

A new meta-data driven data-sharing

storage model for SaaS
Li heng1, Yang dan2 and Zhang xiaohong3

 1 College of Computer Science, Chongqing University

Chongqing, 401331, China

2 School of Software Engineering, Chongqing University

Chongqing, 401331, China

3 School of Software Engineering, Chongqing University

Chongqing, 401331, China

Abstract
A multi-tenant database is the primary characteristic of SaaS, it

allows SaaS vendors to run a single instance application which

supports multiple tenants on the same hardware and software

infrastructure. This application should be highly customizable to

meet tenants’ expectations and business requirements. This paper

examined current solutions on multi-tenancy, and proposed a

new meta-data driven data-sharing storage model for multi-tenant

applications. Our design enables tenants to extend their own

database schema during multi-tenant application run-time

execution to satisfy their business needs. Experimental results

show that our model made a good balance between efficiency

and customized.

Keywords: Multi-Tenant, Software as service, Schema mapping,

meta data.

1. Introduction

Software as a Service (SaaS) is an emerging software

application service and one of the hot topics in the

software industry. Expressed most simply, SaaS can be

defined as follows: “Software deployed as a hosted service

and accessed over the Internet” [1]. Instead of paying for

the software license, the end user subscribe for a paid

application. In February 2000, SaaS concept started when

Salesforce.com launched their web-based service and

became the early SaaS adopters. In February 2001 the term

Software as a Service or SaaS published for the first time

in a white paper called "Software as a Service: Strategic

Backgrounder" [2]. SaaS began to flourish in 2005-2006,

because the internet speed had significantly increased, had

become affordable, and customers had started to be more

comfortable to establish business over the internet.

A particularly important challenge in a SaaS

application is concerned with enabling multi-tenancy at the

data tier [3, 4]. Systems at the data tier of a SaaS

application are accessed by the same application for each

tenant, who has own unique needs that a rigid, inextensible

default data model won't be able to address. Put simply, the

challenge is to consolidate multiple tenants onto one data

tier resource, e. g. one database server, which can be

extended for different versions of the application and

dynamically modified while the system is on-line, while at

the same time isolating them among one another, as if they

were running on physically segregated resources.

This paper researched the related works on multi-

tenancy date model, and proposed a new meta-data driven

data-sharing storage model. By splitting up the “common

tables” shared by each tenant, and mapping the data to

“meta data tables” and “data tables”, our model enables

tenants to extend their own database schema during multi-

tenant application run-time execution to satisfy their

business needs. Experiments demonstrate that compared

with previous techniques, the presented model makes a

good balance between efficiency and customized.

2. Related Works

Several works have been presented in [5],[6], [7], [8]

on design and implement multi-tenant database schema,

such as Private Table, Extension Table, Universal Table

and so on, each technique has its’ own characteristics and

applicable scenarios, This section will explore five

techniques of multi-tenant database schema.

2.1 Extension Table

Because multiple tenants may use the same base

tables, Aulbach et al. [8], [9] report that the Extension

Tables are separated tables joined with the base tables by

adding tenant column as well as row column to construct a

logical source tables. This approach has its origins in the

Decomposed Storage Model [11], where an n-column table

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 1, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 13

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

is broken up into n 2-column tables that are joined through

surrogate values. Multiple tenants can use the base tables

as well as the extension.

2.2 Universal Table

Aulbach et al. [8] refer to Universal Table as a table

that contains additional columns of the base application

schema columns which enable tenants to store their

required columns. A Universal Table is a generic structure

with a Tenant column, a Table column, and a large number

of generic data columns. The data columns have a flexible

type, such as VARCHAR, into which other types can be

converted. The n-th column of each logical source table for

each tenant is mapped into the n-th data column of the

Universal Table. As a result, different tenants can extend

the same table in different ways.

2.3 Pivot Table

In a Pivot Table, each row field in a logical source

table is given its own row. There are four columns in the

Pivot Table including: tenant, table, column, and row that

specify which row in the logical source table they represent.

In addition, the single data type column that stores the

values of the logical source table rows according to their

data types in the designated pivot Table. The data column

can be given a flexible type, such as VARCHAR, into

which other types are converted, in which case the Pivot

Table becomes a Universal Table for the Decomposed

Storage Model.

2.4 Chunk Folding

Chunk Folding[8] is a technical where the logical

source tables are vertically partitioned into chunks that are

folded together into different physical multi-tenant tables

and joined as needed. Aulbach et al. [8] state that the

performance of this technique enhanced by mapping the

most used tenants’ columns of the logical schema into

conventional tables, and the remaining columns in the

Chunk Tables which are not used by the majority of

tenants.

2.5 XML Table

The XML database extension technique is a

combination of relational database systems and Extensible

Markup Language (XML) [6,7]. Aulbach et al. [10] state

that the extension of XML can be provided as native XML

data type, or by storing the XML document in the database

as a Character Large Object (CLOB) or Binary Large

Object (BLOB). This technique satisfies tenants’ needs,

because their data can be handled without changing

original database relational schema.

3. A new meta-data driven data-sharing

storage model

3.1 Drawbacks

In section 2, we describe five techniques on design

and implement multi-tenant database schema, which can

extend default data model to address tenant’s unique needs.

However, there are some drawbacks or limits in these

techniques. The “Extension Table” technique is limited to

use in small tenants applications, for the number of tables

will be increased by increasing the number of tenants and

the variety of their business requirements. The “Universal

Table” technique enables tenants to extend their tables in

different ways according to their needs. However it has the

obvious disadvantage that the rows need to be very wide,

even for narrow source tables, and the database has to

handle many null values. Furthermore, indexes are not

supported in universal table columns, as the shared tenant’s

columns might have different structure and data type. This

issue leads to the necessity of adding additional structures

to make indexes available in this technique. The “Pivot

Tables” technique can eliminating NULL values and

selectively read from less number of columns, but it has

more columns of meta-data than actual data and

reconstructing an n-column logical source table requires

(n−1) aligning joins along the Row column. This leads to a

much higher runtime overhead for interpreting the meta-

data. It seems a good choice to use “Chunk folding”,

Stefan Aulbach in his paper described the advantage of this

technique through many experimental data. However, this

technique is in the phase of theoretical research, and lack

of an effective vertical partitioning algorithm to get the

most appropriate results. The last technique “XML Table”

makes the data model arbitrarily extensible while retaining

the cost benefits of using a shared database. If the

customer requires a considerable degree of flexibility to

extend the default data model, I think it is the best

approach to take if the ISV wishes to use a shared database.

However, this technique is limited to extend fields in a

table, sometimes, customers need to define their own

objects, for example, in the ERP System.

3.2 A new meta-data driven data-sharing storage

model

Based on the previous work, We present a new meta-

data driven data-sharing storage model, which can be

implemented in the “shared database, shared schema”

approach. In this section we will describe the model and

implementation details. Comparison of the efficiency will

be shown in section 4 by some experiments.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 1, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 14

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

As illustrated in Fig 1, this technique consists of three

parts: Common tables, Meta-data tables and Data tables.

“Common Tables” are the same as those Non-SaaS

applications except there is a column named “tenantid”

which is used to isolate each tenant. “Common Tables” are

shared by all tenants, it is very easy for indexing, querying

and updating record. If there is no need to extend the data

model, it will be high-efficiency for the pure association

relationship between tables. “Meta-data tables” include

“tenants” table, “custom_objects” table, “custom_fields”

table. Tenants table describes the information of tenants,

including “tenantid” and “tenants_name”.

“Custom_objects” table describes the custom objects

defined by tenants, including “tenanted”, “objectid”,

“object_name” and “object_type”. “Custom_fields” table

describe the information about the data field in each data

objects. “Data tables” include key-value table and data-

value table. Key-value table used to record extend labels

and values by key-value pairs when some tenants need to

add fields on “Common Tables”. Data-value table used to

record field values which defined in the “Fields table” of

meta-data.

Fig. 1 “meta-data” driven data-sharing storage model.

Fig 2 shows an example that how our model store

the multi-tenancy data. When an end user needs to add

some fields, he should insert into “custom objects” table a

record to define a new object, the “object name” is the

same as the table name which needs to be extended and

the “object type” is assigned to “field”. When the end

user saves a record with a custom field he defined before,

3 things happen. First, the application looks up

“custom_objects” table to find whether exist a record

which has the same “object_name” with the current object

and has a value of “object_type” equals “field”. If true,

then, some boxes will be shown in the browser to input

keys and values. Finally, values are saved in “key-value”

table and the application creates a unique identifier for

the record and saves it in the “recorded” field. When an

end user needs to define his own object, he defines the

object name, each field’s name and type contained in the

object through the web browser. The application first

creates a meta-data record both in the “custom_objects”

and “custom fields” table, then insert the field value into

“data-value” table. Especially, the value of “object_type”

field should be set to “table” in this situation

Fig. 2 Sample data.

Compared with other techniques, optimizing queries

is now possible on a per-tenant basis as it is now possible

to create indexes on the common tenant table. Querying

customer extension data will not be hindered by the

handling process of NULL values. Indeed, as each tenant

is given her own extension table containing her specific

data, there is no need to pad the table with NULL values.

4. Experiments

In this section we will test the performance of our new

data-sharing storage model, and make a comparison with

other techniques in section 2. Since there is no standard

data set for this task, we construct a base schema of a

particular business domain application from the data

schema in TPC-W database[14]. The base schema contains

eight tables as depicted in Fig 3. We append a tenantid

column so that it can be shared by multiple tenants as

“Common tables”. Then we will extend or map the base

schema by different techniques above. For example, Fig 4

shows the “chunk folding” as it is described in literature

[12]. In order to avoid influence each other, multiple

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 1, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 15

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

copies of the base schema are created, each copy contains

one model.

Fig. 3 TPC-W schema.

Fig.4 Chunk Folding schema.

In the experiments, we simulate a real multi-tenant

scenario in “client/server” model by sending query and

update requests from many tenants concurrently, and then

evaluate the solutions by analysis the response time and

TPS data captured during those experiments. The

experiment simulated four kinds of scenarios which were

described in table.1. Clients are designed to be able to

simulate many tenants, in the experiment we set the

number of tenants from 1-100 and every tenant had 50

users in parallel. Every simulated tenant would submit all

the four kinds of scenarios mentioned above to the server

and records the execution time. We divide the experiments

into two groups by the number of simulated tenants. We

collect average response time as the indicator of evaluation.

The comparisons are shown in Fig 5. The horizontal axis

shows the different request classes, and the vertical axis

shows the response time in milliseconds. The experiment

was run on a sql-server database server with a 3.0 GHz

Intel Xeon processor and 1 GB of memory

Table 1: four kinds of scenarios

S1 Select tenant custom attributes of a single entity as if it
was being displayed in a detail page in the browser

S2 Select all attributes of 1000 entities as if they were being
displayed in a list in the browser

S3
Update custom entity instances as if data were updated

by some clients.

S4 Insert one new entity instance as if it was being manually

entered into the browser.

Fig. 5(a) one tenant.

Fig. 5(b) 100 tenants.

Fig. 5 average response time in each scenario.

From Fig 5 we can see that “xml table” has the

smallest response time while the “pivot table” is the

highest. When there were small tenants, for example, only

one tenant with 50 users in Fig 5 (a), our model spent

much more time than the other techniques except “pivot

table” in scenario “S1”, but in scenario “S2” and “S3”, our

model performs better, and the response time is in a middle

level and almost the same as other two techniques. That

means in small requests scenario, our method has a better

performance in update field and select limit entities. With

the increase in the number of tenants, the response time of

our model is still in a middle level in each scenario, and it

performed much more stable than “chunk folding” when

increased the number of tenants.

Fig 6 shows the TPS for tenants. TPS is an important

indicator to measure the system capacity, it records the

transactions per second of the server, the larger value it is,

the better processing capacity of the system is. Fig 6 (a)-

Fig 6 (d) show the TPS for tenants from scenario “S1” to

Chunk0

Tenant

Table

Chunk

Row

A1(INT)

A2(DOUBLE)

A3(DATE)

A4(VARVHA

R)

Chunk1

Tenant

Table

Chunk

Row

A1(INT)

A2(INT)

Chunk2

Tenant

Table

Chunk

Row

A1(VARVHA

R)

A2(VARVHA

R)

A4(VARVHA

R)

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 1, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 16

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

“S4” , from which we could find that our model performed

as better as other techniques when doing insert operation,

and it is better than “chunk folding” and “pivot table”

when doing select and update operations.

In conclusion, though our model does not has the

shortest response time and the highest TPS value, it makes

a good balance in efficiency and customization. The most

efficient technique “xml table” seemed to be a good choice,

but as described in section 3.1, it is not suitable for those

applications in which customers need to define their own

objects. The second efficient technique “universal table”

needs to handle too many null values, and it is waste of

space. The “Extension Table” is good for small tenants.

“Chunk folding”, “pivot table” and our model are more

complex, and the efficient are lower than other three

techniques for additional joins are required，but they are

more flexible to extend and customized. If we want to

make a balance between efficiency and customized, our

model is a good choice.

Fig 6 (a) S1 scenario

Fig 6 (b) S2 scenario

Fig 6 (c) S3 scenario

Fig 6 (d) S4 scenario

Fig. 6 TPS comparison.

5. Conclusions

 In this paper, first we introduced related techniques,

then we presented a new meta-data driven data-sharing

storage model which can be used to implement multitenant

applications on top of a standard relational database. Our

approach works by splitting up the “common tables”

shared by each tenant, and mapping the data to “meta data

tables” and “data tables”. Finally, We studied the

performance of standard relational databases on OLTP

queries formulated over our model, and presented the

results of several experiments designed to measure the

efficacy of our model and made a comparison to previous

techniques.

The conclusion we draw from this paper is that our

meta-data driven data-sharing storage model make a good

balance between efficiency and customized. It is a flexible

way of constructing tenant database schemas that provide

high extensibility for multi-tenant database, enables tenants

to have their own fields or tables, and improves database

performance by eliminating NULL values. Our on-going

work is to improve our model by assigning primary keys to

unique columns, providing indexes to table columns, and

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 1, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 17

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

creating database relationship between virtual and common

tables.

Acknowledgments

This work is supported by State Natural Sciences

Foundation Projects of China under Grant (91118005),

Natural Science Foundation Project of Chongqing under

Grant (CSTC 2011BA2022).

References
[1] F. Burno. "Exeuting an IP Protection Strategy in a SaaS

Environment",http://www.slideshare.net/Rinky25/saas-

environment, Jul. 22, 2011.

[2] Nitue, "Configurability in SaaS (software as a service)

applications", ISEC , 2009, pp. 19-26.

[3] F. Chong and G. Carraro. Architecture Strategies for

Catching the Long Tail. Microsoft Corp. Webs ite, 2006

[4] G. C . Freder ick Chong and R . Wolter. M ulti-Tenant Data

Architecture. Microsoft Corp . Website, 2006.

[5] D. J acobs and S . Aulbach. Ruminations on Multi-Tenant

Databases . In Proc. of BTW Conf., pages 514–521, 2007.

[6] F. S. Foping, I. M. Dokas, J. Feehan, and S. Imran, "A new

hybrid schema-sharing technique for multitenant

applications", ICDIM , 2009, pp. 1-6.

[7] D. Jia, W. Hao-yu, and Y. Zhao-jun, “Research on data layer

structure of multi-tenant e-commerce system”, IE&EM,

2010, pp. 362 – 365.

[8] S. Aulbach, T. Grust, D. Jacobs, A. Kemper, and J. Rittinger,

“Multitenant databases for software as a service: Schema

mapping techniques”, SIGMOD , 2008, pp. 1195-1206.

[9] S. Aulbach, T. Grust, D. Jacobs, A. Kemper, and M. Seibold,

“A Comparison of Flexible Schemas for Software as a

Service”, SIGMOD , 2009, pp. 881-888.

[10] G. P. Copeland and S. N. Khoshafian. A decomposition

storage model. InSIGMOD ’85:Proceedings of the 1985

ACM SIGMOD international conference on Management of

data, pages 268–279, New York, NY, USA, 1985. ACM

[11] R.Mietzner, T.Unger, R.Titze, and F.Leymann, “Combining

Different Multi-tenancy Patterns in Service-Oriented

Applications”, EDOC, 2009, pp. 131 -140.

[12] Yao jinCheng, “Mutil-Tenant Database Memory

Management Mechanism Based on Chunk Folding”, Chinese

journal of computers , 2011, pp. 8-9

Li Heng is a lecture in Chongqing University. Currently, he is a

PhD student in College of Computer Science of Chongqing
University. His interests are in cloud computing, data mining &
machine learning .

Yang Dan is a professor of Chongqing University. Current

research interests: data mining, computer vision, machine learning,
enterprise informatization .

Zhang Xiao Hong is a professor of Chongqing University.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 1, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 18

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

