pipe hash (twined pipe) design.

4.3 Hash Iterated Framework (HAIFA)

Biham and Dunklermann [41] in 2006 proposed the
HAIFA structure to overcome many of the pitfalls
observed in MerkleDamgard Construction.The main
ideas behind HAIFA are the introduction of number of
bits that were hashed so far and a salt value intothe
compression functions. Formally, instead of using a
compression functionof the formfMD : {0,1}m’ X
{0,1}n{0,1}m’, Biham and Dunklemann [41]
proposed to use fMD : {0,1}m’ X {0,1}n X {0,1}b X

{0,1}s{0,1}m’, i.e. in HAIFA chaining value Hi is
computed as

Hi = f (Hi-1, Mi, #bits, salt)
where#bits is number of bits hashed so far and salt is a
salt value.For comparison of HAIFA structure with
Wide pipe design or other designs refer [41].

4.4 Fast Wide Pipe (FWP) Design

A further improvement of wide pipe design was
suggested by Mridul Nandi and Souradyutipaul [40] in
2010. They proposed that FWP was nearly twice as
fast as the Wide-pipe for a reasonable selection of the
input and output size of the compression function. The
idea was that internal state i.e. widepipe chaining value
should be divided in two halves. One half is inputted to
the succeeding compression function but the other half
is combined (XOR) with the output of that succeeding
compression function i.e. we feed-forward half of the
previous chaining value to XOR it to the output of the
compression function.

4.5 Sponge Construction

G. Bertoniet. al.[42, 43, 44] proposed sponge
construction to design hash functions that closely map
the random oracle. In the context of cryptographic hash
functions, sponge functions provide a particular way to
generalize hash functions to more general functions
whose output length is arbitrary. G. Bertoniet. al. in
[42] explained that sponge functions are only
distinguishable from random oracles by the detection
of innercollisions and the probability of inner
collisions can be made arbitrarily small by increasinga
security parameter, called the capacity.

As per G. Bertoniet. al. [44] the sponge construction is
a simple iterated construction for building a
function F with variable-length input and arbitrary
output length based on a fixed-length transformation
(or permutation) f operating on a fixed number b of
bits. Here b is called the width.

The sponge construction operates on a state
of b=r+c bits, r is called bitrate and c as capacity.
Initially all the b bits of state are set to zero and I/P
message is padded and divided into block of r bits
each. Then sponge construction proceeds in two
phases: Absorbing phase and Squeezing Phase

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 465

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 1 The sponge construction for hash functions. pi are input, zi are
hashed output [44]

In first phase input is "absorbed" into the hash state at a
given rate, then an output hash is "squeezed" from it at
the same rate. To absorb r bits of data, the data is
XORed into the leading bits of the state, and the block
permutation is applied. To squeeze, the first r bits of
the state are produced as output, and the block
permutation is applied if additional output is desired.
Central to the Sponge construction is capacity c of
hash function and it can be adjusted based on security
requirements. SHA-3 [45] final round candidate
algorithm Keccak[46] is a hash function based on
Sponge construction only and it sets a
conservative c=2n, where n is the size of the output
hash.

4.6 Other Constructions

In addition to the above listed Iterative Hash
constructions, few more like Enveloped
MerkleDamgard, RMC construction and ROX
construction have been suggested in literature. To
know more about these structures refer [41, 52, 53,
54].Cascaded Constructions have also been
discussedin the literature to build large hash values by
concatenating concatenate several smaller hashes. For
example, given two hash functions H1 and H2, the
concatenation H1(M) || H2(M) can be used to generate
large hash value for message M. In this construction,
H1 and H2 can either be two completely different hash
functions or two slightly different instances of the
same hash function. But Joux [37] using
multicollisions proved that If H1 and H2 are good
iterated hash functions with no attack better than the
generic birthday paradox attack, then the large hash
function H1|| H2 obtained by concatenating H1 and H2
is not really more secure that H1 or H2 by itself.

5.Security Properties of Hash Functions

5.1 Basic Security Properties

Basic notion of security of Hash functions revolves
around preimage resistance, second-preimage
resistanceand collision resistanceas defined in Section
2.In literature Collision resistance property is referred
to as collision freeness or strong collision resistance,
second pre-image resistance is called as weak collision
resistance and preimage resistance is referred to as
one-wayness [16]. It is easy to see that collision
resistance implies second-preimage resistance i.e. if a
hash function his collision resistant then his also
second pre-image resistant. However second-preimage
resistance and one-wayness are incomparable (the
properties do not follow/imply one another), although

hash functions which are one-way but not second-
preimage resistant are quite contrived. In practice,
collision resistance is the strongest property of all
three, hardest to satisfy and easiest to breach, and
breaking it is the goal of most attacks on hash
functions [27].

Rogaway and Shrimpton [14] extended the notion of
hash function security and defined seven different
security notions, three on pre-image resistance, three
on second pre-image resistance and one on collision
resistance. The work of Rogaway and Shrimpton [14]
is based on generic concept of a hash function family
that is a finite set of hash functions with common
domain and range. The security of hash function and
probability of success of an adversary depends on the
manner in which one chooses a particular hash
function from the hash function family for example the
hash function can be chosen on random or may be
fixed element. Based on these variations, seven
different security notations and relation between them
are given in [14].

5.2 Avalanche Criterion and Completeness

From a good hash function it is desired that for two
different inputs, the output of hash function should be
completely different, regardless of difference in inputs.
The same can be formalised with two properties of
hash functions i.e. Completeness and Avalanche effect.
Strong Avalanche effect represents a property when
small change in input result in a significant change in
message digests. Completenessrepresents a property
when eachinput bit affects all output bits.Strict
Avalanche Criterion combines both the avalanche
effect and thecompleteness and represent a property
when a change in one bit of input results in changing
every bit of the output (message digest) with a
probability of ½. If these criterions are not satisfied
then the probability of successful attack on the hash
functionsincreases considerably.

5.3 Certificational Properties and weaknesses

In addition to basic properties some certificational
properties have been defined in literature from time to
time. For exampleIlyaMironov [28] and Gauravram
[16] suggested near collision resistance, partial pre-
image resistance, free start collision resistance, pseudo
collision resistance, semi Free start collision as
certificational properties for hash functions and / or
underlying compression functions. Lack of resistance
of these properties is termed as certificational
weaknesses. Certificational properties for hash
functions and compression functions intuitively appear
desirable but cannot be shown as necessary properties
of hash functions. Certificational weaknesses does not
result in breaking a hash function directly but is
enough to cast doubt on its design principles and may
lead to full collision under certain circumstances.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 466

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

CertificationalProperties or weaknesses may be
defined w.r.t. hash function as a whole or for
underlying compression function only. These
certificational properties, weaknesses and possible
attacks on these properties are briefly touched upon in
this section:

5.3.1 Certificational Properties of Hash functions

Near Collision Resistance: A hash function is said to
be Near Collision resistant if it is hard to find two
messages x and x’ such that the hamming distance
between h(x) and h(x’) is small (typically a few
bits).Near collision may also be termed as almost
collision and can be defined for underlying
compression function also. With respect to underlying
compression function, almost / near collision means
that two message blocks are found for which the
difference between the outputs has a low Hamming
weight.Gauravram [16] quoted the example of how
near collisions in case of hash functions with truncated
outputs can lead to full collision. If we have a
truncated hash function that makes use of leftmost 224
bit of output after chopping rightmost 32 bits then if
near collision is found such that message digests only
in the rightmost 32 bits then such a near collisions are
practically full collisions only.

Partial Pre-image resistance: A hash function is said
to be partial pre-image resistant if difficult in finding a
partial pre-image is same as finding pre-image from a
given digest. Also it is hard to find the input if part of
the input is known along with digest.

5.3.2 Certificational Properties on the Compression
Function

Certificational properties or weaknesses on the
compression functions used in the MerkleDamgard
structure or similar other iterative structures are
classified based on the IV / H0 (Initial value) used.
These classifications and nomenclature has varied from
author to author. For example Pseudo collision
resistanceas defined in [47] is termed as Special
pseudo (type-3) collision resistancein [16].
Similarlyfor an attack, Rompay in [3]has used the
nomenclature as Random IV collision and for the same
attack Gauravram in [16] has used the nomenclature as
Semi free start collision. Furthermore Mironovin [28]
defined Pseudo Collision resistance and Free Start
collision resistance as two separate properties on the
other side Gauravrama [16] and Knudsen [48] termed
pseudo collisionresistance and free start
collisionresistance as one and the same thing. In this
sub section we use the terminology and classification
done by Gauravram in [16] as it has been found most
exhaustive and clear but at the same time we also list
the alternative nomenclature used by different authors.

Type -1 Collision: Type-I collision resistance is not a
certificational property but it is discussed here as it
related to other certificational properties based on
initial value. Type-I collision refers the collision in a
compression function using an IV (initial value)
specified in the specification of the hash functions for
two distinct messaged. Corresponding property may be
defined as: it is hard to find two messages X and X’ for
compression function f: {0,1}n X {0,1}m {0,1}n such
that f(H,X) = f (H, X’) , where H represents the initial
value (IV) specified in the specification of hash
function. Type-1 collision is also referred to as strong
collision.

Type – 2 Collision: Type – 2 collision resistanceis
also termed as Random IV Collision resistance [3] or
Semi Free Start collision resistance [16]. Type-2
collisions are the collisions using the same random (or
arbitrary) initial values for two distinct message inputs.
Corresponding property may be defined as: it is hard to
find two messaged X and X’ for the compression
function f: {0,1}n X {0,1}m {0,1}n such that f(H,X)
= f (H, X’) , where computation starts from an arbitrary
(random) value H for the input chaining variable.

Type – 3 Collision: Type - 3 collision resistance is
also termed as Pseudo collision resistance [16] or Free
start collision resistance [48]. Type-3 collisions are the
collisions of compression function using two different
initial values for two distinct message inputs.
Corresponding property may be defined as : it is hard
to find two pairs (H, X) and (H’, X’) for compression
function f: {0,1}n X {0,1}m {0,1}n such than f(H,X)
= f (H’,X’) such that (H , X) ≠ (H’, X’). Here H/H’
represent initial / intermediate chaining value and X/X’
represent message block.

Special Type – 3 Collision: Special Type – 3 collision
are the collisions of the compression function using
two different initial values on the same message block.
Corresponding property may be defined as: it is hard
to find two pairs (H, X) and (H, X’) for compression
function f: {0,1}n X {0,1}m {0,1}n such than f(H,X)
= f (H,X’) such that X ≠ X’. Here H represent initial /
intermediate chaining value and X/X’ represent
message block. Note that [3] and [47] uses pseudo
collision resistance to represent the same property.
However Gauravram [16] categorised it as a special
category of Pseudo collision resistance and named it as
Special pseudo collision resistance.

Inner (almost) Collisions: As defined by Rompay [3],
these are collisions or almost-collisions for the
temporary values of the chaining variable (for two
distinct message blocks), at some stage of the
compression function (for example after s1 step
operations where s1 < s). This may be helpful for an
attacker who tries to generate a collision in the output
of the compression function.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 467

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

The collision attacks on compression functions as
described above are also applicable on their hash
function iterative modes. Type-1 collision attacks are
practical one and can be used to attack applications
that in turn make use of Type-1 susceptible hash
functions. Paper [49] represents such an example.
Type-2 or Type -3 attacks are not practical but create
doubts on the hash functions. Attacks in paper [47] and
[50] are examples of Type-2 or Type-3 attacks. In [47]
B. den Boer and A. Bosselaers gave an early, although
limited, result of finding a "pseudo-collision" (Type- 3)
of the MD5 compression function; that is, two different
initialization vectors which produce an identical digest.
In [50] H. Dobbertin published an attack (Type-2),
without details, that found a collision in MD5 with an
IV (Initial value) chosen by him that was different
from the one actually used in MD5 . While this was not
an attack on the full MD5 hash function, it was close
enough for cryptographers to recommend switching to
a replacement, such as SHA-1. However attacks in [31]
and [32] are Type-1 attacks.

6. Methods of attack on Hash Functions

Attacking a hash function means breaking one of the
security properties (basic, extended or certificational
property) of hash functions. For example breaking pre-
image resistance means adversary is able to break the
pre-image property i.e. an adversary is able to create a
message that hashes to a specific hash. Breaking
certificational properties may not yield a practical
attack but are an important warning to reflect weakness
in the hash / compression function. Gauravram [16]
recommended switching to a strong hash function
when an attack on certificational properties is
observed. In an iterated hash function, if a pre-image
or collision (Type-1 collision only) can be found for
compression function (f), the same can be extended
and an attack on hash function can be derived. So
attacks may focus on structure of hash function or on
algorithm of compression function.In this sub section
we will review different types of attacks on hash
functions.Attacks on Hash functions can be classified
into two broad categories - Brute Force Attacks and
CryptanalyticalAttack.

Fig. 2 Classification of attacks on Hash Functions

6.1 Brute Force Attack

Brute force attacks work on all hash functions
independent of their structure andany other working
details. They are similar to exhaustive search or brute-
forcekey recovery attacks on the encryption schemes to
extract the secret key of the encryption scheme. The
security of any hash function lies in its output bit size.
For a hash code of length n, the level of effort required
to resist different brute force classical attacks on hash
functions is as follow:

Pre-image attack: Effort required for brute force
attack = 2n. In this attack, for a given n-bit digest h
ofthe hash function H(), the attacker evaluates H()
with every possible inputmessage M until the attacker
obtains the value h.

2nd Pre-image attack: Effort required for brute force
attack = 2n.In this attack, for a given message M
andthe hash function H(), the attacker tries H() with
every possible input messageM' ≠ M until the attacker
obtains the value H(M).

Collision attack: Effort required for brute force attack
= 2n/2. In this attack, for a given hash function H,the
attacker tries to find two messages M and M' such that
M ≠ M' andH(M) = H(M'). On average the opponent
would have to try 2n / 2 (= 2n-1) messages to find one
that matches the hash code of the intercepted message
However a chosen plain text attack (based on Birthday
Paradox) is possible and in that case the effort required
for collision in a Hash function is 2n/2 in place of 2n-1
[29]. It is also referred as Birthday attack.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 468

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

In addition to the above discussed classical attacks, the
following natural extensions have also been studied by
different authors.
K-Way Collision attack for K >=2: FindK different
messages Misuch thatH(M1) = … = H(MK). [36]
K-Way (2nd) pre-image attack for K>=1: GivenY (or
M with H(M) = Y), find K different messages Mi, with
H(Mi) = Y and Mi ≠ M.[36]

6.2 CryptanalyticalAttack

Cryptanalysis of Hash functions focuses on the
underlying structure of hash function and/or on the
algorithm of Compression Function. Due to fixed size
of the hash values compared to much larger size of
themessages, collisions must exist in hash functions.
However, for the security of thehash function, they
must be computationally infeasible to find.
Collisionsin hash functions are much easier to find
than pre-images or 2nd pre-images.

Informally, a hash function is said to be "broken"
when a reduced number ofevaluations of the hash
function compared to the brute force attack
complexitiesand the strengths estimated by the
designer of the hash function are used toviolate at least
one of its properties immaterial of the computational
feasibilityof that effort. For example, assume that it
requires 290 evaluations of the hashfunction to find a
collision for a 256-bit hash function. Though it is
impracticalto generate this amount of computational
power today, the hash function is saidto be broken as
this factor is less than the 2128 evaluations of the hash
functionrequired by the Birthday attack. It should be
noted that hash functions are easier to attack
practically thanencryption schemes because the
attacker does not need to assume any secrets andthe
maximum computational effort required to attack the
hash function is onlyupper bounded by the attacker's
resources not users gullibility. This is not thecase with
block ciphers where the maximum practical count of
executions of theblock algorithm is limited by how
much computational effort the attacker can getthe user
to do [16].

Collision finding algorithm and attacks may be
classified as single block attacks or multi block attacks
depending on whether that attack uses single block
(i.e. one compression function) or more than one block
(i.e more than one iteration of compression function)
for finding collision or pre-images.

Gauravaram [16] in his Ph.D. thesis has further
classified Cryptanalyticalattacks on hash function in
two categories i.e. Generic and Specific attacks.

6.2.1 Generic Attacks

Theattacks that work on a general hash function
construction are called genericattacks. For example,

attacks on the Merkle-Damgard construction that
workon all hash functions designed using
MerkleDamgard construction are the generic
attacks.Generic attacks are applicable even if we
replace the underlying compression function by some
abstract oracle. Length extension attacks,
Jouxmulticollisionattacks [37], Generic 2ndpreimage
attacks like the one based on Fixed points, correcting
block attack, Herding Attacks and Meet in the Middle
attacks are example of Generic cryptanalysis attacks.

a) Length Extension Attacks:Length extension also
known as ‘message extension’ or ‘padding’ attack is
well known weakness of MerkleDamgard construction.
Given h = H(M), it is straightforward to compute M’
and h’, such thath’ = H(M||M’) (even for unknown M
(but for known length |M|). The attack is based on
using H(M) as an internal hash for computing
H(M||M’).Gauravram [16] classified it further in two
types i.e. Type – A extension attack and Type- B
extension attack. The categorization is based on
whether the original message contains the length
padding or not.Using the length extension attack it is
possible, from only hash of a message and its length, to
compute hash of longer messages that start with the
initial message and include the padding required for
the initial message to reach multiple of block size [56].
Length extension attack has been studied way back in
1992 by Tsudic [18] and even these days certain
vulnerabilities based on this simple attack are being
observed. Thai Duong and Juliano Rizzo [55] in 2009
showed a vulnerability in the Flickr (one of the best
online photo management and sharing application in
the world) signing process for making use of Flickr
authentication API and this vulnerability allows an
attacker to generate valid signatures without knowing
the shared secret. By exploiting this vulnerability, an
attacker can send valid arbitrary requests on behalf of
any application using Flickr's API. When combined
with other vulnerabilities and attacks, an attacker can
gain access to accounts of users who have authorized
any third party application.

b) JouxMulticollisionAttacks:Joux in [37] studied the
generic multicollision attack on iterated hash functions.
Joux showed that finding multicollisions, i.e. r-tuples
of messages that all hash to the same value, is not
much harder than finding ordinary collisions, i.e. pairs
of messages, even for extremely large values of r.
More precisely, the ratio of the complexities of the
attacks is approximately equal to the logarithm of r i.e.
constructing 2d – collisions cost d times as much effort
as building ordinary 2-collisions. In this attack, it is
assumed that collision finding algorithm exists and the
algorithm finds collision for the compression function
fwith every call to it. To start with the attacker calls
this collision finding algorithm to the compression
function with the initial state H0 and algorithm return
two messages M1 and N1 such that fH0(M1) ≠ f H0(N1)
= H1. Then the attacker calls this algorithm with state

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 469

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

H1 and algorithm returns two message block M2 and
N2 such that fH1(M2) ≠ f H1(N2) = H2. H2 is then used
as state and call to algorithm returns message blocks
M3 and N3 such that fH2(M3) ≠ f H2(N3) = H3. Similarly
successive calls to algorithm can be made. If only thee
calls are made, then we have obtained 23 = 8 different
messages that maps to digest H3. If we assume
collision finding algorithm was based on brute force
attack and every call takes time 2n/2 then it took O (3 x
2n/2) time to find 8-collisions. In general it can be
demonstrated that this technique required O (d x 2n/2)
time for finding 2d-collisions instead ofa compression
function f using a brute force collision finding
algorithm. The brute force mechanism for finding 2d-
collisions would have required Ω1(2n.k) where k = (2d-
1)/2d and n is the message digest size.

c) Multi (2nd) preimage Attacks based on Joux
Technique: Thenotionmulti (2nd) preimage represents
multiple preimages as well as multiple 2ndpreimages.
The technique presented by Joux [37] can be extended
and multi (2nd) pre-images can be found at a cost less
than the brute force complexity of finding multiple
(2nd) preimages. Gauravram [16] exemplified this
technique and presented that total cost of 2d –
preimages or 2d – 2nd preimages for n-bit message
digest is O (d x 2t/2 + 2t) instead of Ω (2d x 2n).

d) Generic 2nd preimage Attacks:In generic 2nd
preimage attack on hash function of length n bits, the
attacker tries to find a second pre-image X’ for a target
message X such that X ≠ X’ and H (X) = H (X’) with
an effort less than 2n . A number of techniques have
been suggested to produce generic 2ndpre-image
attacks. Correcting Block attacks as defined in [3] can
be used to generate generic 2nd pre-image attacks. R D
Dean [51] used Fixed Point attacks to generate generic
2ndPreimages and Kelsey and Sheiner [57] made use of
jouxmulticollisionsfor generating 2nd pre-image
attacks. In this subsection we provide brief overview of
these attacks:

Correcting block attack: In thisopponent used a pre-
existing (message, digest) pair and tries to change one
or more message blocks such that the resulting digest
remains same. To generatea second preimage X’for a
target message X, the adversary chooses one of the
input blocks Xi and replaces it with an alternative
block Xi’ so that f (Hi, Xi’) = f (Hi, Xi). If all other
blocks of the alternative message X’ are equal to the
corresponding blocks of target message X, then the
same hash result will be obtained and a second pre-
image has been found. If the size of the internal state
i.e. chaining variable is c bits and block size is b bits

1Formally the symbol O is used for the expected
running time and is asymptotically “at most” and Ω is
used for the expected running time and is
asymptotically “not less than”

and b > c, then the number of block Xi’ satisfying the
property f (Hi, Xi’) = f (Hi, Xi) is approximately 2b / 2c
i.e. 2b-c. Challenge is such blocks are a small subset of
all possible blocks, and for an ideal hash function
about 2c operations are needed to find one[3]. One
round of MD5 has been detected for this attack. In
MD5, the attacker takes a message block X (consisting
of 16 words), fixes the 11 words of X, modifies one
word and calculate the remaining 4 words to generate a
message block X’ which maps to the same digest.
Correcting block attack is possible if the preimages for
compression function can be obtained with the
computation starting from pre-specified chaining
values. Fixing the value of IV helps in thwarting the
attack thus MD strengthening in case of
MerkleDamgard construction avoids this attack from
working on complete hash functions [16].

Fixed Point Attacks: In thisattack adversary looks for
a fixed point in the compression functionf. A fixed
point is chaining variable Hi such that f (Hi, Xi) = Hi .
Few authors refer the pair (Hi, Xi) as fixed point.
Whenever fixed point exists, the presence of message
block Xi does not affect the message digest. To
generate preimages of message X, one may insert
arbitrary number of blocks with value Xi to the
message X where chaining variable takes the value Hi.

Fixed point attack can be avoided by inserting the
message length at the end of message. As MD
strengthening pad the message length at the end of
original message MD strengthening thwarts fixed point
attacks from affecting complete hash functions.
However if fixed points are occur at more than one
iteration of compression function, then attack may
become practical. In such a case the attacker can insert
message block Xi at stage i such that f (Hi, Xi) = Hi
andcan remove Xj from X at some later stage j, such
that f (Hj, Xj) = Hj. Even in this case attack is only
possible if the initial value is not fixed (the attacker
chooses IV = Hi), or if fixed points can be found for a
significant fraction of all chaining values.

R D Dean in [51] presents different techniques that
make use of fixed points to produce attack on complete
hash functions even in the presence of MerkleDamgard
strengthening. One very simple technique proposed by
R D Dean in [51] for MD4 and MD5 hash functions is
to repeat the fixed point block 255 times, which adds 264
bits to the input. Since the message length in MD4 and
MD5 is computed modulo 264, this effectively adds 0
to the length field, and the proper hash value comes
out. Kelsey and Sheiner [57] have also improved the
generic correcting block attack using the notion of
expandable messages such that it bypasses the defense
provided by MD strengthening. For details of
expandable messages and various techniques to find
generic 2ndpreimage attacks refer [51, 57].

e) Herding Attacks: Kesley and Kohno in [38]
presented a new attack on hash functions based on

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 470

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

MerkleDamgard structure, called the Herding attack.
In Herding attack, an attacker who can find many
collisions on the hash functions by brute force can first
provide the hash of a message, and later “herd” any
given starting point of a message to that hash value by
the choice of an appropriate suffix. With this attack
Kesley and Kohno identified an essential security
property for hash functions called Chosen Target
Forced Prefix (CFTP) preimage resistance. CFTP
preimage resistance as defined by Kesley and Kohno in
[38] is reproduced here:

In the first phase of the attack, adversary performs
some pre-computation and then outputs an n-bit hash
value H: H is his “Chosen Target”. The challenger
then selects some prefix P (picks uniformly at random
from large but finite set of strings) and supplies it to
adversary; P is the “Forced Prefix.” In the second
phase of attack, adversary computes and outputs some
String S. Adversary is said to compromise the CFTP
preimage resistance if it takes less than 2n evaluations
of the hash function to find S such that hash(P||S) = H.

Kesley and Kohno in [38] presented that for hash
functions based on MerkleDamgard construction,
CTFP preimage resistance can always be violated by
repeated application of brute-force collision-finding
attacks. An attack that violates this property effectively
(less than 2n computations) “herds” a given prefix to
the desired hash value; and such an attack is called as
Herding attack.As per Kesley and Kohno [38] the
following steps are used for applying herding attack:

i. In the first phase of a herding attack, the
attacker repeatedly applies a collision-finding
against a hash function to build a diamond
structure2.

ii. In the second phase of the attack, attacker
exhaustively searches for a string S’ such that P
|| S’ collides with one of the diamond structure’s
intermediate states.

iii. Having found such a string S’, attacker can
construct a sequence of message blocks Q from
the diamond structure, and thus build a suffix S
= S’ || Q such that hash (P||S) = H.

Kesley and Kohno [38] also described the various
contexts in which herding attack can be used.
Nostradamus attack, Stealing credits for inventions,
Tweaking a signed document and Random number
fixing are examples of such contexts explained in [38].
At very general level, the methodology of these attacks
as explained in [38] is as follow:

i. The attacker presents the victim with a hash H,
along with a claim about the kind of
information this represents. She promises to

2Diamond structure is a data structure reminiscent to a
binary tree. Diamond structure is a structure of
messages constructed to produce large multicollisions.
For details refer [38]

produce the message that yields the hash after
the events predicted have occurred.

ii. The attacker waits for the events to unfold, just
as the victim does.

iii. The attacker herds a description of the events as
they did unfold into her hash output, and
provides the resulting message to the victim,
thus “proving” her prior knowledge.

f) Meet in the Middle Attack: This attack is a
variation of birthday attack and is applicable to hash
function that make use of compression function f
invertible to the chaining variable Hi or the message
block Xi .It allows theattacker to construct messages
that corresponds to certain digest. To apply this attack
adversary generates r1 samples for the first and r2
samples for the last part of the bogus message.
Adversary then moves forward from initial value and
goes backward from the hash value. The probability
that two intermediate values are same is given by, P ≈
1 – e - k

, wherek = (r1*r2) / 2n ; n = length of initial
value or chaining value or message digest.If meeting
point is found then then the concatenation of the
message parts form a bogus message that results in the
given hash value. [58]

6.2.2 Specific Attacks

The attacks that work on specific hash function or the
algorithm of its compression function are called
specificattacks. For example, collision attacks on the
specific hash functions MD4 [30],MD5 [31,32], SHA-
0 [33,34] and SHA-1 [33,35]. Attacks using
differential cryptanalysis, linear cryptanalysis,
rotational cryptanalysis &attack on the underlying
encryption algorithms are type of specific
cryptanalysis attacks. The most successful of these are
the attacks based on differential cryptanalysis.

Differential Cryptanalysis: Differentialcryptanalysis
was introduced by Biham and Shamir [59] and the
technique was mainly devised to analyse block
ciphers. In differential cryptanalysis the correlation
between the difference in input and output is studied.
If X and X’ are two inputs then the difference between
them is defined as ∆X = X op X’. If H and H’ are two
corresponding message digests then the difference
between them is defined as ∆H = H op H’. The
difference operation op canbe XOR operation or
integer subtraction or any other operation. For
differential cryptanalysis attack, the attacker searches
for specific difference in inputs (∆X)that result in
specific difference in output (∆H) with high
probability. In case of hash function, the difference in
output should be zero to result in collisions. Examples
of specific attacks using differential cryptanalysis are
[30, 31, 32,33, 34, 35, 60, 61].

Linear Cryptanalysis: Linear cryptanalysis was
proposed by Matsui [62]. S. Bakhtiariet. al. in [58]

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 471

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

quoted that for Block ciphers like DES, better results
have been obtained with Linear Cryptanalysis
compared to Differential Cryptanalysis. Hash
functions based on the Encryption algorithm can be
susceptible to linear cryptanalysis, but till date not
much successful attack on Hash functions using linear
cryptanalysis has been reported.

Rotational Cryptanalysis: The
termRotationalcryptanalysis was coined by in February
2010 by Dmitry Khovartovich and IvicaNikolic in
[64]. The attack may also be classified as generic
attack because as per [64] it may be applied on all the
algorithms that are based on three operations modular
addition, rotation and XOR (ARX for short). However
we have placed it under the category of specific attacks
as this attack has been demonstrated by Khovartovich
and Nikolic against reduced round Threefish cipher –
part of Skein hash function [66], a SHA3 competition
[45] candidate only. Secondly as per our classification,
the generic attacks are applicable to all the hash
functions falling under a particular structure like
MerkleDamgard, so it is better to consider rotational
cryptanalysis as a specific attack. In October 2010, a
followup attack that combines rotational cryptanalysis
with the rebound attackwas presented by the same
authors along with Christian Rechberger in [65].

Attacks on underlying Encryption Algorithm: Ifthe
underlying compression function of hash function is
implemented using the Encryption algorithm, then the
weakness in encryption algorithm can be exploited to
attack hash functions. Encryption function may have
complementation property or weak keys or may have
fixed points and the same may be used to attack
complete hash function based on encryption algorithm.
Miyaguchiet. al. in[63] analyzed the hash functions
from the standpoint of the complementation property
and weak keys of the block ciphers used in them and
notified their weaknesses.

7.Type of Hash functions based on design
of underlying Compression Function

From the discussion in section 4, it is evident that for
processing arbitrary length of input the iterative
structure of hash function (may be MerkleDamgard or
any other) is desired and the crucial part of this
iterative structure is Compression function and thus
designer can view of all these approaches have been
given in this section.

7.1 Hash Functions based on Block Cipher as
Compression functions

One of the possible approaches that have been studied
by the authors is to design a compression function
from an existing cryptographic primitive like block
ciphers. The advantage is that the existing

implementations in hardware or software can be
reused. Secondly some existing block ciphers like DES
[67] or AES [7] have received a lot of scrutiny, and
thus there is a lot of trust in their security properties
[3]. At the same time a number of drawbacks of block
cipher based hash functions have also been observed.
One of the arguments is that the block ciphers do not
possess the properties of randomizing functions. For
example they are invertible. This lack of randomness
may lead to weakness that may be exploited [85].
Secondly the differential cryptanalysis is easier against
block operations in hash functions than against block
operations used for encryption; because the key is
known so several techniques can be applied. [68, 69]
suggest the various techniques of using differential
cryptanalysis for attacking hash functions based on
clock ciphers. Thirdly it has been suggested that block
cipher based on hash functions are significantly slower
than hash functions based on compression function
specially designed for hash functions. It is also felt that
use of a block cipher for a purpose for which it was not
designed may reveal some other weaknesses which
may not be relevant in case of encryption. However
with the adoption of AES, there has been renewed
interest in developing a secure hash function based on
strong bock cipher and exhibiting good performance
[85]. Hash functions based on Block ciphers can be
further classified as follows:

7.1.1 Single block length construction

These are the schemesin which size of hash code
equals the block size of underlying block cipher. A
number of proposals have been made and the basic
concept to construct compression function ffromblock
cipher as described in [15] is as follow:

Fig. 3 Compression function based on block cipher

E is the clock cipher that takes two inputs A and B and
produces an output that is XOR with variable C.
Variable A, B and C can be either Mi, Hi-1, (Mi⊕Hi-1)
or a constant K (K may be assumed to be zero also).
Message M is divided in to blocks and padding is done
as illustrated in Section 4 and in each round one block
Mi is processed in the compression function fas per
follow:

H0 = Initial value

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 472

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Hi = EA(B) ⊕C

The three different variables A, B and C can take on
one of four possible values, so there are 64 total
schemes of this type. Prennelet. al.[72] studied them
all and showed that 12 of them (as given in the Table
1) are secure.

Table 1: Secure Hash Functions as per [72] based on Block Cipher
Secure Schemesbased

on Block cipher to
generate Compression

function

Other Common Name for
the scheme as per the

Literature

Hi = EHi-1 (Mi) ⊕Mi Matyas-Meyer-Oases

Scheme [70]

Hi = EHi-1 (Mi⊕ Hi-1)

⊕Mi⊕ Hi-1

--

Hi = EHi-1 (Mi) ⊕ Hi-1

⊕Mi

Miyaguchi – Preneel
Scheme
Independently proposed
by Miyaguchi[71]
and Preneel[73]

Hi = EHi-1 (Mi⊕ Hi-1)⊕Mi --

Hi = EMi(Hi-1)⊕ Hi-1 Davies-Meyer Scheme [70,

74]

Hi = EMi(Mi⊕Hi-

1)⊕Mi⊕Hi-1

--

Hi = EMi(Hi-1)⊕Mi⊕Hi-1 --

Hi = EMi(Mi⊕Hi-1)⊕Hi-1 --

Hi = EMi⊕Hi-1(Mi)⊕Mi --

Hi = EMi⊕Hi-1(Hi-1)⊕ Hi-1 --

Hi = EMi⊕Hi-1(Mi)⊕Hi-1 --

Hi = EMi⊕Hi-1(Hi-1)⊕Mi --

For formal proof of the security of these 12 schemes
refer to [75] and for various other schemes proposed in
literature that have been shown to be insecure refer
[15, 72].
7.1.2 Double block length construction

A Hash function generating digest of 64 bits (or 128
bits) is insecure as brute force collision will require
232(or 264) operations only. Using the Single block
length construction schemes as mentioned in previous
sub-section, we will get a 64 bit digest with DES as
underlying block or 128 bit digest with AES as
underlying block cipher. To increase the digest size of
hash function and to make it more secure double length
block constructions is suggested. It is schemesin which
size of hash code doubles the block size of underlying

block cipher. This means, DES will result in a 128-bit
hash function, and AES in a 256-bit hash function.The
best known scheme in this class as suggested by
Rompay [3] is MDC2 and MDC4 designed by B.
Brachtlet. al. [76, 77].MDC-2 is sometime called as
Meyer-Schilling scheme. The compression function of
MDC2 makes uses of two parallel computations
ofMatyas-Meyer-Oases scheme [70]. Explanation of
MDC-2 as given in [3] is reproduced here using the
terminology used in previous subsection.
Let CL and CR denote the left and right halves of b-bit
block length of underlying block cipher. Then the
compression function of MDC-2 can be described by
Hi || Hi’ = f (Hi || Hi’ , Mi) , which depends on the
following computations:

Ci = EHi-1(Mi)⊕Mi

Ci’ = EH’i-1(Mi)⊕Mi

Hi = CL
i|| C’R

i

Hi’ = C’L
i|| C

R
i

The compression function of MDC-4 consists of two
sequential executions of MDC-2 compression function.
For the second MDC-2 compression, the keys are
derived from the outputs (Chaining variables) of the
first MDC-2 compression, and the plaintext inputs are
the outputs (Chaining variables) from the opposite
sides of the previous MDC-4 compression.

For details of few of the other double length
construction schemes studied in literature like
Quisquarter-Girault, LOKI Double Block, Parallel
Davies Meyer, Tandem and Abreast Davies – Meyer
schemes, refer [15, 78, 79, 80, 81]

Few of the famous hash functions based on block
ciphers are listed below:

GOST Hash Function – This hash function comes
from Russia, and is specified in the GOST R.34.11-94.
It uses the GOST block encryption algorithm. For
details refer [82]

AR Hash Function: AR Hash function was developed
by Algorithmic Research, Ltd. and has been distributed
by the ISO for information purposes only. Its basic
structure is a variant of underlying block cipher (DES
in the reference) in Cipher Block Chaining mode. For
details refer [83]

Whirlpool Hash Function: Whirlpool is one of the
only two hah functions endorsed by NESSIE (New
European Scheme for Signatures, Integrity and
Encryption). Unlike virtually all other proposals for a
block-cipher based hash function, Whirlpool uses a
block cipher that is specifically designed for use in the
hash functions and that is unlikely ever to be used as a
standalone encryption function. For details refer [84]

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 473

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Skein Hash Function: Skein hash function is one out
of five finalists in the NIST hash function competition
[45] to design SHA-3 standard that will replace SHA-1
and SHA-2 [4, 5, 6, 8]. The algorithm is based on
Threefishtweakable Block Cipher. For details refer
[66]

Grøstl Hash Function: JustLikeSkein, Grøstl also is a
SHA-3 final round candidate algorithm. Its
compression functions is not exactly uses existing
block cipher but Grøstl uses the same S-Boxes as AES.
Its compression function f is based on a pair of
permutation functions P and Q and these permutation
functions are heavily based on AES [7] block cipher.

6.2 Hash functions based on Modular Arithmetic

Compression function can also be designed using
modular arithmetic. This allows the reuse of existing
implementations of modular arithmetic such as in
asymmetric cryptosystems. The idea of cryptosystems
based on modular arithmetic is to reduce the security
of a system to the difficulty of solving the problems in
number theory. Two important hard problems in
number theory which can act as a base for generating
cryptosystems are factorisation and Discrete logarithm.
Rompay in [3] has referred to design of two variants of
MASH hash functions based on modular arithmetic.
The advantage of such hash functions is that the level
of security can be easily enhanced by choosing
Modulus M of appropriate length but hash functions
based on modular arithmetic are very slow, even
slower than block cipher based hash functions. Also
many such constructions have been broken in the past.

6.3Dedicated Hash Functions

Dedicated hash functions are the one which are
designed for the explicit purpose of hashing.
Compression functions of dedicated Hash functions are
not based on the existing cryptographic primitives like
block ciphers and are not constrained to reuse existing
components such as block ciphers or modular
arithmetic. This means that they can be designed with
optimised performance in mind. A number of such
hash functions have been designed. Few of the famous
dedicated hash functions and the status of attacks on
these hash functions are as follows:

MDx Familyof hash functions: MD2, MD4 and MD5
are three hash functions from MDx family. Compared
to other two, MD2 is slower and has not obtained
much success. Dedicated hash functions which have
received the most attention in practice are those based
on the MD4 algorithm [3]. MD4 is a hash function
proposed by R. Rivest in 1990 [9]. It was designed
specifically towards software implementation on 32-bit
platforms. Because of security concerns, Rivest in
1991 came up with a conservative version namedMD5
[10] to replace the earlier Hash MD4. MD5 became a

milestone in the development of Hash. It was a widely-
used well-known 128-bit iterated hash function, used
in various applications including SSL/TLS, IPsec, and
many other cryptographic protocols. It was also
commonly-used in implementations of time stamping
mechanisms, commitment schemes, and integrity-
checking applications for online software and random-
number generation. Type-2 (Semi free start collision)
and Type-3 (Pseudo collision) attacks on MD5 were
reported in [47, 50]. Strong collisions (Type-1
collisions) on MD4 and MD5 have been reported by
Wang et. al. in [30, 31, 32] and these attacks make the
further usage of these hash functions questionable.

SHA family of Hash Functions:Secure Hash
Algorithm (SHA) developed by the National Institute
of Standards and Technology (NIST) was also
designed on the same principle as MD4 and was
published as Federal Information Processing Standard
(FIPS 180)in 1993 [4]. A revised version was issued as
FIPS180-1 in 1995 and is generally referred to as
SHA-1 [5]. When revised version of SHA-1 was
published no details of the weaknesses found in SHA-0
(originally SHA) were provided [33]. SHA-1 produces
a hash value of 160 bit. In 2002, NIST produced a
revised version of the standard known as FIPS180-2
[6] and defined three new versions of SHA with digest
lengths of 256, 384 and 512 and known as SHA-256,
SHA-384, and SHA-512 respectively. So total SHA
versions becomes four including SHA-1 (160 bit). In
October 2008, FIPS 180-2 has been replaced by FIPS
180-3 [8] and in new standard SHA-224 has been
added which is same as other SHA algorithm
producing 224 bits of message difest. All these SHA
versions are based on the same principle of MD4 and
hash length has changed and certain other
improvements have been carried from one version to
next. Attacks on SHA-0 and SHA-1 have been
reported in [33, 34, 35]. Till date no practical attack
has been reported on SHA-2.

RIPEMD family of Hash Functions: RIPEMD
family of hash functions consists of RIPE MD,
RIPEMD-128, RIPEMD-160, RIPEMD-256,
RIPEMD-320. RIPE MD, a 128 bit hash function,
based on MD4 algorithm, was developed in the
framework of the EU (European Union) project RIPE
(RACE Integrity Primitives Evaluation) by Hans
Dobbertin, AntoonBosselaers, Bart Preneel.. RIPEMD-
160 [87] was an improved version of RIPE MD. The
128 bit version was intended only as a drop-in
replacement for the original RIPEMD, which had been
found to have questionable security. The 256 and 320
bit versions diminish chance of accidental collision,
and don’t have higher level of security compared to
RIPEMD-160. A collision on RIPEMD was reported
in [30] but that does not affect RIPEMD-160. Till date
no practical attack has been observed on RIPEMD-
160.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 474

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

HAVAL Hash functionsYuliangZeng, et. al invented
HAVAL hash function in 1992 [86]. To certain extent
it takes the motivation from MD4 hash function only.
However HAVAL can produce hashes of different
length i.e. 128, 160, 192,224 or 256 bits. In addition,
HAVAL has a parameter that controls thenumber of
passes a message block (of 1024 bits) is processed. A
messageblock can be processed in 3, 4 or 5 passes. By
combining output lengthwith pass, authors provided
fifteen (15) choices for practical applicationswhere
different levels of security are required. Algorithm was
designed for 32-bit computers Experiments showed
that HAVAL is 60%faster than MD5 when 3 passes
are required, 15% faster than MD5 when4 passes are
required, and as fast as MD5 when full 5 passes are
required. Research has uncovered weaknesses which
make further use of HAVAL (at least the variant with
128 bits and 3 passes) questionable. The strong
collision attack on HAVAL was reported by Wang et.
al. in [31].

All the above dedicated hash functions are somehow
designed with motivation from MD4 algorithm only
and thus are sometime collectively known as MDx
type hash functions.

Fig. 4MDx-type hash function history [106]. Vertical line refer year
when hash function was invented and functions Crossed with red

lines have been attacked

Fewotherfamousdedicated hash functions reported in
literature are SNEFRU [88], Tiger [89], JH [90],
Keccak[46], Blake 91]. Snefru; designed by Ralph
Merkle in 1990, like Khufu and Khafre block ciphers
was an Egyptian Pharaoh. Snefru’s initial design as
well as modified design has been shown to to be
insecure against differential cryptanalysis [93]. Tiger
hash function was designed by Anderson and Biham in
1995mainly for 64-bit platforms. It is quite efficient on
Software but because of its inherent use of large S-
Boxes, implementation in hardware or small
microcontrollers is difficult. Tiger hash function is
frequently used in Merkle Hash tree form, where it is
referred to Tiger Tree hash (TTH). TTH is used by
many clients on Direct Connect and Gnutella file
sharing networks. The last two in the list i.e. JH,

Keccakand Blake are among the five finalists in the
NIST hash function competition [45] to design SHA-3
standard. JH hash function makes use of S-boxes and is
well suited for bit slicing. Keccak on the hand make
use of sponge construction as detailed in Section 4.
Blake does not fit exactly into the category of
dedicated hash functions because it is based on
ChaCha Stream Cipher.

6.4 Few Other approaches

There has been few hash functions that have not been
based on existing cryptographic primitives like block
ciphers or modular arithmetic but rather are based on
some hard problems like knapsack problem, cellular
automata or Discrete Fourier transformations.Hash
function based on knapsack was proposed by Ivan
Damgard in [26] but the same was shown to be broken
in [94, 95]. Cellular automata based hash function was
proposed in [96] by Wolram and in [97] by
Daemanet.al.Claus Schorr[98, 99, 100] has proposed
hash functions based on discrete Fourier
transformations called FFT- hash. Three modifications
of FFT-Hash have been proposed. First two
modifications, FFT-Hash I and FFT – Hash II, was
broken few weeks after the proposal [101, 102]. Third
modification is quite slower. As a whole, all these
approaches (based on knapsack or cellular automata or
FFT) have not found much success and are not
generally used these days.

7. Current Scenario: Progressing to SHA-3

The current Secure Hash Standard as developed by
NIST (National institute of Standards and Technology)
is FIPS 180-3 [8]. This standard suggests five hash
functions SHA-1, SHA -224, SHA-256 SHA-384, and
SHA-512. All these are dedicated hash functions as
explained in Section 6 and to certain extent are based
on MDx family. The practical attack on MDx family,
followed by attack on SHA-0 and SHA-1 has been
discussed in section 6.3. Majority of these attacks have
been carried out in year 2004 and 2005 by a team of
researchers from the Shandong University in Jinan
China, led by Xiaoyun Wang. The same team also
broke HAVAL-128 and RIPEMD. Looking at the
variety of hash functions attacked by this team, it
seemed likely that their approach may prove effective
against all cryptographic hashes in the MD family,
including all variants of SHA [103].

Burr from US National Institute of Standards and
Technology [104] in his paper reviewed the scenarios
of Cryptographic Hash Functions. Burr pointed out that
with SHA-1 and SHA-2 in its cryptographic toolkit,
NIST had hoped to be done with hash functions for a
long time. Aside from a near break of MD5 by
Dobbertin [26] in 1996, researchers made little
progress in hash function analysis until mid-2004.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 475

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Since then, Wang, AntonineJoux, and Eli Biham have
attacked nearly all the early hash functions, including
SHA-1. Given that SHA-2 functions are in the same
family as the earlier broken functions, these attacks
shook cryptographers’ long term confidence in nearly
all hash functions designed to date. Cryptographers
have learned much about hash functions and how to
attack them in the past couple of years, and yet
cryptanalysts generally agreed that practical attacks on
the SHA-2 hash functions are unlikely in the next
decade. However, attacks and research results could
reduce their strength well below theoretical work
levels (2112, 2128, 2192, and 2256 operations for SHA-224,
SHA-256, SHA-384, and SHA-512, respectively)
[104].

Hoch and Shamir in year 2006 [105], studied the
multi collisions on Iterated Concatenated Expanded
(ICE) Hash Functions. Hoch and Shamir extended the
idea presented by Joux [37]. Joux in 2004 [37]showed
that in any iterated hash function it is relatively easy to
find exponential sized multicollisions, and thus the
concatenation of several hash functions does not
increase their security. But Joux [31] Attack does not
work on ICE i.e. when in addition to Iterated and
Concatenated Hash Function technique message
Expansion is also added i.e. each iterated function
process message block more than once. Hoch et
al.[105]considered the general case (ICE) and proved
that even if we allow each iterated hash function to
scan the input multiple times in an arbitrary expanded
order, their concatenation is not stronger than a single
function. Finally, authors extended their result to tree-
based hash functions with arbitrary tree structures.
Hoch et al. showed that a large class of natural hash
functions (ICE and its generalization TCE) is
vulnerable to a multicollision attack, and hoped that
the techniques developed here will help in creating
multicollision attacks against even more complicated
types of hash functions. Such a conclusion was
perhaps hinting to probable attack on SHA 2 family
of hash functions.
Looking at the current scenarios, In Nov 2007 NIST
(National Institute of Standards and Technology)
announced a public competition [45] to develop a new
cryptographic hash algorithm to replace the older
SHA-1 and SHA-2. The competition was NIST's
response to advances in the cryptanalysis of hash
algorithms. The winning algorithm will be named
"SHA-3", and will augment the hash algorithms
currently specified in the Federal Information
Processing Standard (FIPS) 180-3, Secure Hash
Standard [8]. As per NIST website “NIST is initiating
an effort to develop one or more additional hash
algorithms through a public competition, similar to the
development process for the Advanced Encryption
Standard (AES)." [45]

By October 31, 2008, NIST received sixty-four
entries; and selected fifty-one candidate algorithms to

advance to the first round on December 10, 2008,
and fourteen advanced to the second round on July
24, 2009. A year was allocated for the public review of
the fourteen second-round candidates. NIST received
significant feedback from the cryptographic
community. Based on the public feedback and internal
reviews of the second-round candidates, NIST selected
five SHA-3 finalists – BLAKE [91], Grøstl [92], JH
[90], Keccak [46], and Skein [66] to advance to the
third (and final) round of the competition on
December 9, 2010, which ended the second round of
the competition. A one-year public comment period is
planned for the finalists. NIST also plans to host a final
SHA-3 Candidate Conference in the spring of 2012 to
discuss the public feedback on these candidates, and
select the SHA-3 winner later in 2012 [45].

8. Conclusion

In this paper, we have shown how cryptographic hash
functions slowly gained its importance in the field of
cryptology. We have made all attempts to give a
complete picture of cryptographic hashes, its design
techniques and vulnerabilities. This paper would really
help budding researchers who would take up research
in this particular field.

References
[1]D. Kahn,TheCodebreakers: The Comprehensive History
of Secret Communication from Ancient Times to the
Internet, Scribner, 1996.
[2] W. Diffie, and M. Hellman, “New Directions in
Cryptography”,IEEE Transactions on Information Theory,
vol. 22, No. 6, 1976, pp. 644-654.
[3] B. V. Rompay, “Analysis and Design of Cryptographic
Hash functions, MAC algorithms and Block Ciphers”, Ph.D.
thesis, Electrical Engineering Department,
KatholiekeUniversiteit, Leuven, Belgium, 2004.
[4] FIPS 180, Secure Hash Standard (SHS), National
Institute of Standardsand Technology, US Department of
Commerce, WashingtonD. C., 1993.
[5] FIPS 180-1, Secure Hash Standard (SHS), National
Institute of Standards and Technology, US Department of
Commerce, WashingtonD. C.,1995.
[6] FIPS 180-2, Secure Hash Standard (SHS), National
Institute of Standards and Technology, US Department of
Commerce, WashingtonD. C.,2002.
[7] FIPS 197, Advanced Encryption Standard, National
Institute of Standards and Technology, US Department of
Commerce, WashingtonD. C.,2001.
[8] FIPS180-3, Secure Hash Standard (SHS), National
Institute of Standards and Technology, US Department of
Commerce, Washington D. C., 2008.
[9] R. Rivest, “The MD4 Message Digest Algorithm”, IETF
RFC 1320, 1992.
[10] R. Rivest, “The MD5 Message Digest Algorithm”,
IETF RFC 1321, 1992.
[11] R. C. Merkle, “Secrecy, Authentication and Public Key
Systems”, Ph.D. thesis, Department of Electrical
Engineering, Stanford University, Stanford, USA, 1979.
[12] R.C. Merkle, "One Way Hash Functions and DES", in
CRYPTO, 1989, pp.428-446.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 476

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

[13] M. Naor, and M. Yung, "Universal One-Way Hash
Functions and their Cryptographic Applications", in STOC,
1989, pp.33-43.
[14] P. Rogaway, and T. Shrimpton, “Cryptographic Hash-
Function Basics: Definitions, implications and separations
for preimage resistance, second preimage resistance, and
collision resistance”, inFSE, 2004, pp.371-388.
[15] B. Schneier,Applied Cryptography, John Wiley & Sons,
1996.
[16] P. Gauravram, “Cryptographic Hash Functions:
Cryptanalysis, design and Applications”, Ph.D. thesis,
Faculty of Information Technology, Queensland University
of Technology, Brisbane, Australia, 2003
[17] M. Bellare, R. Canetti, and H. Krawczyk, “Keying Hash
Functions for Message Authentication”, in CRYPTO’96,
1996, pp.1-15.
[18] G. Tsudik, "Message Authentication with One-Way
Hash Functions", inINFOCOM, 1992, pp. 2055-2059.
[19] R.L. Rivest, A. Shamir, and L.M. Adleman, "A Method
for Obtaining Digital Signatures and Public-Key
Cryptosystems", inCommun. ACM, 1978, pp.120-126
[20] S. Singh, The Code Book: The Evolution of Secrecy
fromMary, Queen of Scots to Quantum Cryptography,
Doubleday Books, 1999.
[21] S. Haber, and W. Stornetta, “How to Time-stamp a
Digital Document”, Journal of Cryptology, Vol. 3, No. 2, pp.
99-111, 1991.
[22] M. Bellare, R. Canetti, and H. Krawczyk,
"Pseudorandom Functions Revisited: The Cascade
Construction and Its Concrete Security", in FOCS, 1996,
pp.514-523.
[23] I. Haitner, D. Harnik, and O. Reingold, "Efficient
Pseudorandom Generators from Exponentially Hard One-
Way Functions", in ICALP (2), 2006, pp.228-239.
[24] S.M. Matyas, A.V. Le, and D.G. Abraham, "A Key-
Management Scheme Based on Control Vectors", IBM
Systems Journal, No. 2, 1991, pp.175-191.
[25] H. Handschuh, and D. Naccache, “SHACAL (-
Submissions to NESSIE -), in First Open NESSIE
Workshop, 2000.
[26] I. Damgård, "A Design Principle for Hash Functions",
inCRYPTO, 1989, pp.416-427.
[27] X. Lai and J. L. Massey, "Hash Function Based on
Block Ciphers", in EUROCRYPT, 1992, pp.55-70.
[28]I. Mironov, “Hash Functions: Theory, Attacks, and
Applications”, Microsoft Research, Silicon Valley Campus,
2005.
[29] M. Bellare, and T. Kohno, "Hash Function Balance and
Its Impact on Birthday Attacks", in EUROCRYPT, 2004,
pp.401-418.
[30] X. Wang, X. Lai, D. Feng, H. Chen, and X. Yu,
"Cryptanalysis of the Hash Functions MD4 and RIPEMD",
inEUROCRYPT, 2005, pp.1-18.
[31] X.Wang, D. Feng, X. Lai, and H. Yu, “Collisions for
Hash Functions MD4, MD5, HAVAL-128 and RIPEMD",
IACR Cryptology ePrint Archive, 2004, pp. 199.
[32] X. Wang, and H. Yu, "How to Break MD5 and
Other Hash Functions", inEUROCRYPT, 2005, pp.
19-35.
[33] E. Biham, R. Chen, A. Joux, P. Carribault, C. Lemuet,
and W. Jalby, "Collisions of SHA-0 and Reduced SHA-1",
inEUROCRYPT, 2005, pp.36-57.
[34] X. Wang, H. Yu, and Y. L. Yin, "Efficient Collision
Search Attacks on SHA-0", inCRYPTO, 2005, pp.1-16.
[35] X. Wang, Y. L. Yin, and H. Yu, "Finding Collisions in
the Full SHA-1", inCRYPTO, 2005, pp.17-36.

[36] S. Lucks, “Design Principled for Iterated Hash
Functions”, in IACR Cryptology ePrint Archive, 2004, pp.
253.
[37]A. Joux, "Multicollisions in Iterated Hash Functions.
Application to Cascaded Constructions", inCRYPTO, 2004,
pp.306-316.
[38] J. Kelsey, and T. Kohno, “Herding Hash Functions and
the Nostradamus Attack”, in EUROCRYPT, 2006, pp. 183–
200.
[39] Y. Dodis, T. Ristenpart, and T. Shrimpton, "Salvaging
Merkle-Damgård for Practical Applications", in
EUROCRYPT, 2009, pp.371-388.
[40] M. Nandi, and S. Paul, "Speeding Up TheWidepipe:
Secure and Fast Hashing", IACR Cryptology ePrint Archive,
2010, pp.193.
[41] E. Biham, and O. Dunkelman, "A Framework for
Iterative Hash Functions - HAIFA", IACR Cryptology
ePrint Archive, 2007, pp.278.
[42] G. Bertoni, J. Daemen, M. Peeters, and G. Van
Assche, “Sponge Functions”,in ECRYPT Hash Workshop,
2007.
[43] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche,
"On the Indifferentiability of the Sponge Construction", in
EUROCRYPT, 2008, pp.181-197
[44] G. Bertoni, J.Daemen, M. Peeters, and G. Van Assche,
“Cryptographic Sponges”, [online]
http://sponge.noekeon.org/.
[45] National Institute of Standard and Technology (NIST):
Cryptographic Hash Algorithm Competition. [online]
http://csrc.nist.gov/groups/ST/hash/sha-3/
[46]G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche,
“The Keccak Reference”, Submission to NIST (Round
3),2011.[online] http://csrc.nist.gov/groups/ST/
hash/sha-3/Round3/submissions_rnd3.html.
[47] B.den Boer, and A. Bosselaers, “Collisions for the
compression function of MD5”, in EUROCRYPT, 1993, pp.
293-304.
[48] L. Knudsen. “Block Ciphers: Analysis, Design and
Applications”, Ph.D.thesis, Aarhus University, Aarhus,
Denmark, 1994
[49] O. Mikle, "Practical Attacks on Digital Signatures
Using MD5 Message Digest", IACR Cryptology ePrint
Archive, 2004, pp.356.
[50] H. Dobbertin, “Cryptanalysis of MD5 compress”,
inEUROCRYPT, 1996
[51]R. D. Dean, “Formal Aspects of Mobile Code Security”,
Ph.D. thesis, Department of Computer Science, Princeton
University, Princeton, USA, 1999.
[52] E. Andreeva, G. Neven, B. Preneel, and T. Shrimpton,
“Seven-Properties-Preserving Iterated Hashing: The RMC
Construction”, ECRYPT document STVL4-KUL15-RMC-
1.0, private communications, 2006.
[53] E. Andreeva, G. Neven, B. Preneel, and T. Shrimpton,
"Seven-Property-Preserving Iterated Hashing: ROX", IACR
Cryptology ePrint Archive, 2007, pp.176.
[54] M. Bellare, and T. Ristenpart, "Multi-Property-
Preserving Hash Domain Extension and the EMD
Transform", in ASIACRYPT, 2006, pp.299-314 .
[55] T. Duong, and J. Rizzo, “Flickr's API Signature Forgery
Vulnerability”, 2009 [online]
http://netifera.com/research/flickr_api_signature_forgery.pdf
[56] B. Kaliski, and M. Robshaw. “Message Authentication
with MD5”. RSA Labs' CryptoBytes, Vol. 1, No. 1, Spring
1995.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 477

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

[57] J. Kelsey, and B.Shneier, “Second preimages on n-bit
Hash Functions for much less than 2n Work”,in
EUROCRYPT, 2005, pp. 474-490.
[58] S. Bakhtiari, R. Safavi-Naini, and J Pieprzy.
“Cryptographic Hash Functions: A Survey”, Technical
Report 95-09, Department of Computer Science, University
of Wollongong, 1995
[59] E.Biham, and A. Shamir, “Differential Cryptanalysis of
DES-like Cryptosystems”, Journal of Cryptology, Vol. 4, No.
1, 1991, pp. 3-72.
[60] E.Biham, and A. Shamir, “Differential Cryptanalysis of
FEAL and N-Hash”, in EUROCRYPT, 1991, pp. 1-16.
[61] E. Biham, and A. Shamir, “Differential Cryptanalysis of
Snefru, Khafre, REDOC-II, LOKI and Lucifer”, in
CRYPTO, 1991, pp. 156-171.
[62] M. Matsui, “Linear Cryptanalysis methods for DES
Cipher”, in EUROCRYPT, 1993, pp. 386-397.
[63] S. Miyaguchi, K. Ohta, and M. Iwata, “Confirmation
that some Hash Functions are not Collisions Free” in
EUROCRYPT, 1990, pp. 326 – 343.
[64] D. Khovratovich, and I. Nikolic, "Rotational
Cryptanalysis of ARX", inFSE, 2010, pp.333-346.
[65] D. Khovratovich, I. Nikolic, and C. Rechberger,
"Rotational Rebound Attacks on Reduced Skein", IACR
Cryptology ePrint Archive, 2010, pp.538.
[66] B. Schneier, N. Ferguson, S. Lucks, D. Whiting, M.
Bellare, T. Kohno, J. Walker, and J. Callas, “The Skein Hash
Function Family”, Submission to NIST (Round 3),2011.
[online]http://csrc.nist.gov/groups/ST/hash/sha-
3/Round3/submissions_rnd3.html.
[67] FIPS 46-3, “Data Encryption Standard”, National
Institute of Standards and Technology, US Department of
Commerce, WashingtonD. C., 1999.
[68] B. Preneel, “Differential Cryptanalysis of Hash
functions based on Block Ciphers”, ACM Conference on
Computer and Communications Security, 1993, pp.183-188.
[69] V. Rijmen and B. Preneel, “Improved characteristics for
Differential Cryptanalysis of hash functions based on Block
Ciphers”, in FSE, 1995, Vol. 1008, pp. 242-248.
[70] S. M. Matyas, C. H. Meyer, and J. Oseas, “Generating
strong one-way functions with cryptographic algorithm",
IBM Technical Disclosure Bulletin, Vol. 27, No. 10A, 1985,
pp. 5658-5659.
[71] S. Miyaguchi. K. Ohtaand M. Iwata, “New 128-bit
Hash functions”, in 4th International Joint Workshop on
Computer Communications, 1989, pp. 279 - 288.
[72] B. Preneel, R. Govaertsand J. Vandewalle, “Hash
Functions Based on Block Ciphers: A Synthetic Approach",
in CRYPTO, 1993, pp. 368- 378.
[73] B. Preneel and R. Govaerts, J. Vandewalle,
“Cryptographically Secure Hash Functions: An Overview",
ESAT Internal Report, K. U. Leuven, 1989.
[74] D. W. Davies and W. L. Price, “Digital Signature – An
Update” in International Conference on Computer
Communications, 1984, pp. 843-847.
[75] J. Black, P. Rogaway and T. Shrimpton,”Black-box
analysis of the block-cipher-based hash function
constructions from PGV."in CRYPTO, 2002, pp. 320-335.
[76] B.O. Brachtl, D. Coppersmith, M.M. Hyden, S.M.
Matyas, C.H. Meyer, J. Oseas, S. Pilpel and M. Schilling,
“Data Authentication Using Modification Detection Codes
Based on a Public One Way Encryption Function”,1990,
U.S. Patent Number 4,908,861.
[77] C. H. Meyer and M. Schilling, “Secure program load
with manipulation detection code." in Securicon, 1988 pp.
111-130.

[78] J. J. Quisquarter and M. Girault, “2n-bit Hash functions
using n-bit Symmetric block Cipher Algorithms”, in
EUROCRYPT , 1990, pp 102-109.
[79] W. Hohl, X. Lai, T. Meier and C. Waldvogel, “Security
of Iterated Hash Functions based on Block Ciphers”, in
CRYPTO, 1994, pp. 379 – 390.
[80] X. Lai, "On the Design and Security of Block Ciphers,"
ETH Series in Information Processing, vol.1, Konstanz:
Hartung-GeorreVerlag, 1992.
[81] X. Lai and J. Massey, “ Hash functions based on Block
Ciphers”, in EUROCRYPT , 1992, pp. 55-70.
[82] GOST R 34.11- 94, Gosudarstvennyi Standard of
Russian Federation, “Information technology. Cryptographic
Data Security Hashing function. “Government Committee of
the Russia for Standards, 1994 RFC 5831
[83] ISO. ISO N179 AR Fingerprint Function. Working
document, ISOIEC/JTC1/SC27 WG2, International
Organization for Standardization, 1992.
[84] P. S. L. M. Barreto and V. Rijmen, “The Whirlpool
hashing function”. Primitive submitted to NESSIE,
September 2000, revised on May 2003.
[85] W. Stallings, Cryptography and Network Security,
Pearson Prentice Hall,USA, 2009.
[86] Y. Zheng, J. Pieprzyk and J. Seberry, “HAVAL — A
One-Way Hashing Algorithm with Variable Length of
Output”, in AUSCRYPT, 1993, pp. 83-104.
[87] H. Dobbertin, A. Bosselaersand B. Preneel, “RIPEMD-
160: A Strengthened Version of RIPEMD”,in Fast Software
Encryption, 1996, pp. 71-82.
[88] R. C. Merkle, “A fast software one-way hash function”,
Journal of Cryptology, Vol. 3, No. 1, 1990, pp. 43-58.
[89] R. Anderson and E. Biham, “Tiger — A Fast New
Hash Function” , in Fast Software Encryption, 1996, pp. 89-
97.
[90] H. Wu: “The Hash Function JH”, Submission to NIST
(Round 3), 2011. [online] http://csrc.nist.gov/groups/ST/
hash/sha-3/Round3/submissions_rnd3.html
[91] J. P. Aumasson, L. Henzen, and W. Meier, "SHA-3
proposal BLAKE," Submission to NIST (Round 3), 2011.
[online] http://csrc.nist.gov/groups/ST/
hash/sha-3/Round3/submissions_rnd3.html
[92]P. Gauravaram, L. R. Knudsen, K. Matusiewicz, F.
Mendel, C. Rechberger, M. Schläffer, and S. S. Thomsen,
"Grøstl- A SHA-3 Candidate", Submission to NIST (Round
3), 2011. [online] http://csrc.nist.gov/groups/ST/
hash/sha-3/Round3/submissions_rnd3.html
[93] E. Biham, “New techniques for Cryptanalysis of hash
functions and improved attacks on Snefru” in FSE, 2008, pp.
444-461.
[94] P. Camion and J. Patarin, “ The knapsack hash function
proposed at Crypto’89 can be broken”, in EUROCRYPT,
1991, pp. 39-53.
[95] A. Joux and L. Granboulan, “ A Practical Attack against
Knapsack based hash functions”, in EUROCRYPT ,1995, pp.
58-66.
[96] S. Wolfram, “Cryptology with Cellular Automata”, in
CRYPTO, 1986, pp. 429-432.
[97] J. Daeman, R. Govaerts and J. Vandewalle, “ A
framework for the design of One-way hash functions
including cryptanalysis of Damgard’s One way function
based on Cellular Automata”, in ASIACRYPT, 1993, pp. 82-
96.
[98] C. P. Schnorr, “An efficient Cryptographic Hash
Functions” in CRYPTO, 1991.
[99] C. P. Schnorr, “ FFT –Hash II, Efficient Cryptographic
Hasing”, in EUROCRYPT , 1993 pp. 45-54.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 478

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

[100] C. P. Schnorr and S. Vaudenay, “ Parallel FFT –
Hashing”, in Fast Software Encryption, 1994, pp. 149 – 156.
[101] J. Daeman, R. Govaerts and J. Vandewalle, “
Collisions for Schnorr’s hash function FFT-Hash” in
CRYPTO, 1991 pp. 477-480.
[102] S. Vaudenay, “ FFT-Hash II is not yet Collision Free”,
in CRYPTO, 1992, pp. 587 – 593.
[103] J. Black, M. Cochran and T. Highland, "A Study of the
MD5 Attacks: Insights and Improvements", in FSE,
2006,Vol. 4047, pp. 262-277.
[104] W. E. Burr, “Cryptographic Hash Standards: Where Do
We Go from Here”, IEEE Security & Privacy, Vol. 4, No. 2,
2006, pp. 88-91.
[105] J. J. Hoch and A. Shamir, “Breaking the ICE - Finding
Multicollisions in Iterated Concatenated and Expanded (ICE)

Hash Functions”, in FSE, 2006, Vol. 4047, pp.179-194.

Authors

Rajeev Sobti is heading School of Computer Science, Lovely
Professional University, India. He has over 13 years of
experience in industry, teaching and research. His research
interest includes Cryptography and Computer System
Architecture. He is also member, Consultant Board and
Manuscript reviewer for Books on Discrete Mathematics,
Operating System from Pearson Education (Singapore) PTE
LTD.

Prof.G.Geetha is heading School of Computer Science and
Applications, Lovely Professional University, India. She has
nearly two decades of experience in industry, teaching and
research. Her research interest includes Cryptography,
Information security and Image Processing. She has
published more than 50 research papers in refereed Journals
and Conferences. She serves as Editorial Board member and
reviewer in various Journals and Conferences. She is
presently the President of Advanced Computing Research
Society. She is an active member of various professional
organizations like ISCA, ISTE, CRSI etc.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 479

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

